初中數(shù)學(xué)初一上冊教案
在一年的數(shù)學(xué)教學(xué)任務(wù)中,作為初中數(shù)學(xué)教師的你知道如何寫一篇初中數(shù)學(xué)初一上冊教案嗎?來寫一篇初中數(shù)學(xué)初一上冊教案吧,它會(huì)對你的教學(xué)工作起到不菲的幫助。下面是小編為大家收集有關(guān)于初中數(shù)學(xué)初一上冊教案,希望你喜歡。
初中數(shù)學(xué)初一上冊教案1
教學(xué)目標(biāo)
1、使學(xué)生能說出有理數(shù)大小的比較法則
2、能熟練運(yùn)用法則結(jié)合數(shù)軸比較有理數(shù)的大小,特別是應(yīng)用絕對值概念比較兩個(gè)負(fù)數(shù)的大小,能利用數(shù)軸對多個(gè)有理數(shù)進(jìn)行有序排列。
3、能正確運(yùn)用符號"<"">""∵""∴"寫出表示推理過程中簡單的因果關(guān)系。
三、教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):運(yùn)用法則借助數(shù)軸比較兩個(gè)有理數(shù)的大小。
難點(diǎn):利用絕對值概念比較兩個(gè)負(fù)分?jǐn)?shù)的大小。
四、教學(xué)準(zhǔn)備
多媒體課件
五、教學(xué)設(shè)計(jì)
(一)交流對話,探究新知
1、說一說
(多媒體顯示)某一天我們5個(gè)城市的最低氣溫 從剛才的圖片中你獲得了哪些信息?(從常見的氣溫入手,激發(fā)學(xué)生的求知欲望,可能有些學(xué)生會(huì)說從中知道廣州的最低氣溫10℃比上海的最低氣溫0℃高,有些學(xué)生會(huì)說哈爾濱的最低氣溫零下20℃比北京的最低氣溫零下10℃低等;不會(huì)說的,老師適當(dāng)點(diǎn)拔,從而學(xué)生在合作交流中不知不覺地完成了以下填空。
比較這一天下列兩個(gè)城市間最低氣溫的高低(填"高于"或"低于")
廣州_______上海;北京________上海;北京________哈爾濱;武漢________哈爾濱;武漢__________廣州。
2、畫一畫:(1)把上述5個(gè)城市最低氣溫的數(shù)表示在數(shù)軸上,(2)觀察這5個(gè)數(shù)在數(shù)軸上的位置,從中你發(fā)現(xiàn)了什么?
(3)溫度的高低與相應(yīng)的數(shù)在數(shù)軸上的位置有什么?
(通過學(xué)生自己動(dòng)手操作,觀察、思考,發(fā)現(xiàn)原點(diǎn)左邊的數(shù)都是負(fù)數(shù),原點(diǎn)右邊的數(shù)都是正數(shù);同時(shí)也發(fā)現(xiàn)5在0右邊,5比0大;10在5右邊,10比5大,初步感受在數(shù)軸上原點(diǎn)右邊的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。教師趁機(jī)追問,原點(diǎn)左邊的數(shù)也有這樣的規(guī)律嗎?從而激發(fā)學(xué)生探索知識(shí)的欲望,進(jìn)一步驗(yàn)證了原點(diǎn)左邊的數(shù)也有這樣的規(guī)律。從而使學(xué)生親身體驗(yàn)探索的樂趣,在探究中不知不覺獲得了知識(shí)。)由小組討論后,教師歸納得出結(jié)論:
在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大。
正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
(二)應(yīng)用新知,體驗(yàn)成功
1、練一練(師生共同完成例1后,學(xué)生完成隨堂練習(xí)1)
例1:在數(shù)軸上表示數(shù)5,0,-4,-1,并比較它們的大小,將它們按從小到大的順序用"<"號連接。(師生共同完成)
分析:本題意有幾層含義?應(yīng)分幾步?
要點(diǎn)總結(jié):小組討論歸納,本題解題時(shí)的一般步驟:①畫數(shù)軸②描點(diǎn);③有序排列;④不等號連接。
隨堂練習(xí): P19 T1
2、做一做
(1)在數(shù)軸上表示下列各對數(shù),并比較它們的大小
①2和7 ②-6和-1 ③-6和-36 ④-和-1.5
(2)求出圖中各對數(shù)的絕對值,并比較它們的大小。
(3)由①、②從中你發(fā)現(xiàn)了什么?
