七年級數學教學方案
教案不僅是教學計劃的書面化,更是教師教育理念的具體體現,它反映了教師對教育目標的理解和追求。以下是小編整理的一些七年級數學教學方案,僅供參考。
七年級數學教學方案(精選篇1)
一、教學目標
1、了解推理、證明的格式,理解判定定理的證法。
2、掌握平行線的第二個判定定理,會用判定公理及定理進行簡單的推理論證。
3、通過第二個判定定理的推導,培養學生分析問題、進行推理的能力。
4、使學生了解知識來源于實踐,又服務于實踐,只有學好文化知識,才有解決實際問題的本領,從而對學生進行學習目的的教育。
二、學法引導
1、教師教法:啟發式引導發現法。
2、學生學法:積極參與、主動發現、發展思維。
三、重點難點及解決辦法
(一)重點
判定定理的推導和例題的解答。
(二)難點
使用符號語言進行推理。
(三)解決辦法
1、通過教師正確引導,學生積極思維,發現定理,解決重點。
2、通過教師指導,學生自行完成推理過程,解決難點及疑點。
四、課時安排
1課時
五、教具學具準備
三角板、投影儀、自制膠片。
六、師生互動活動設計
1、通過設計練習,復習基礎,創造情境,引入新課。
2、通過教師指導,學生探索新知,練習鞏固,完成新授。
3、通過學生自己總結完成小結。
七、教學步驟
(一)明確目標
掌握平行線的第二個定理的推理,并能運用其進行簡單的.證明,培養學生的邏輯思維能力。
(二)整體感知
以情境創設,設計懸念,引出課題,以引導學生的思維,發現新知,以變式訓練鞏固新知。
(三)教學過程
創設情境,復習引入
師:上節課我們學習了平行線的判定公理和一種判定方法,根據所學看下面的問題(出示投影)。
學生活動:學生口答第1、2題。
師:你能說出有什么條件,就可以判定兩條直線平行呢?
學生活動:由第l、2題,學生思考分析,只要有同位角相等或內錯角相等,就可以判定兩條直線平行。
教師將第3題圖形畫在黑板上。
學生活動:學生口答理由,同角的補角相等。
師:要求學生寫出符號推理過程,并板書。
【教法說明】
本節課是前一節課的繼續,是在前一節課的基礎上進行學習的,所以通過第1、2兩題復習上節課所學平行線判定的兩個方法,使學生明確,只要有同位角相等或內錯角相等,就可以判定兩條直線平行。第3題是為推導本節到定定理做鋪墊,即如果同旁內角互補,則可以推出同位角相等,也可以推出內錯角相等,為定理的推理論證,分散了難點。
師:第4題是一個實際問題,題目中已知的兩個角是什么位置關系角?
學生活動:同分內角。
師:它們有什么關系。
學生活動:互補。
師:這個問題就是知道同分內角互補了,那么兩條直線是不是平行的呢?這就是這節課我們要研究的問題。
七年級數學教學方案(精選篇2)
一、教材分析
1、教材的內容:本節課是人教版七年級下冊第五章第一節的第一課時
2、教材的地位和作用:平面內兩條直線的位置關系是“空間與圖形”所要研究的基本問題,這些內容學生在前兩個學段已經有所接觸,本章在學生已有知識和經驗的基礎上,繼續研究平面內兩條直線的位置關系,首先研究相交的兩條直線,這是后面學習垂直相交的必要基礎也為后面學面直角坐標系奠定基石,因此本節課具有承前啟后的重要作用
3、教學的重點、難點:
重點:鄰補角、對頂角的概念,對頂角的性質和應用。
難點:理解對頂角性質的探索
(確定重難點的依據:本節的學習目的是研究兩條相交直線產生的四個角的關系,因此將鄰補角、對頂角的概念、性質以及應用作為本節的重點。同學們剛剛開始接觸幾何,對推理說理不習慣也不熟悉,所以將理解對頂角相等的性質作為難點。)
4、教學目標:
A:知識與技能目標
(1).理解對頂角和鄰補角的概念,能在圖形中辨認.
(2).掌握對頂角相等的性質和它的推證過程
(3).會用對頂角的性質進行有關的簡單推理和計算.
B:過程與方法目標
(1).通過觀察、操作、探究、猜想、思考、交流、歸納、推理等培養學生的推理能力和有條理的表達能力,培養操作能力、動手能力。
(2).體會具體到抽象再到具體的思想方法.
C:情感、態度與價值目標
(1).感受圖形中和諧美、對稱美.
(2).感受合作交流帶來的成功感,樹立自信心.
(3).感受數學應用的廣泛性,使學生更加熱愛數學
二、學情分析:
在此之前,學生已經學習了圖形的初步認識、對相交線和平行線有了直觀的感性認識,且對互補和互余有了清楚的了解,在此基礎上來學習鄰補角和對頂角,符合學生的認知規律,讓學生對新知識的應用充滿好奇與期待.
三、教法和學法:
教法:
葉圣陶先生倡導:解放學生的手,解放學生的腦,解放學生的時間.根據這一思想及我校初一學生活潑好動的特點,我采取啟發式教學、探究式教學及多媒體輔助教學相結合的方法.
學法:以學生分組實踐、自主探究、合作交流為主要形式的探究式學習方法.
四、教學過程:
1課前準備:課件,剪刀,紙片,相交線模型
2教學過程:設置以下六個環節
環節一:情景屋(創設情景,激發學習動機)
請學生欣賞觀察圖片,圖片中有大橋上的鋼梁和鋼索,窗戶的窗格都給我們以相交線平行線的形象,讓學生感受到相交線平行線在我們生活中有著廣泛的應用,由此產生研究它們了解它們的興趣和欲望,適時的給出本章課題:相交線和平行線
環節二:問題苑(合作交流,解釋發現)
通過一些問題的設置,激發學生探究的欲望,具體操作:
(1):動手嘗試:剪紙片,感知剪刀所形成的角在剪紙過程中的變化
(2):給出問題,由剪刀這個實物抽象出幾何模型——兩條直線相交。
(讓學生充分的感知到數學來源于生活,符合初中學生的認識規律和興趣愛好)
(3):分析研究此模型:
設置以下一系列問題:
A、兩直線相交構成的4個角兩兩相配共能組成幾對?(6對)
B、對各對角進行分析,首先從位置上去分析————結論:可把這六對角分成兩大類,一類為哪些角?——特點?——它們有一條公共邊,它們的另一邊互為反向延長線——引出概念——鄰補角。
另一類是哪些角?———特點?——它們的兩邊互為反向延長線——引出概念——對頂角
C、再從大小上進行分析——量一量——結論:鄰補角互補、對頂角相等。
D、你能闡述它們互補和相等的理由嗎?
(一堂好課,是由一系列的真問題組成的,本環節在老師的引導下,由學生自由的發揮,通過觀察分析,交流討論一步一步的解決本節課的重點和難點,學生通過自己探索獲得的知識才是自己的知識,讓學生在此過程中學會學習,達到教是為了不教的目的)
環節三:快樂房(大膽創設,感悟變換)
(設置見投影,讓學生判斷形成的兩個角是否為鄰補角,這一變換讓學生充滿興趣,此時一定讓學生用鄰補角的特點去檢驗,達到知識的正向遷移,并理解鄰補角和補角的關系)
環節四:實例庫(拓展應用,升華提高)
例子1:是一組不同形式的角,判斷是否為對頂角,此題的目的是鞏固對頂角的概念,培養學生的識圖能力
例子2:例子2是用對頂角和鄰補角的性質進行簡單的計算,在這里設置了一組變式題,而且變式題目不是教師直接給出,而是啟發學生自己編,讓學生過了一把編導的癮,學生一定非常的開心,這樣可以活躍課堂氣氛,提高學生的思維能力
(一方面鞏固了對頂角的.性質;另一方面說明幾何里的計算題,需要用到圖形的幾何性質,因此,要有根有據地計算.例題放手讓學生自己解決,比教師單純地講解效果會更好.盡管學生書寫格式不如課本上的規范,但通過集體講評糾正后,學生印象會更深刻).
最后安排一個腦筋急轉彎:見投影
(讓學生始終對課堂充滿熱情,通過此練習,體會到數學來自于生活又用于生活,提高學習數學的興趣和熱情)
環節五:點金帚(學后反思感悟收獲)
通過本堂課的探究
我經歷了......
我體會到......
我感受到......
(學生暢所欲言,在“以生為本”的民主氛圍中培養學生歸納、概括能力和語言表達能力;同時引導學生反思探究過程,幫助學生肯定自我,欣賞他人,同時把本節課的內容形成知識體系.)
角的名稱
特征
性質
相同點
不同點
對頂角
①兩條直線相交而成的角
②有一個公共頂點
③沒有公共邊
對頂角相等
都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現。
對頂角沒有公共邊而鄰補角有一條公共邊;兩條直線相交時,一個角的對頂角有一個,而一個角的鄰補角有兩個
鄰補角
①兩條直線相交面成的角
②有一個公共頂點
③有一條公共邊
鄰補角互補
環節六:沉思閣(課后延伸張揚個性)
此為課后作業:
(適當增加利用對頂角相等解決一些說理的題目,既讓學生感受到對頂角相等這個性質在解題中的獨特魅力,又為后續學習打下良好的基礎.)
五、教學設計說明:
設計理念:面向全體學生,實現:
——人人學有價值的數學
——人人都能獲得必需的數學
——不同的人在數學上得到不同的發展
過程設計:學生親身經歷從現實生活的圖形中提出數學問題,并抽象其蘊涵的數學本質(相交直線),最后回歸生活去運用所學知識的全過程。
設計目的:讓學生帶著興趣、帶著問題走進課堂,帶著新的問題、帶著高漲的熱情離開課堂,進行不斷的探究。
七年級數學教學方案(精選篇3)
【學習目標】:
1、掌握正數和負數概念;
2、會區分兩種不同意義的量,會用符號表示正數和負數;
3、體驗數學發展是生活實際的需要,激發學生學習數學的興趣。
【重點難點】:
正數和負數概念
【教學過程】:
一、知識鏈接:
1、小學里學過哪些數請寫出來:
2、閱讀課本P2三幅圖(重點是三個例子,邊閱讀邊思考)回答下面提出的問題:
3、在生活中,僅有整數和分數夠用了嗎?有沒有比0小的數?如果有,那叫做什么數?
二、自主學習
1、正數與負數的產生
(1)、生活中具有相反意義的量
如:運進5噸與運出3噸;上升7米與下降8米;向東50米與向西47米等都是生活中遇到的具有相反意義的量。請你也舉一個具有相反意義量的例子:。
(2)負數的產生同樣是生活和生產的需要
2、正數和負數的表示方法
(1)一般地,我們把上升、運進、零上、收入、前進、高出等規定為正的,而與它相反的量,如:下降、運出、零下、支出、后退、低于等規定為負的。正的量就用小學里學過的數表示,有時也在它前面放上一個“+”(讀作正)號,如前面的5、7、50;負的量用小學學過的數前面放上“—”(讀作負)號來表示,如上面的—3、—8、—47。
(2)活動:兩個同學為一組,一同學任意說意義相反的兩個量,另一個同學用正負數表示.
(3)閱讀P2的內容
3、正數、負數的概念
1)大于0的數叫做,小于0的'數叫做。
2)正數是大于0的數,負數是的數,0既不是正數也不是負數。
【課堂練習】:
1.P3第1,2題(直接做在課本上)。
2.小明的姐姐在銀行工作,她把存入3萬元記作+3萬元,那么支取2萬元應記作_______,-4萬元表示________________。
3.已知下列各數:?13,?2,3.14,+3065,0,-239;54
則正數有_____________________;負數有____________________。
4.下列結論中正確的是()
A.0既是正數,又是負數
C.0是最大的負數
【要點歸納】:
正數、負數的概念:
(1)大于0的數叫做,小于0的數叫做。
(2)正數是大于0的數,負數是的數,0既不是正數也不是負數。
【拓展訓練】:
1.零下15℃,表示為_________,比O℃低4℃的溫度是_________。
2.地圖上標有甲地海拔高度30米,乙地海拔高度為20米,丙地海拔高度為-5米,
其中最高處為_______地,最低處為_______地.
3.“甲比乙大-3歲”表示的意義是______________________。
4.如果海平面的高度為0米,一潛水艇在海水下40米處航行,一條鯊魚在潛水艇上方10米處游動,試用正負數分別表示潛水艇和鯊魚的高度。
【課后作業】P5第1、2題
七年級數學教學方案(精選篇4)
教學目標
1.了解公式的意義,使學生能用公式解決簡單的實際問題;
2.初步培養學生觀察、分析及概括的能力;
3.通過本節課的教學,使學生初步了解公式來源于實踐又反作用于實踐。
教學建議
一、教學重點、難點
重點:通過具體例子了解公式、應用公式.
難點:從實際問題中發現數量之間的關系并抽象為具體的公式,要注意從中反應出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數量關系,往往寫成公式,以便應用。如本課中梯形、圓的'面積公式。應用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數量關系,然后就可以利用公式由已知數求出所需的未知數。具體計算時,就是求代數式的值了。有的公式,可以借助運算推導出來;有的公式,則可以通過實驗,從得到的反映數量關系的一些數據(如數據表)出發,用數學方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結構
本節一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應用、公式的先推導后應用以及通過觀察歸納推導公式解決一些實際問題。整節內容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應用的公式,首先在給出具體例子的前提下,教師創設情境,引導學生清晰地認識公式中每一個字母、數字的意義,以及這些數量之間的對應關系,在具體例子的基礎上,使學生參與挖倔其中蘊涵的思想,明確公式的應用具有普遍性,達到對公式的靈活應用。
2.在教學過程中,應使學生認識有時問題的解決并沒有現成的公式可套,這就需要學生自己嘗試探求數量之間的關系,在已有公式的基礎上,通過分析和具體運算推導新公式。
3.在解決實際問題時,學生應觀察哪些量是不變的,哪些量是變化的,明確數量之間的對應變化規律,依據規律列出公式,再根據公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學生分析問題、解決問題的能力。
教學設計示例
公式
五、教具學具準備
投影儀,自制膠片。
六、師生互動活動設計
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發學生求圖形的面積,師生總結求圖形面積的公式.
七年級數學教學方案(精選篇5)
【教學目標】
知識與技能:了解并掌握數據收集的基本方法。
過程與方法:在調查的過程中,要有認真的態度,積極參與。
情感、態度與價值觀:體會統計調查在解決實際問題中的作用,逐步養成用數據說話的良好習慣。
【教學重難點】
重點:掌握統計調查的基本方法。
難點:能根據實際情況合理地選擇調查方法。
【教學過程】
講授新課
像前面提到的收集數據的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。
調查、試驗如采用普查可以收集到較全面、準確的數據,但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。
在一個統計問題中,我們把所要考察對象的'全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數目叫做樣本容量。
例如,在通過試驗考察500只新工藝生產的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。
為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。
上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣。
師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。
學生小組合作、討論,學生代表展示結果。
教師指導、評論。
師:除了問卷調查外,我們還有哪些方法收集到數據呢?
學生小組討論、交流,學生代表回答。
師:收集數據的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網查詢等。就以下統計的數據,你認為選擇何種方法去收集比較合適?
(1)你班中的同學是如何安排周末時間的?