(學(xué)生小組討論后,代表站起來發(fā)言,口述自己組的發(fā)現(xiàn),說明自己組發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生觀察、歸納、用數(shù)學(xué)語言表達(dá)數(shù)學(xué)規(guī)律的能力。)
要點(diǎn)總結(jié):兩個(gè)正數(shù)比較大小,絕對值大的數(shù)大;兩個(gè)負(fù)數(shù)比較大小,絕對值大的數(shù)反而小。
在學(xué)生討論的基礎(chǔ)上,由學(xué)生總結(jié)得出有理數(shù)大小的比較法則。
(1)正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
(2)兩個(gè)正數(shù)比較大小,絕對值大的數(shù)大。
(3)兩個(gè)負(fù)數(shù)比較大小,絕對值大的數(shù)反而小。
3、師生共同完成例2后,學(xué)生完成隨堂練習(xí)2、3、4。
例2比較下列每對數(shù)的大小,并說明理由:(師生共同完成)
(1)1與-10,(2)-0.001與0,(3)-8與+2;(4)-與-;(5)-(+)與-|-0.8|
分析:第(4)(5)題較難,第(4)題應(yīng)先通分,第(5)題應(yīng)先化簡,再比較。同時(shí)在講解時(shí),要注意格式。
注:絕對值比較時(shí),分母相同,分子大的數(shù)大;分子相同,則分母大的數(shù)反而小;分子分母都不相同時(shí),則應(yīng)先通分再比較,或把分子化相同再比較。
兩個(gè)負(fù)數(shù)比較大小時(shí)的一般步驟:①求絕對值;②比較絕對值的大小;③比較負(fù)數(shù)的大小。
思考:還有別的方法嗎?(分組討論,積極思考)
4、想一想:我們有幾種方法來判斷有理數(shù)的大小?你認(rèn)為它們各有什么特點(diǎn)?
由學(xué)生討論后,得出比較有理數(shù)的大小共有兩種方法,一種是法則,另一種是利用數(shù)軸,當(dāng)兩個(gè)數(shù)比較時(shí)一般選用第一種,當(dāng)多個(gè)有理數(shù)比較大小時(shí),一般選用第二種較好。
練一練:P19 T2、3、4
5、考考你:請你回答下列問題:
(1)有沒有的有理數(shù),有沒有最小的有理數(shù),為什么?
(2)有沒有絕對值最小的有理數(shù)?若有,請把它寫出來?
(3)在于-1.5且小于4.2的整數(shù)有_____個(gè),它們分別是____。
(4)若a>0,b<0,a<|b|,則你能比較a、b、-a、-b這四個(gè)數(shù)的大小嗎?(本題屬提高題,不要求全體學(xué)生掌握)
(新穎的問題會(huì)激發(fā)學(xué)生的好奇心,通過合作交流,自主探究等活動(dòng),培養(yǎng)學(xué)生思維的習(xí)慣和數(shù)學(xué)語言的表達(dá)能力)
6、議一議,談?wù)劚竟?jié)課你有哪些收獲
(由師生共同完成本節(jié)課的小結(jié))本節(jié)課主要學(xué)習(xí)了有理數(shù)大小比較的兩種方法,一種是按照法則,兩兩比較,另一種是利用數(shù)軸,運(yùn)用這種方法時(shí),首先必須把要比較的數(shù)在數(shù)軸上表示出來,然后按照它們在數(shù)軸上的位置,從左到右(或從右到左)用"<"(或">")連接,這種方法在比較多個(gè)有理數(shù)大小時(shí)非常簡便。
六、布置作業(yè):P19 A組、B組
基礎(chǔ)好的A、B兩組都做
基礎(chǔ)較差的同學(xué)選做A組。
初中數(shù)學(xué)初一上冊教案2
一、教材分析:勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。
教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。
據(jù)此,制定教學(xué)目標(biāo)如下:1、理解并掌握勾股定理及其證明。2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。4、通過介紹中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
二、教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。
三、 教學(xué)難點(diǎn):勾股定理的證明。
四、教法和學(xué)法: 教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。
切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。
通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
五、教學(xué)程序:本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:
(一)創(chuàng)設(shè)情境 以古引新
1、由故事引入,3000多年前有個(gè)叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標(biāo)。(二)初步感知 理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。
(三)質(zhì)疑解難 討論歸納:1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;(1)這兩個(gè)圖形有什么特點(diǎn)?(2)你能寫出這兩個(gè)圖形的面積嗎?
(3)如何運(yùn)用勾股定理?是否還有其他形式?
這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
(四)鞏固練習(xí) 強(qiáng)化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價(jià),以加深對例題的理解與運(yùn)用。針對例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。
(五)歸納總結(jié) 練習(xí)反饋
引導(dǎo)學(xué)生對知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助多媒體提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。
初中數(shù)學(xué)初一上冊教案3
一、 教材結(jié)構(gòu)與內(nèi)容簡析
在分析新數(shù)學(xué)課程標(biāo)準(zhǔn)的基礎(chǔ)上確定了本節(jié)課在教材中的地位和作用以及確定本節(jié)課的教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)。首先來看一下本節(jié)課在教材中的地位和作用。
有理數(shù)的加減法在整個(gè)知識(shí)系統(tǒng)中的地位和作用是很重要的。它是整個(gè)初中代數(shù)的一個(gè)基礎(chǔ),它直接關(guān)系到有理數(shù)運(yùn)算、實(shí)數(shù)運(yùn)算、代數(shù)式運(yùn)算、解方程、、研究函數(shù)等內(nèi)容的學(xué)習(xí)。初中階段要培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力以及讓學(xué)生根據(jù)一些現(xiàn)實(shí)模型,把它轉(zhuǎn)化成數(shù)學(xué)問題,從而培養(yǎng)學(xué)生的數(shù)學(xué)意識(shí),增強(qiáng)學(xué)生對數(shù)學(xué)的理解和解決實(shí)際問題的能力。 就第一章而言,有理數(shù)的加減法是本章的一個(gè)重點(diǎn)。在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算:加、減法可以統(tǒng)一成為加法,乘法、除法和乘方可以統(tǒng)一成乘法,因此加法和乘法的運(yùn)算是本章的關(guān)鍵,而加法又是學(xué)生接觸的第一種有理數(shù)運(yùn)算,學(xué)生能否接受和形成在有理數(shù)范圍內(nèi)進(jìn)行的各種運(yùn)算的思考方式(確定結(jié)果的符號和絕對值),關(guān)鍵是這一節(jié)的學(xué)習(xí)。
數(shù)學(xué)思想方法分析:作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透的德育目標(biāo)是:(1)滲透由特殊到一般的辯證唯物主義思想 (2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S品質(zhì)。
二、 教學(xué)目標(biāo)
根據(jù)新課程標(biāo)準(zhǔn)和上述對教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)及心理特征 ,制定如下教學(xué)目標(biāo):
1.了解代數(shù)和的概念,理解有理數(shù)加減法可以互相轉(zhuǎn)化,會(huì)進(jìn)行加減混合運(yùn)算;
2. 通過學(xué)習(xí)理解加減法運(yùn)算,都可以統(tǒng)一成加法運(yùn)算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想;
3.通過加法運(yùn)算練習(xí),培養(yǎng)學(xué)生的運(yùn)算能力。
三、教學(xué)建議
(一)重點(diǎn)、難點(diǎn)分析
本小節(jié)的重點(diǎn)是依據(jù)運(yùn)算法則和運(yùn)算律準(zhǔn)確迅速地進(jìn)行有理數(shù)的加減混合運(yùn)算,難點(diǎn)是省略符號與括號的代數(shù)和的計(jì)算.
由于減法運(yùn)算可以轉(zhuǎn)化為加法運(yùn)算,所以加減混合運(yùn)算實(shí)際上就是有理數(shù)的加法運(yùn)算。了解運(yùn)算符號和性質(zhì)符號之間的關(guān)系,把任何一個(gè)含有有理數(shù)加、減混合運(yùn)算的算式都看成和式,就可靈活運(yùn)用加法運(yùn)算律,簡化計(jì)算.
(二)教法建議
1.通過習(xí)題,復(fù)習(xí)、鞏固有理數(shù)的加、減運(yùn)算以及加減混合運(yùn)算的法則與技能,講課前教師要認(rèn)真總結(jié)、分析學(xué)生在進(jìn)行有理數(shù)加、減混合運(yùn)算時(shí)常犯的錯(cuò)誤,以便在這節(jié)課分析習(xí)題時(shí),有意識(shí)地幫助學(xué)生改正.