(2)我國瀕臨滅絕的植物數量;
(3)某種玉米種子的發芽率;
(4)學校門口十字路口每天7:00~7:10時的車流量。
七年級數學教學方案(精選篇6)
教材分析:
本節課是新教材幾何教學的第一節課,通過學生身邊的現實生活中的實物,讓學生感覺圖形世界豐富多彩。經歷從現實世界中抽象出幾何圖形的過程.激發學生學習幾何的熱情.。無需對具體定義的深刻理解,只要學生能用自己的語言描述它們的某些特征。
教學目標:
知識目標:
在具體情境中認識立方體、長方體、圓柱體、圓錐體、球體。并能用自己的語言描述它們的某些特征。進一步認識點、線、面、體,初步感受點、線、面、體之間的關系。
能力目標:
讓學生經歷“幾何模形---圖形---文字”這個抽象過程,培養學生抽象、辨別能力。
情感目標:
感受圖形世界的豐富多彩,激發學習幾何的熱情。
教學重點:
經歷從現實世界中抽象出幾何圖形的過程,感受點、線、面、體之間的關系。
教學難點:
抽象能力的培養,學習熱情的激發。
教學方法:
引導發現、師生互動。
教學準備:
多媒體課件、學生身邊的實物等。
教學過程:
合作學習
問題1:
我們已學過的或認得的`存有哪些幾何體?
(學生討論、交流)
問題2:
你能舉出一些在日常生活中形狀與上述幾何體類似的物體嗎?
(學生討論、舉例)
課本中P162中的合作學習
(教師可多舉一些平面與曲面的實例讓學生感受、辨別)
特別指出:
數學中的平面是可以無限伸展的
議一論
P163課內練習1
P163課內練習2
師生討論指出:
線與線相交成點,面與面相交成線。
想一想:
觀察下圖,你發現什么?
師生討論
議一議:
日常生活中的哪些事物給人以點、線的形象。
指出:
日常生活中點與面只是相對的一個感念。如:
在中國的地圖上,北京是一個點;而在北京市地圖上,北京是一個面。
活動探究:
P164課內練習3
應用拓展:
請以給定的圖形“〇〇、△△、═”(兩個圓、兩個三角形、兩條平行線)為構件,盡可能多地構思獨特且有意義的圖形,并寫上一句貼切、詼諧的解說詞。如圖就是符合要求的一個圖形。你還能構思出其他的圖形嗎?比一比,看誰想得多。
議一議:
本節課有什么收獲?
布置作業
七年級數學教學方案(精選篇7)
一、素質教育目標
(一)知識教學點
1、掌握的三要素,能正確畫出。
2、能將已知數在上表示出來,能說出上已知點所表示的數。
(二)能力訓練點
1、使學生受到把實際問題抽象成數學問題的訓練,逐步形成應用數學的意識。
2、對學生滲透數形結合的思想方法。
(三)德育滲透點
使學生初步了解數學來源于實踐,反過來又服務于實踐的辯證唯物主義觀點。
(四)美育滲透點
通過畫,給學生以圖形美的教育,同時由于數形的結合,學生會得到和諧美的享受。
二、學法引導
1、教學方法:根據教師為主導,學生為主體的原則,始終貫穿“激發情趣—手腦并用—啟發誘導—反饋矯正”的教學方法。
2、學生學法:動手畫,動腦概括的三要素,動手、動腦做練習。
三、重點、難點、疑點及解決辦法
1、重點:正確掌握畫法和用上的點表示有理數。
2、難點:有理數和上的點的對應關系。
四、課時安排
1課時
五、教具學具準備
電腦、投影儀、自制膠片。
六、師生互動活動設計
師生同步畫,學生概括三要素,師出示投影,生動手動腦練習
七、教學步驟
(一)創設情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計。其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度。
師:三個溫度計所表示的溫度是多少?
生:2℃,—5℃,0℃。
我們能否用類似溫度計的圖形表示有理數呢?
這種表示數的圖形就是今天我們要學的內容—(板書課題)。
【教法說明】從溫度計用標有讀數的刻度來表示溫度的'高低這個事實出發,引出本節課所要學的內容—。再從溫度計這個實物形象抽象出來研究。既激發了學生的學習興趣,又使學生受到把實際問題抽象成數學問題的訓練,培養了用數學的意識。
(二)探索新知,講授新課
1、的畫法
與溫度計類似,可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零,具體做法如下:
第一步:畫直線定原點原點表示0(相當于溫度計上的0℃)。
第二步:規定從原點向右的為正方向那么相反的方向(從原點向左)則為負方向。(相當于溫度計上℃以上為正,0℃以下為負)。
第三步:選擇適當的長度為單位長度(相當于溫度計上每1℃占1小格的長度)。
【教法說明】教師邊講解邊示范,學生跟著一起畫圖。培養學生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學生在認知過程中領悟這種思想方法。
讓學生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點表示什么數?
(2)原點右方表示什么數?原點左方表示什么數?
(3)表示+2的點在什么位置?表示—1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數?原點向左個單位長度的B點表示什么數?
根據老師畫圖的步驟,學生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學生活動:同學們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答。大家思考準備更正或補充。
【教法說明】通過“觀察—類比—思考—概括—表達”展現知識的形成是從感性認識上升到理性認識的過程,讓學生在獲取知識的過程中,領會數學思想和思維方法,并有意識地訓練學生歸納概括和口頭表達能力。
教師根據學生回答給予肯定或否定,糾正后板書。
2、的定義:規定了原點、正方向和單位長度的直線叫做。
向學生提出問題:上為什么要規定原點、正方向和單位長度呢?它們各起什么作用?引導學生結合溫度訂正確回答這個問題,從而知道三要素的重要性,了解三者缺一不可,認識和掌握判斷一條直線是不是的依據。
學生活動:同桌之間、前后桌之間討論。使學生從直觀認識上升到理性認識。
3、嘗試反饋,鞏固練習
請大家回答下列問題:
(出示投影2)
(1)有人說一條直線是一條,對不對?為什么?
(2)下列所畫對不對?如果不對,指出錯在哪里?
學生活動:學生思考,不準討論,想好后舉手回答。
讓其他學生對其回答進行評判,對確有疑問的題目,教師給予講解。
【教法說明】此組練習的目的是鞏固的概念。
答案:(2)①缺原點,②缺正方向,③不是射線而是直線,④缺單位長度,⑥提醒學生注意在同一數輪上必須用同一單位長度進行度量。⑤⑦是,同時⑦為學習平面直角坐標系打基礎。
4、有理數與上點的關系
通過剛才的學習我們知道所有的有理數都可以用上的點來表示。
例1畫一條,并畫出表示下列各數的點:
1,5,0,—2.5。
學生練習:同學們在練習本上畫一條,然后在上標出各點,一名學生板演。教師巡回指導,發現問題及時糾正。
【教法說明】讓學生動手自己畫,有助于培養學生實際操作能力。例1是把給定的有理數用上的點來表示,完成由“數”到“形”的思維過程,有助于學生加深對概念的理解。
(出示投影4)
例2指出上A、B、C、D、E各點分別表示什么數?
先讓學生思考一會,然后學生舉手回答
解:A表示—3;B表示;C表示3;D表示;E表。
【教法說明】例2是讓學生說出上的點表示的有理數,完成了由“形”到“數”的思維過程。例1、例2從各自不同的兩個側面,體現出數形結合,滲透了數形之間相互轉化的數學思想。
5、嘗試反饋,鞏固練習
(出示投影5)
①說出下面上A、B、C、D、O、M各點表示什么數?