2.關(guān)于“去括號法則”,只要學(xué)生了解,并不要求追究所以然.
3.任意含加法、減法的算式,都可把運(yùn)算符號理解為數(shù)的性質(zhì)符號,看成省略加號的和式。這時(shí),稱這個(gè)和式為代數(shù)和。再例如:-3-4表示-3、-4兩數(shù)的代數(shù)和,-4+3表示-4、+3兩數(shù)的代數(shù)和,3+4表示3和+4的代數(shù)和等。代數(shù)和概念是掌握有理數(shù)運(yùn)算的一個(gè)重要概念,請老師務(wù)必給予充分注意。
4.先把正數(shù)與負(fù)數(shù)分別相加,可以使運(yùn)算簡便。
5.在交換加數(shù)的位置時(shí),要連同前面的符號一起交換。如:12-5+7 應(yīng)變成 12+7-5,而不能變成12-7+5。
備注:教學(xué)過程我主要說第一小節(jié)---去括號
(三)教學(xué)過程:根據(jù)教材的結(jié)構(gòu)特點(diǎn),緊緊抓住新舊知識(shí)的內(nèi)在聯(lián)系,運(yùn)用類比、聯(lián)想、轉(zhuǎn)化的思想,突破難點(diǎn).
初中數(shù)學(xué)初一上冊教案4
課題名稱:完全平方公式(1)
一、內(nèi)容簡介
本節(jié)課的主題:通過一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過程。首先提出等號左邊的兩個(gè)相乘的多項(xiàng)式和等號右邊得出的三項(xiàng)有什么關(guān)系。通過學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
①同類項(xiàng)的定義。
②合并同類項(xiàng)法則
③多項(xiàng)式乘以多項(xiàng)式法則。
2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
三、教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):
(一)教學(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。
2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計(jì)算。
(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識(shí)有理
數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。
(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同
角度尋求解決問題的方法,并能有效地解決問題,嘗試評價(jià)不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗(yàn)。
(五)情感與態(tài)度:敢于面對數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難
和運(yùn)用知識(shí)解決問題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。
四、教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時(shí)
候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。
2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式
展開教學(xué)。
3、教學(xué)評價(jià)方式:
(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主
動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。
(2)通過判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,
揭示思維過程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。
(3)通過課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的
教學(xué)效果。
五、教學(xué)媒體:多媒體六、教學(xué)和活動(dòng)過程:
教學(xué)過程設(shè)計(jì)如下:
〈一〉、提出問題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學(xué)生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點(diǎn)。
(2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號的特點(diǎn))。
(4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運(yùn)用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小試牛刀
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?
(1)公式右邊共有3項(xiàng)。
(2)兩個(gè)平方項(xiàng)符號永遠(yuǎn)為正。
(3)中間項(xiàng)的符號由等號左邊的兩項(xiàng)符號是否相同決定。
(4)中間項(xiàng)是等號左邊兩項(xiàng)乘積的2倍。
〈五〉、冒險(xiǎn)島:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、學(xué)生自我評價(jià)
[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
〈七〉[作業(yè)]P34隨堂練習(xí)P36習(xí)題
初中數(shù)學(xué)初一上冊教案5
總體說明:
完全平方公式則是對多項(xiàng)式乘法中出現(xiàn)的較為特殊的算式的一種歸納、總結(jié).同時(shí),完全平方公式的推導(dǎo)是初中數(shù)學(xué)中運(yùn)用推理方法進(jìn)行代數(shù)式恒等變形的開端,通過完全平方公式的學(xué)習(xí)對簡化某些整式的運(yùn)算、培養(yǎng)學(xué)生的求簡意識(shí)有較大好處.而且完全平方公式是后繼學(xué)習(xí)的必備基礎(chǔ),不僅對學(xué)生提高運(yùn)算速度、準(zhǔn)確率有較大作用,更是以后學(xué)習(xí)分解因式、分式運(yùn)算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎(chǔ),同時(shí)也具有培養(yǎng)學(xué)生逐漸養(yǎng)成嚴(yán)密的邏輯推理能力的作用.因此學(xué)好完全平方公式對于代數(shù)知識(shí)的后繼學(xué)習(xí)具有相當(dāng)重要的意義.