②將—3,1.5,—6,2.25,—5,1
各數用上的點表示出來。
【教法說明】①題由點讀數練習,②題由數找點練習,進一步鞏固加深本節所學的內容。
(三)歸納小結
師:①是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示數與形之間的內在聯系,是幫助學生理解數學、學習數學的重要思想方法。本章有理數的有關性質和運算都是結合進行的
②掌握三要素,正確地畫出,提醒同學們,所有的有理數都可用上的各點來表示,但是反過來不成立,即上的各點,并不是都表示有理數。以后再研究。
八、隨堂練習
1、判斷題
(1)直線就是()
(2)是直線()
(3)任何一個有理數都可以用上的點來表示()
(4)上到原點距離等于3的點所表示的數是+3()
(5)上原點左邊表示的數是負數,右邊表示的數是正數,原點表示的數是0。()
2、畫一條數輪,并畫出表示下列各數的點,—5,0,+3.2,—1.4
九、布置作業
(—)必做題:課本第56頁1、2。
(二)選做題:課本第56頁及第57頁B組1。
(三)思考題:
①在數輪上距原點3個單位長度的點表示的數是_____________
②在數輪上表示—6的點在原點的___________側,距離原點___________個單位長度,表示+6的點在原點的__________側,距離原點____________個單位長度。
【教法說明】由于學生在知識、技能、能力方面發展不盡相同,所以分層次地布置作業,兼顧學習有困難和學有余力的學生,使他們都能達到大綱中規定的基本要求,并使部分學生能發展他們的數學才能。
十、板書設計
隨堂練習答案
1、×√√×√2、略
作業答案
(一)必做題
1、(1)依次是
(2)依次是
2、依次是
(二)選做題:
3、略B組1、(1)—6,(2)—1,(3)3;(4)0
(三)思考題:①②左,6,右,6
探究活動
(1)在上表示出距離原點3個單位長度和4.5個單位長度的點,并用“<”號將這些點所表示的數排列起來;
(2)寫出比—4大但不大于2的所有整數。
分析:畫時,的三要素:原點、正方向、單位長度缺一不可。
(1)在上,距離原點3個單位長度和4.5個單位長度的點各有兩個,它們分別在原點兩旁且關于原點對稱。畫出這些點,這些點所表示的數的大小就排列出來了;
(2)在上畫出大于—4但不大于2的數的范圍,這個范圍內整數點所表示的整數就是所求。“不大于2”的意思是小于或等于2。
解:(1)上,距離原點3個單位的點是+3和—3,距離原點4.5個單位的點是+4.5和—4.5。
由圖看出:—4.5<—3<3<4.5
(2)在上畫出大于—4但不大于2的數的范圍。
由圖知,大于—4但不大于2的整數是:—3,—2,—1,0,1,2。
點評:利用,數形結合,是解這一類問題的好方法。
七年級數學教學方案(精選篇8)
教學目標
1,通過對數“零”的意義的探討,進一步理解正數和負數的概念;
2,利用正負數正確表示相反意義的量(規定了指定方向變化的量)
3,進一步體驗正負數在生產生活實際中的廣泛應用,提高解決實際問題的能力,激發學習數學的興趣。
教學難點
深化對正負數概念的理解
知識重點
正確理解和表示向指定方向變化的量
教學過程(師生活動)
設計理念
知識回顧與深化
回顧:上一節課我們知道了在實際生產和生活中存在著兩種不同意義的量,為了區分這兩種量,我們用正數表示其中一種意義的量,那么另一種意義的量就用負數來表示。這就是說:數的范圍擴大了(數有正數和負數之分)。那么,有沒有一種既不是正數又不是負數的數呢?
問題1:有沒有一種既不是正數又不是負數的數呢?學生思考并討論。(數0既不是正數又不是負數,是正數和負數的分界,是基準。這個道理學生并不容易理解,可視學生的討論情況作些啟發和引導,下面的例子供參考)
例如:在溫度的`表示中,零上溫度和零下溫度是兩種不同意義的量,通常規定零上溫度用正數來表示,零下溫度用負數來表示。那么某一天某地的溫度是零上7℃,最低溫度是零下5℃時,就應該表示為+7℃和-5℃,這里+7℃和-5℃就分別稱為正數和負數。那么當溫度是零度時,我們應該怎樣表示呢?(表示為0℃),它是正數還是負數呢?由于零度既不是零上溫度也不是零下溫度,所以,0既不是正數也不是負數?
問題2:引入負數后,數按照“兩種相反意義的量”來分,可以分成幾類?“數0耽不是正數,也不是負數”也應看作是負數定義的一部分。在引入負數后,0除了表示一個也沒有以外,還是正數和負數的分界。了解。的這一層意義,也有助于對正負數的理解;且對數的順利擴張和有理毅概念的建立都有幫助。所舉的例子,要考慮學生的可接受性。“數0既不是正數,也不是負數”應從相反意義的1這個角度來說明。這個問題只要初步認識即可,不必深究。
問題3:教科書第6頁例題
說明:這是一個用正負數描述向指定方向變化情況的例子,通常向指定方向變化用正數表示;向指定方向的相反方向變化用負數表示。這種描述在實際生活中有廣泛的應用,應予以重視。教學中,應讓學生體驗“增長”和“減少”是兩種相反意義的量,要求寫出“體重的增長值”和“進出口額的增長率”,就暗示著用正數來表示增長的量。
歸納:在同一個問題中,分別用正數和負數表示的量具有相反的意義(教科書第6頁)。
類似的例子很多,如:水位上升-3m,實際表示什么意思呢?收人增加-10%,實際表示什么意思呢?等等。可視教學中的實際情況進行補充。
這種用正負數描述向指定方向變化情況的例子,在實際生活中有廣泛的應用,按題意找準哪種意義的量應該用正數表示是解題的關健。這種描述具有相反數的影子,例如第(1)題中小明的體重可說成是減少-2kg,但現在不必向學生提出。
鞏固練習教科書第6頁練習
閱讀思考
教科書第8頁閱讀與思考是正負數應用的很好例子,要花時間讓學生討論交流
小結與作業
課堂小結以問題的形式,要求學生思考交流:
1,引人負數后,你是怎樣認識數0的,數0的意義有哪些變化?
2,怎樣用正負數表示具有相反意義的量?(用正數表示其中一種意義的量,另一種量用負數表示;特別地,在用正負數表示向指定方向變化的量時,通常把向指定方向變化的量規定為正數,而把向指定方向的相反方向變化的量規定為負數。)
本課作業1,必做題:教科書第7頁習題1.1第3,6,7,8題
3,選做題:教師自行安排
本課教育評注(課堂設計理念,實際教學效果及改進設想)
1,本課主要目的是加深對正負數概念的理解和用正負數表示實際生產生活中的向指
定方向變化的量。
2,“數0既不是正數,也不是負數,’(要從0不屬于兩種相反意義的量中的任何一種上來理解)也應看作是負數定義的一部分。在引人負數后,除了表示一個也沒有以外,還是正數和負數的分界。了解0的這一層意義,也有助于對正負數的理解,且對數的順利擴張和有理數概念的建立都有幫助。由于上節課的重點是建立兩種相反意義量的概念,考慮到學生的可接受性,所以作為知識的回顧和深化而放到本課。
3,教科書的例子是用正負數表示(向指定方向變化的)量的實際應用,用這種方式描述的例子很多,要盡量使學生理解。
4,本設計體現了學生自主學習、交流討論的教學理念,教學中要讓學生體驗數學知識在實際中的合理應用,在體驗中感悟和深化知識。通過實際例子的學習激發學生學習數學的興趣。
七年級數學教學方案(精選篇9)
【教學目標】
引導學生通過常規分析,得出解題思路,經歷提出問題,自探問題,應用知識的過程,自主總結出解題辦法;
【教學難點】
找出題目中的可有可無的已知條件,說一說為什么可以這樣認為
【教學過程】
問:以前學過的有關路程,時間,和速度之間的關系是怎么樣的?你能寫出它們之間的關系嗎?