本節(jié)是北師大版七年級數(shù)學(xué)下冊第一章《整式的運(yùn)算》的第8小節(jié),占兩個(gè)課時(shí),這是第一課時(shí),它主要讓學(xué)生經(jīng)歷探索與推導(dǎo)完全平方公式的過程,培養(yǎng)學(xué)生的符號感與推理能力,讓學(xué)生進(jìn)一步體會(huì)數(shù)形結(jié)合的思想在數(shù)學(xué)中的作用.
一、學(xué)生學(xué)情分析
學(xué)生的技能基礎(chǔ):學(xué)生通過對本章前幾節(jié)課的學(xué)習(xí),已經(jīng)學(xué)習(xí)了整式的概念、整式的加減、冪的運(yùn)算、整式的乘法、平方差公式,這些基礎(chǔ)知識(shí)的學(xué)習(xí)為本節(jié)課的學(xué)習(xí)奠定了基礎(chǔ).
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在平方差公式一節(jié)的學(xué)習(xí)中,學(xué)生已經(jīng)經(jīng)歷了探索和應(yīng)用的過程,獲得了一些數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),培養(yǎng)了一定的符號感和推理能力;同時(shí)在相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生經(jīng)歷了很多探究學(xué)習(xí)的過程,具有了一定的獨(dú)立探究意識(shí)以及與同伴合作交流的能力.
二、教學(xué)目標(biāo)
知識(shí)與技能:
(1)讓學(xué)生會(huì)推導(dǎo)完全平方公式,并能進(jìn)行簡單的應(yīng)用.
(2)了解完全平方公式的幾何背景.
數(shù)學(xué)能力:
(1)由學(xué)生經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展學(xué)生的符號感與推理能力.
(2)發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.
情感與態(tài)度:
將學(xué)生頭腦中的前概念暴露出來進(jìn)行分析,避免形成教學(xué)上的“相異構(gòu)想”.
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):1、完全平方公式的推導(dǎo);
2、完全平方公式的應(yīng)用;
教學(xué)難點(diǎn):1、消除學(xué)生頭腦中的前概念,避免形成“相異構(gòu)想”;
2、完全平方公式結(jié)構(gòu)的認(rèn)知及正確應(yīng)用.
四、教學(xué)設(shè)計(jì)分析
本節(jié)課設(shè)計(jì)了十一個(gè)教學(xué)環(huán)節(jié):學(xué)生練習(xí)、暴露問題——驗(yàn)證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進(jìn)一步拓廣——總結(jié)口訣——公式應(yīng)用——學(xué)生反饋——學(xué)生PK——學(xué)生反思——鞏固練習(xí).
第一環(huán)節(jié):學(xué)生練習(xí)、暴露問題
活動(dòng)內(nèi)容:計(jì)算:(a+2)2
設(shè)想學(xué)生的做法有以下幾種可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正確做法;
針對這幾種結(jié)果都將a=1代入計(jì)算,得出①②都是錯(cuò)誤的,但③的做法是否一定正確呢?怎么驗(yàn)證?
活動(dòng)目的:在很多學(xué)生的頭腦中,認(rèn)為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:
(a+2)2=a2+22,如果不將這種定式思維,就很難建立起一個(gè)正確的概念;這一環(huán)節(jié)的目的就是讓學(xué)生的這種錯(cuò)誤或其它錯(cuò)誤充分暴露出來,并讓學(xué)生充分認(rèn)識(shí)到自己原有的定式思維是錯(cuò)誤的,為下一步構(gòu)建新的思維模式埋下伏筆.
第二環(huán)節(jié):驗(yàn)證(a+2)2=a2–4a+22
活動(dòng)內(nèi)容:(a+2)2=(a+2)?(a+2)=a2+2a+2a+22
活動(dòng)目的:在前一環(huán)節(jié)已經(jīng)打破了學(xué)生的原有的思維定式的基礎(chǔ)上,給學(xué)生建立正確的思維方法,避免形成“相異構(gòu)想”.
第三環(huán)節(jié):推廣到一般情況,形成公式
活動(dòng)內(nèi)容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活動(dòng)目的:讓學(xué)生經(jīng)歷從特殊到一般的探究過程,體驗(yàn)到發(fā)現(xiàn)的快樂.
第四環(huán)節(jié):數(shù)形結(jié)合
活動(dòng)內(nèi)容:設(shè)問:在多項(xiàng)式的乘法中,很多公式都都可以用幾何圖形進(jìn)行解釋,那么完全平方公式怎樣用幾何圖形解釋呢?
展示動(dòng)畫,用幾何圖形詮釋完全平方公式的幾何意義.
學(xué)生思考:還有沒有其它的方法來詮釋完全平方公式?(課后思考)
活動(dòng)目的:讓學(xué)生進(jìn)一步認(rèn)識(shí)到數(shù)與形都不是孤立存在的,數(shù)與形是可以有機(jī)地結(jié)合在一起,從而發(fā)展學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想.
第五環(huán)節(jié):進(jìn)一步拓廣
活動(dòng)內(nèi)容:推導(dǎo)兩數(shù)差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活動(dòng)目的:讓學(xué)生經(jīng)歷由兩數(shù)和的完全平方公式拓廣到兩數(shù)差的完全平方公式的過程,體會(huì)到符號差異帶來的結(jié)果差異,由第二種推導(dǎo)方法體會(huì)到兩數(shù)差的完全平方公式是兩數(shù)和的完全平方公式的應(yīng)用.
第六環(huán)節(jié):總結(jié)口訣、認(rèn)識(shí)特征
活動(dòng)內(nèi)容:比較兩個(gè)公式的共同點(diǎn)與不同點(diǎn):(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左邊都是一個(gè)二項(xiàng)式的完全平方,兩者僅有一個(gè)符號不同;右邊都是二次三項(xiàng)式,其中第一、三項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,中間一項(xiàng)是左邊二項(xiàng)式中兩項(xiàng)乘積的兩倍,兩者也僅一個(gè)符號不同;
②公式中的a、b可以是任意一個(gè)代數(shù)式(數(shù)、字母、單項(xiàng)式、多項(xiàng)式)
口訣:首平方,尾平方,首尾相乘的兩倍在中央.
活動(dòng)目的:認(rèn)識(shí)完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學(xué)生理解與記憶,避免學(xué)生在應(yīng)用該公式中出現(xiàn)錯(cuò)誤.
第七環(huán)節(jié):公式應(yīng)用
活動(dòng)內(nèi)容:例:計(jì)算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2?(2x)?3+32=4x2–12x+9
②(4x+)2=(4x)2+2?????(4x)()+()2=16x2+2xy+
活動(dòng)目的:在前幾個(gè)環(huán)節(jié)中,學(xué)生對完全平方公式已經(jīng)有了感性認(rèn)識(shí),通過本環(huán)節(jié)的講解以及下一環(huán)節(jié)的練習(xí),使學(xué)生逐步經(jīng)歷認(rèn)識(shí)——模仿——再認(rèn)識(shí).從而上升到理性認(rèn)識(shí)的階段.
第八環(huán)節(jié):隨堂練習(xí)
活動(dòng)內(nèi)容:計(jì)算:①;②;③(n+1)2–n2
活動(dòng)目的:通過學(xué)生的反饋練習(xí),使教師能全面了解學(xué)生對完全平方公式的理解是否到位,完全平方公式的應(yīng)用是否得當(dāng),以便教師能及時(shí)地進(jìn)行查缺補(bǔ)漏.
第九環(huán)節(jié):學(xué)生PK
活動(dòng)內(nèi)容:每個(gè)學(xué)生各出五道完全平方公式的計(jì)算題給自己的同桌解答,比一比誰的準(zhǔn)確性率高,速度快.
活動(dòng)目的:活躍課堂氣氛,激起學(xué)生的好勝心,進(jìn)一步鞏固學(xué)生對完全平方公式的理解與應(yīng)用.
第十環(huán)節(jié):學(xué)生反思
活動(dòng)內(nèi)容:通過今天這堂課的學(xué)習(xí),你有哪些收獲?
收獲1:認(rèn)識(shí)了完全平方公式,并能簡單應(yīng)用;
收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異;
收獲3:感受到數(shù)形結(jié)合的數(shù)學(xué)思想在數(shù)學(xué)中的作用.
活動(dòng)目的:通過對一堂課的歸納與總結(jié),鞏固學(xué)生對完全平方公式的認(rèn)識(shí),體會(huì)數(shù)學(xué)思想的精妙.
第十一環(huán)節(jié):布置作業(yè):
課本P43習(xí)題1.13