出示例題:甲、乙兩地公路全長352千米。汽車原來從甲地到乙地要11小時,建成高速公路后,汽車每小時速度是原來的2.5倍。現在汽車從甲地到乙地需要多少小時?
分析:要求現在汽車從甲地到乙地需要多少小時,那么先要求出汽車現在的速度,而汽車現在的速度是原來的2.5倍,那么還得先求出汽車原來的速度。根據`甲乙兩地公路全長352千米。汽車原來從甲地到乙要11小時,可以求出汽車原來的速度。
學生寫出解答過程:汽車原來的速度:352÷1=32(千米);汽車現在的速度:32×2.5=80(千米)
現在的時間:352÷80=4.4(小時)
問:用比例的思路該怎么樣理解這道題目呢?
分析:甲、乙兩地的公路長度一定,汽車的速度和所需的時間成反比例。因為現在的速度是原來的`2.5倍,所以原來的時間是現在的
2.5倍。即:11÷2.5=4.4(小時)。
這樣解答使得`甲乙兩地公路全長352千米成了多余條件,但是又不影響解答問題。
【我們來探索】
一批零件有240個,王師傅單獨做需要6小時,李師傅的工作效率是王師傅的1.5倍,那么如果讓李師傅單獨做這批零件,需要幾小時?
【總結】
在解答應用題時要善于應用不同的思路和技巧,巧解問題
【作業】
丁阿姨打一份稿件需4小時,王阿姨的速度是丁阿姨的,那么如果由王阿姨打這份稿件,需要幾小時?
丁阿姨打一份稿件需要4小時,王阿姨的速度與丁阿姨的速度比是4:5,那么如果由王阿姨打這份稿件,需要幾小時?
七年級數學教學方案(精選篇10)
一、內容和內容解析
1、內容
平移作圖與平移變換的應用、
2、內容解析
平移作圖是平移性質的應用、平移作圖有利于培養學生觀察、分析和動手操作的技能,它是應用平移變換解決問題的基礎、利用平移變換分析和解決實際問題,體現了圖形變換思想和轉化思想、平移是本套教材首先介紹的基本的圖形變換、由于平移、旋轉和軸對稱變換都不改變圖形的形狀和大小,因此我們可以將一些不規則平面圖形通過變換轉化為規則的平面圖形,利用規則圖形的性質來解決問題、對平移變換應用的研究,對今后學習其他圖形變換有著“示范”的作用、
本節課是在學生已經學習了平移的概念和性質的基礎上,研究簡單的平移作圖和利用平移變換解決實際問題、由于平移在日常生活中很常見,生活中很多美麗的圖案都可以利用平移制作出來,因此讓學生多舉一些有關平移的例子,有利于學生體會平移與生活的聯系,提高對平移的認識、
上節課通過模板讓學生想象動手平移的過程,探索出平移的性質,本節課則既要動手操作畫圖,又要發揮想象,考慮平移后的情況,以利于應用規則圖形解決問題,從教學要求上看是更進了一步、
基于以上分析,確定本節課的教學重點為:平移性質的作圖應用、
二、目標和目標解析
1、教學目標
(1)能利用平移的基本性質作出簡單平面圖形平移后的圖形、
(2)能夠運用平移的概念和性質解決簡單的實際問題、
2、目標解析
(1)學生能作出一個簡單平面圖形在給定平移方向和平移距離情況下平移后的圖形;對于網格中的平移作圖,要求能作出在同時給出橫向和縱向移動距離的情況下移動后的圖形;
(2)學生能夠靈活運用“平移時,圖形的形狀和大小不變”的性質,將圖形平移,利用得到的規范圖形解決問題、
三、教學問題診斷分析
平移作圖實際上就是作平行線和作一條線段等于已知線段的應用,學生理解不會很困難、而運用平移變換解決簡單的實際問題涉及平移的概念(平移方向和平移距離)、平移的性質(平移不改變圖形的形狀和大小),以及相關規則圖形的知識、從能力方面看,需要具有一定的觀察、歸納、探索能力,因此需要教師在教學過程中進行不斷地引導,讓學生逐步感悟、領會,并在解題中靈活運用、
所以本節課的教學難點是:利用平移變換解決實際問題、
四、教學過程設計
1、梳理舊知,引出新課
多媒體顯示下面兩組圖片、
問題1觀察這兩組圖片,你能說出平移具有的特征嗎?
師生活動學生觀察、回答,說出平移的特征,若出現錯誤或不完整,請其他學生修正或補充、教師點評、梳理所學的知識:把一個圖形整體沿某一直線方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同;新圖形上的每一點,都是由原圖形中的某一點移動得到的,這兩個點是對應點,連接各組對應點的線段平行(或在同一條直線上)且相等、
【設計意圖】讓學生借助圖片梳理回憶,一方面避免學生死記硬背平移的特征,另一方面又能加深學生對平移的定義及性質的理解、
追問1我們在研究平移的性質時,是通過水平方向平移得出的,圖形平移的方向是否緊限于水平?
師生活動學生觀察、回答,教師作必要說明、
【設計意圖】通過問題梳理上節的內容,同時意識到對于平移變換,除了有水平方向的平移外,還有其他方向的平移,平移的基本特征對于其他方向的平移也是適用的、
追問2平移在我們生活中是很常見的,利用平移可以制作很多美麗的圖案、你能舉出生活中一些利用平移的例子嗎?
師生活動學生思考并舉例,教師點評,注意例子的廣泛性、
【設計意圖】讓學生多舉平移的例子,說明平移在實際生活中的廣泛應用,體會平移與生活的聯系,提高對平移的.再認識、
2、動手操作,應用性質
例1如圖,平移三角形,使點移到到點、畫出平移后的三角形、
問題2
(1)確定一個圖形平移后的位置,除需要原來圖形的位置外,還需要什么條件?本題中是否具備這樣的條件?
(2)圖形平移后的對應點有什么特征?作出點、點的對應點,能確定三角形的位置嗎?
(3)如何確定點、點平移后的位置以及平移后的三角形?
師生活動教師通過不斷追問,引導學生回答,讓學生敘述作法,教師板書,并畫圖(如下圖),同時學生在自己的練習本上畫圖,并展示學生的作品、教師提醒學生注意這里三角形的頂點是關鍵點,找到三角形平移后的關鍵點,就能完成三角形的平移、
【設計意圖】通過搭建臺階,為學生探究問題提供“腳手架”,將問題轉化為作平行線和作一條線段等于已知線段、使學生明白確定一個平移后的位置需要的條件是:
(1)圖形原有的位置;
(2)圖形平移的方向;
(3)圖形平移的距離、
練習
如圖,將字母A按箭頭所指的方向平移3cm,做出平移后的圖形、
師生活動多媒體展示問題,學生獨立在練習本上完成、
【設計意圖】及時訓練,使學生進一步熟悉平移在作圖中的應用、通過學生實際操作,進一步理解平移的基本性質,提高學生動手操作能力,更重要的是獲得學習數學的經驗、
3、例題示范,學會應用
例2下圖是小李家電視機的背景墻面上的裝飾板,它是一塊底色為藍色的正方形板,邊長為18cm,上面橫豎各有兩道裝飾紅條,紅條寬都是2cm,請用平移知識求藍色部分板面的面積、
師生活動教師引導學生分析解題思路:
⑴能否通過平移將藍色部分集中在一起?對于這一點,學生可能出現的方案,做好預設,可以用投影進行演示;
⑵學生獨立完成解題過程,兩名學生板書;
⑶師生共同評析學生的解題過程、
【設計意圖】利用平移解決生活中的簡單問題,提高學生的數學應用意識、讓學生理解題意,想象動手平移的過程,引導學生將藍色部分板面集中到一起,以便于集中求出藍色部分板面的面積,使問題變得簡單、
練習
如圖,在長方形ABCD中,AD=2AB,E、F分別為AD及BC的中點,扇形FBE、CFD的半徑FB與CF的長度均為1cm,請用平移知識求出陰影部分的面積和、
師生活動教師提出問題,學生獨立完成,教師巡視指導,完成后總結一般方法、
【設計意圖】利用平移變換解決問題有時不僅簡便,而且還是必要的方法,應引導學生及時總結,提煉出可以指導解答其他同類問題的一般性方法、一般而言,我們習慣上把所要探究的圖形,通過平移適當集中,這樣可以給解決問題帶來意想不到的效果、
4、小結
師生共同回顧本節課所學內容,并請學生回答以下問題:
(1)利用平移作圖需要確定哪些條件?
(2)利用平移解決實際問題需要注意什么?
【設計意圖】通過小結,使學生梳理本節課所學內容,把握本節課的核心————利用平移性質作圖、
5、布置作業:
教科書習題5、4第2,3,4,6題、
七年級數學教學方案(精選篇11)
教學目標:
知識能力:理解有理數的概念,掌握有理數的兩種分類方法,能夠按要求對給定的有理數進行分類。
過程與方法:通過本節的學習,培養學生正確的分類討論觀點和分類能力。
情感、態度、價值觀:通過本節課的學習,體驗成功的喜悅,保持學好數學的信心。
教學重點:
掌握有理數的兩種分類方法
教學難點:
給定的數字將被填入它所屬的集合中
教學方法:
問題導向法
學習方法:
自主探究法
教學過程:
一、形勢歸納
小學我們學了整數和分數,上節課我們學了正數和負數。誰能快速提出以下問題?
1、有以下數字:15,—1/9,—5,2/15,—13/8,0.1,—5.22,—80,0,123,2.33
(1)將以上數字填入以下兩組:正整數集{}和負整數集{}。你填完了嗎?
(2)將以上數字填入以下兩個集合:整數集合{}和分數集合{}。你填完了嗎?
稱整數和分數為有理數。(指點題,板書)
二、自學指導
學生自學課本,根據課本尋找自學的機會
提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。
三、展示歸納
1、找有問題的'學生逐題展示自學提綱中的問題答案,學生說,老師板書;
2、發動學生進行評價、補充、完善,教師根據每個題目的展示情況進行必要的講解和強調;
3、全部展示完畢后,老師對本段知識做系統梳理,關鍵點予以強調。
四、變式練習
逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發動其他學生評價、補充并完善,最后老師根據需要進行重點強調。
五、總結與反思:通過本節課的學習,你有什么收獲?
六、作業:必做題:課本14頁:1、9題
七年級數學教學方案(精選篇12)
一、說教材分析
1.教材的地位和作用
二元一次方程組是初中數學的重點內容之一,是一元一次方程知識的延續和提高,又是學習其他數學知識的基礎。本節課是在學生學習了一元一次方程的基礎上,繼續學習另一種方程及方程組,它是學生系統學習二元一次方程組知識的前提和基礎。通過類比,讓學生從中充分體會二元一次方程組,理解并掌握解二元一次方程組的基本概念,為以后函數等知識的學習打下基礎。
2.教學目標
知識目標:通過實例了解二元一次方程和它的解,二元一次方程組和它的解。
能力目標:會判斷一組未知數的值是否為二元一次方程及方程組的解。會在實際問題中列二元一次方程組。
情感目標:使學生通過交流、合作、討論獲取成功體驗,激發學生學習知識的興趣,增強學生的自信心。
3.重點、難點
重點:二元一次方程和二元一次方程的解,二元一次方程組和二元一次方程組的解的概念。
難點:在實際生活中二元一次方程組的應用。
二、教法
現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、言道者,教學的一切活動必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的年齡特征,本節課我采用啟發式、討論式以及講練結合的教學方法,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,在引導分析時,給學生留出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。
另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好發激發學生的學習興趣,增大教學容量,提高教學效率。
三、學法
“問題”是數學教學的心臟,活動是數學教學中的靈魂。所以我在學生思維最近發展區內設置并提出一系列問題,通過數學活動,引導學生:自主性學習,合作式學習,探究式學習等,激發學生的學習興趣,提高學生的數學思維和參與度,力求學生在“雙基”數學能力和理性精神方面得到一定發展。
四、教學過程
新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下教學環節:
(1)復習舊知,溫故知新
籃球聯賽中,每場比賽都要分出勝負,每隊勝一場得2分.負一場得1分,某隊為了爭取較好的名次,想在全部10場比賽中得到16分,那么這個隊勝負場數分別是多少?
設計意圖:構建注意主張教學應從學生已有的知識體系出發,方程是本節課深入研究二元一次方程組的認知基礎,這樣設計有利于引導學生順利地進入學習情境。
(2)創設情境,提出問題
這個問題中包含了哪些必須同時滿足的條件?設勝的場數是-,負的場數是y,你能用方程把這些條件表示出來嗎?
由問題知道,題中包含兩個必須同時滿足的條件:
勝的場數+負的場數=總場數,
勝場積分+負場積分=總積分。
這兩個條件可以用方程
-+y=10
2-+y=16
表示:
上面兩個方程中,每個方程都含有兩個未知數(-和y),并且未知數的指數都是1,像這樣的方程叫做二元一次方程.
把兩個方程合在一起,寫成
-+y=10
2-+y=16
像這樣,把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
設計意圖:以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望,通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節。
(3)發現問題,探求新知
滿足方程①,且符合問題的實際意義的-、y的'值有哪些?把它們填入表中。
上表中哪對-、y的值還滿足方程②。
一般地,使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
設計意圖:現代數學教學論指出,數學知識的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過學習用坐標表示平移觀察分析、獨立思考、小組交流等活動,引導學生歸納。
(4)分析思考,加深理解
通過前面的學習,學生已基本把握了本節所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生導入第五個環節。
(5)強化訓練,鞏固雙基
課堂練習:
設計意圖:幾道練習題由淺入深、由易到難、各有側重,體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,升華知識。
練習2:已知下列三對數值:
哪一對是下列方程組的解?
(設計意圖:數學教學論指出,數學知識要明確其內涵和外延(條件、結論、應用范圍等),通過對二元一次方程組的幾個重要方面的闡述,使學生的認知結構得到優化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。
(6)小結歸納,拓展深化
我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主體作用,從學習的指示、方法、體驗是那個方面進行歸納,我設計了這個問題:
①通過本節課的學習,你學會了哪些知識;
(7)布置作業,提高升華
教科書第89頁1、第90頁第1題。
以作業的鞏固性和發展性為出發點,我設計了兩個題,不僅是對本節課內容的一個反饋,也是對本節課知識的一個鞏固。總的設計意圖是反饋教學,鞏固提高。
以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,使課堂效益達到狀態。
五、評價與反思
本節課是在學生學習了一元一次方程基礎上進行的,主要是引導學生運用類比思想,依次經過比較、歸納等活動,最終探索出二元一次方程組。下面是關于本節課的幾點說明:
1、本節課對教材的內容進行了優化處理,為跳躍較大的知識點作充分的鋪墊,密切聯系新舊知識,讓學生借助已有的知識和方法主動探索新知識,擴大知識結構,發展能力,完善人格,從而使課堂教學真正落實到學生的發展上,體現了以教師為主導、學生為主體,以思想為導向、知識為載體,以方法為中介、訓練為主干,以培養學生的思維能力為中心、操作為動力的教學理念。
2、在課堂教學中為學生提供充分的探索空間,注重引導學生分工合作,獨立思考,形成主見并進行交流,創設民主、寬松和諧的課堂氣氛,讓學生暢所欲言,同時進行實驗操作,使課堂教學靈活直觀,新鮮有趣,從而使課堂教學實現教學思想的先進性、教學目標的整體性、教學過程的有序性、教學方法的靈活性、教學手段的多樣性、教學效果的可靠性。
3、注重量化評價與質懷評價相結合,充分利用課堂觀察評價、問題討論評價、學生自我評價等多元化評價,通過幾組習題,將學生水平層次記錄在案,為學生的學習評價提供充分的科學依據,從而綜合檢驗學生對數學知識、技能的理解,以及學生在學習數學的過程在情感和態度的形成和發展。
七年級數學教學方案(精選篇13)
教學目標
(一)教學知識點
1、了解近似數的概念,并按要求取近似數
2、體會近似數的意義及在生活中的作用
(二)能力訓練要求
能根據實際問題的需要選取近似數,收集數據
(三)情感與價值觀要求
進一步體會數學的應用價值,發展“用數學”的信心和能力
教學重點
1、體會和感受生活中的近似數和精確數,明白測量的結果都是近似數
2、能按要求對一個數四舍五入取近似數
教學難點
合理地對一個數四舍五入取近似值
教學方法
實驗——講——練相結合
通過測量實驗體會生活中存在著近似數和精確數,經過講解和練習能將一個數按要求取近似值
教具準備
1、收集不同形狀的樹葉制成標本
2、最小單位是厘米的刻度尺和最小單位是毫米的刻度尺
教學過程
Ⅰ、創設情景,引入新課
[師]在我們學習和生活中,經常會遇到一些數據。例如:
(1)小明班上有45人;
(2)吐魯番盆地低于海平面155米;
(3)某次地震中,傷亡10萬人;
(4)小紅測得數學書的長度為21.0厘米
而這些數據在收集的過程中,有些是精確的,而有些由于客觀條件無法或難以得到精確數據或無需要得到精確數據而取了近似數
憑你生活的經驗,你能判斷一下,哪些是精確數?哪些是近似數嗎?
[生]我認為第(1)個中的數據是精確的,而第(2)、(3)、(4)中的數據都是近似的
[師]很好,下面我們接著來做一個實驗,進一步體驗近似數的意義和在生活中的作用、
Ⅱ、引入新課,獲得直觀的體驗
1、實驗——測得樹葉的長度
[師]同學們在下面收集了不少的樹葉,把這些樹葉制成標本的時候,要求必須在標本中注明每片樹葉的長度,下面我們就以同桌為一小組,用你準備好的最小刻度是厘米和最小刻度是毫米的刻度尺測量你收集到的樹葉的長度,并讀取數據
(教師可以讓學生交流,討論讀取數據的.方法,同時給予指導,讓同學們體驗到測量讀取的數據是有誤差的)
[師]在同學們測量的過程中,同桌的小明和小穎用最小單位不同的刻度尺測量了同一片樹葉的長度,如圖3-1所示:
圖3-1
(1)根據小明的測量方法,你能知道他用的刻度尺最小刻度是什么嗎?這片樹葉的長度約為多少?根據小穎的測量呢?
(2)誰的測量結果更精確一些?說說你的理由
[生]小明用的刻度尺最小單位是厘米,這片樹葉的長度約為6.8厘米,其中6是精確的,8是估計的,即是近似的;小穎用的刻度尺最小單位是毫米,她測量的結果可以讀成6.78厘米,其6和7都是精確的,而8是估計的,即是近似的
[生]從剛才這位同學的分析,很容易看出小穎測量的結果要比小明的更精確一些
[師]同學們分析得很精細,同桌的小明和小穎共收集了12片樹葉,測得剛才那片樹葉的長度的值分別約為6.8厘米和6.78厘米、在這一收集數據的過程中,哪些數據是精確的,哪些數據是近似的呢?
[生]他們一共收集了12片樹葉,這個數據是精確的,而測量的樹葉的長度的值是近似的
[師]大家還可以用你的刻度尺測量一下桌子的長度、厚度,數學課本的長度、厚度,又可以讀出一些數據,它們是精確的還是近似的?
[生]我測得我的課桌的長度是80.5厘米,它是近似的
[生]我測得課桌的長度是80.45厘米,它也是近似數
[師]由此,我們可知測量得出的結果都是近似的,例如珠峰的高度是8848米,是測量得出的,它是近似數
在生活中,除了測量的結果是近似數以外,還有沒有其他數據也是近似的?
[生]有,例如方便面袋子上寫著:總凈含量110克,數據110克是近似的
[生]飲料桶標注的凈含量是350 mL也是近似數
[生]天氣預報中報到今天的最高氣溫是28℃,“28℃”這個數據也是近似數
[生]咱們這本教科書字數是202千字,“202千字”這個數據也是近似的
[師]真棒,同學們能列舉生活中這么多的近似數據,說明同學們平時很留心觀察一些事物,這一點很值得肯定
2、議一議
圖3-2
(1)上面的數據,哪些是精確的?哪些是近似的?
(2)舉例說明生活中哪些數據是精確的?哪些數據是近似的?
[生](1)2000年第五次人口普查表明,我國人口總數為12.9533億,人口總數為12.9533億這個數據是近似數
[師]為什么呢?(Why?)
[生]因為我國地域遼闊,客觀條件就決定了在人口普查的過程中是無法或難以得到精確數據的
[師]的確如此,在測量過程中,我們難以得到精確數據,盡管現在科技的發展,有了更為精密的儀器、在人口普查中,由于客觀條件等的限制,也難以或無法取到精確值
[生]第二幅圖是精確值
[生]第三幅圖中,年級共有97人是精確值,而買門票大約需要800元是近似值、
[師]回答正確、這里的“800元”也是近似值,但這個近似值不是無法或難以得到精確數據,而是根據實際情況要估算一下大約需多少錢,無需得到精確值
你還能舉出生活中一些例子說明哪些數據是精確的?哪些數據是近似的嗎?
[生]小明的身高是1.58米,體重40公斤,年齡14歲,這些數據都是近似數
[生]小明今天上了6節課,是精確的
[生]一條草魚重2.854千克,這個數據也是近似數
[生]我們班有25個女生,這個數據是精確數
[師]我們了解了生活中存在著這么多的近似數和精確數,下面我們來看一看如何根據具體情況和要求采用四舍五入法求一個數的近似數、
3、做一做
例1小明量得課桌長為1.025米,請按下列要求取這個數的近似數:
(1)四舍五入到百分位;
(2)四舍五入到十分位;
(3)四舍五入到個位、
[分析]用四舍五入法求一個數的近似數,關鍵是看四舍五入到哪一位,看這一位后面一位的數夠五不夠五,來決定取舍,特別注意近似數1.0,末尾的0不能隨意去掉、
解:(1)四舍五入到百分位為1.03米;
(2)四舍五入到十分位為1.0米;
(3)四舍五入到個位為1米
例2小麗與小明在討論問題
小麗:如果你把7498近似到千位數,你就會得到7000
小明:不,我有另外一種解答方法,可以得到不同的答案、首先,將7498近似到百位,得到7500,接著把7500近似到千位,就得到了8000
小麗:……
你怎樣評價小麗和小明的說法呢?
[生]小麗的說法是正確的因為一個數近似到千位,要一次做完,看百位上的數決定四舍五入,而不能先近似到百位,再近似到千位
例3中國國土面積約為9596960千米2,美國和羅馬尼亞的國土面積約為9364000千米2(四舍五入到千位)和240000千米2(四舍五入到萬位)如果要將中國國土面積與它們相比較,那么中國國土面積分別四舍五入到哪一位時,比較起來的誤差可能會小些?
[分析]對數據進行比較是培養數感的一個重要方面、在對數據進行比較時,有時可以根據需要選擇各自的近似數進行比較、在選擇近似數時,一般數據要四舍五入到同一數位,這樣出現較大誤差的可能性會小一些
解:當與美國的國土面積比較時,可將中國國土面積四舍五入到千位,得到9597000千米2,因為它們同時四舍五入到了千位,這樣比較起來誤差會小一些
類似地,當與羅馬尼亞國土面積相比較時,可以將中國國土面積四舍五入到萬位,得到9600000千米2、
Ⅲ、課時小結
[師]通過這節課的學習,你有何體會和收獲呢?
[生]我們知道了測量所得的數據都是近似數
[生]生活中既有精確的數據,也有近似的數據,因此我們的生活豐富多彩、
[生]能根據具體情況和要求求一個數的近似數
[生]用四舍五入法取近似數時,不能隨便將小數末尾的零去掉、例如2.03取近似數,四舍五入到十分位,得到近似數2.0,不能把零去掉、
板書設計
一、生活中的數據——近似數和精確數
1、實驗測量所得的結果都是近似的(測量樹葉的長度)
2、議一議
二、根據具體情況,采用四舍五入求一個數的近似數、(師生共析,由學生板演)
七年級數學教學方案(精選篇14)
教學目標:
1、在解決問題的過程中,探索分數除以整數的計算方法,并能正確的進行計算。
2、在探索分數除以整數計算方法的過程中,體驗算法的多樣性,養成獨立思考的習慣,促進個性化學習。
3、在解決現實問題的過程中,感受數學與生活的密切聯系,體驗學數學,用數學的樂趣。
教學過程:
一、創設情境,提出問題。
師:同學們,我們學校設立了許多課外興趣小組,同學們在課余時間可以根據自己的興趣愛好參加小組的活動。今天我們一起走進布藝興趣小組,看看那里的同學給我們提出了哪些數學問題。
師:看大屏幕,從情境圖中你找到了哪些數學信息?
生:布藝興趣小組的同學要用9/10米的布給小猴做衣服。如果做背心,可以做3件;如果做褲子,可以做2條。
師:根據這些信息,你能提出什么數學問題?
生1:做一件背心需要花布多少米?
生2:做一條褲子需要花布多少米?
(教師根據學生的提問,有選擇的進行板書)
二、自主探索,獲取新知
1、獨立思考、自主探究。
師:我們先看第一個問題 “做一件背心需要花布多少米?”怎樣列算式?
生1:9/10÷3=
師:為什么用除法?
生1:把9/10平均分成3份,求1份是多少,所以用除法。
師:誰還能再說一遍?
生重復。
師:9/10÷3結果是多少呢?請在自己的練習本寫一寫、畫一畫,算一算。
生自主操作,師適時巡視指導,找出兩位同學上臺板演。
2、合作交流,解決問題。
師:將你的想法和同桌交流一下。
生交流。
師:我們來看幾位同學的方法。
(投影展示,畫線段圖的方法)
師:我們先看第一位同學的方法,這是哪位同學的,你能來介紹一下嗎?
生:(畫線段圖的方法)把9/10米平均分成3份,每份是3/10米。
師:我們再來看一位同學的,他用的是長方形布條,這是哪位同學的,介紹一下?
生:把9/10米平均分成3份,每份是3/10米。
師:不管是畫線段圖還是用長方形來表示,我們都可以得到每份是3/10米。
板書方法:畫線段圖。
師:我們再來看黑板上這兩位同學的(學生板演),請這位同學來介紹一下你的做法。
生:9/10÷3=9÷3/10=3/10(米)
把9/10米平均分成3段,就是把9個1/10米平均分成3份,每份是(9÷3)個1/10米,即3/10米
師:誰能再重復一遍?生重復。
師:我們可以用平均分的思想直接進行計算。(板書:平均分的方法)
師:看這種方法9/10÷3=9/10×1/3=3/10(米),(學生板演內容)誰來介紹一下?
生:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法計算,每段是9/10×1/3=3/10(米)。
生似懂非懂。
師:你們能明白嗎?我們結合這條形圖來看一下,(出示課件)。
師:把條形圖平均分成3份,一份占多少?
生:1/3。
師:也就是求什么/
生:也就是求9/10米的1/3。
師:我們可以怎樣計算?
生:9/10×1/3
師:看一下算式?有什么變化?
生1:前面是除法,后面是乘法。
生2:3和1/3互為倒數
師:也就是除法轉化成了乘法。(板書:轉化)
師:誰能再說一說這種方法?
師:9/10米平均分成3段,每段是多少米?也就是求9/10米的1/3,可以用乘法計算,每段是9/10×1/3=3/10(米)。
師:這就是第三種方法,利用乘法的意義進行計算。(板書:乘法的意義)
師:除了這幾種方法,你還有哪些辦法?
生:轉化成小數來計算。
師:說一下
生:9/10米化成小數0.9米,平均分成3份,每份就是0.9÷3=0.3(米)。
師板書:9/10÷3=0.9÷3=0.3(米)
師:同學們想出了這么多方法解決問題,它們的結果相同,說明大家的思路是正確的,哪種方法更好一些呢?
生1:我認為第三種方法比較好,因為算起來比較簡便。
生2:我認為第三種方法比較好,因為第二種方法只適用于能出開的'情況。
師:說得非常好,到底他說的對不對,等會我們來驗證一下。
3、選擇算法,解決問題。
師:同學們,看來大家都已經有自己喜歡的方法了,我們來看第二個問題“做一條褲子需要花布多少米?”用你喜歡的方法獨立完成。
(讓學生獨立列式,教師巡回指導,了解學生情況,找一位同學進行板演)
9/10÷2=9/10×1/2=9/20(米)
師:我們來看這位同學的,你們都和這位同學一樣嗎?誰來說說這種方法?
生:把9/10米平均分成2段,求每份是多少米?也就是求9/10米的1/2,用乘法來計算。
師:誰能再說一遍
生重復。
師:看算式,我們把除法轉化成了乘法來計算。看來大家都覺得這種方法比較簡單。
4、歸納概括,推廣應用。
(1)師:仔細觀察、分析剛才所解決的兩個問題,想一想:我們怎樣計算分數除以整數?看這兩個算式,前面是除法,后面是?
生:乘法
師:看圈起來的兩個數字,有什么關系?
生1:倒數
生2:互為倒數
師:一定要說完整。現在誰能用一句話來總結一下怎樣計算分數除以整數的計算方法?
生:分數除以整數等于分數乘這個整數的倒數。(師板書)
師:誰能再說一遍?
生重復,全班同學一塊交流。
三、鞏固練習,加深理解
1、自主練習1
先讓學生獨立填寫,然后組織交流。
交流時讓學生說說自己的算法,體會到此題分數的分子都能被除數整除,所以采用分子除以除數的方法相對簡捷。
2、自主練習2
讓學生運用分數除以整數的計算方法連一連。獨立完成,組織交流。
首先讓學生觀察第一行算式與第二行算式的特點以及之間的關系,從而悟出此題的意圖,學生就可以順利地利用分數除以整數的計算方法得出應該連的相應算式。
3、自主練習5
獨立完成,投影展示交流。(兩種方法,直接去除或者轉化成乘法計算)
此題把解決問題和計算知識的練習融為一體,實現解決問題能力的培養與基礎知識和基本技能的學習同步發展的教學目標。
4、自主練習4
獨立完成,板演交流
此題把解決問題和計算知識的練習融為一體,實現解決問題能力的培養與基礎知識和基本技能的學習同步發展的教學目標。
四、課堂小結
師:這節課我們主要學習了什么知識?
生:分數除以整數(板書)
師:通過這節課的學習,你有什么收獲?
生匯報。