教育巴巴 > 初中教案 > 七年級教案 > 數學教案 >

華車師大七年級數學上冊全教案

時間: 新華 數學教案

充分利用多媒體教學,創新數學教學方式、方法要適應課標理念的發展、變化。在工作中每個七年級數學老師都必須要寫七年級數學教案,它能對老師的工作帶來幫助。你是否在找正準備撰寫“華車師大七年級數學上冊全教案”,下面小編收集了相關的素材,供大家寫文參考!

華車師大七年級數學上冊全教案篇1

列代數式

教學目標

1. 使學生在了解代數式概念的基礎上,能把簡單的與數量有關的詞語用代數式表示出來;

2. 初步培養學生觀察、分析和抽象思維的能力.

教學重點和難點

重點:列代數式.

難點:弄清楚語句中各數量的意義及相互關系.

課堂教學過程設計

一、從學生原有的認知結構提出問題

1用代數式表示乙數:(投影)

(1)乙數比x大5;(x+5)

(2)乙數比x的2倍小3;(2x-3)

(3)乙數比x的倒數小7;( -7)

(4)乙數比x大16%((1+16%)x)

(應用引導的方法啟發學生解答本題)

2在代數里,我們經常需要把用數字或字母敘述的一句話或一些計算關系式,列成代數式,正如上面的練習中的問題一樣,這一點同學們已經比較熟悉了,但在代數式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數式本節課我們就來一起學習這個問題。

二、講授新課

例1 用代數式表示乙數:

(1)乙數比甲數大5; (2)乙數比甲數的2倍小3;

(3)乙數比甲數的倒數小7; (4)乙數比甲數大16%

分析:要確定的乙數,既然要與甲數做比較,那么就只有明確甲數是什么之后,才能確定乙數,因此寫代數式以前需要把甲數具體設出來,才能解決欲求的乙數。

解:設甲數為x,則乙數的代數式為

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

(本題應由學生口答,教師板書完成)

最后,教師需指出:第4小題的答案也可寫成x+16%x

例2 用代數式表示:

(1)甲乙兩數和的2倍;

(2)甲數的 與乙數的 的差;

(3)甲乙兩數的平方和;

(4)甲乙兩數的和與甲乙兩數的差的積;

(5)乙甲兩數之和與乙甲兩數的差的積

分析:本題應首先把甲乙兩數具體設出來,然后依條件寫出代數式

解:設甲數為a,乙數為b,則

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

(本題應由學生口答,教師板書完成)

此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律但a與b的差指的是(a-b),而b與a的差指的是(b-a)兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序

例3 用代數式表示:

(1)被3整除得n的數;

(2)被5除商m余2的數

分析本題時,可提出以下問題:

(1)被3整除得2的數是幾?被3整除得3的數是幾?被3整除得n的數如何表示?

(2)被5除商1余2的數是幾?如何表示這個數?商2余2的數呢?商m余2的數呢?

解:(1)3n; (2)5m+2

(這個例子直接為以后讓學生用代數式表示任意一個偶數或奇數做準備)

例4 設字母a表示一個數,用代數式表示:

(1)這個數與5的和的3倍;(2)這個數與1的差的 ;

(3)這個數的5倍與7的和的一半;(4)這個數的平方與這個數的 的和

分析:啟發學生,做分析練習如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數式“a+5”再將“和的3倍”列成代數式“3(a+5)”

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a

(通過本例的講解,應使學生逐步掌握把較復雜的數量關系分解為幾個基本的數量關系,培養學生分析問題和解決問題的能力)

例5 設教室里座位的行數是m,用代數式表示:

(1)教室里每行的座位數比座位的行數多6,教室里總共有多少個座位?

(2)教室里座位的行數是每行座位數的 ,教室里總共有多少個座位?

分析本題時,可提出如下問題:

(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(3)通過上述問題的解答結果,你能找出其中的規律嗎?(總座位數=每行的座位數×行數)

解:(1)m(m+6)個; (2)( m)m個

三、課堂練習

1設甲數為x,乙數為y,用代數式表示:(投影)

(1)甲數的2倍,與乙數的 的和; (2)甲數的 與乙數的3倍的差;

(3)甲乙兩數之積與甲乙兩數之和的差;(4)甲乙的差除以甲乙兩數的積的商

2用代數式表示:

(1)比a與b的和小3的數; (2)比a與b的差的一半大1的數;

(3)比a除以b的商的3倍大8的數; (4)比a除b的商的3倍大8的數

3用代數式表示:

(1)與a-1的和是25的數; (2)與2b+1的積是9的數;

(3)與2x2的差是x的數; (4)除以(y+3)的商是y的數

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕

四、師生共同小結

首先,請學生回答:

1怎樣列代數式?2列代數式的關鍵是什么?

其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數量關系,應按下述規律列代數式:

(1)列代數式,要以不改變原題敘述的數量關系為準(代數式的形式不);

(2)要善于把較復雜的數量關系,分解成幾個基本的數量關系;

(3)把用日常生活語言敘述的數量關系,列成代數式,是為今后學習列方程解應用題做準備要求學生一定要牢固掌握

五、作業

1用代數式表示:

(1)體校里男生人數占學生總數的60%,女生人數是a,學生總數是多少?

(2)體校里男生人數是x,女生人數是y,教練人數與學生人數之比是1∶10,教練人數是多?

2已知一個長方形的周長是24厘米,一邊是a厘米,

求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

學法探究

已知圓環內直徑為acm,外直徑為bcm,將100個這樣的圓環一個接著一個環套環地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

分析:先深入研究一下比較簡單的情形,比如三個圓環接在一起的情形,看 有沒有規律.

當圓環為三個的時候,如圖:

此時鏈長為,這個結論可以繼續推廣到四個環、五個環、…直至100個環,答案不難得到:

解:

=99a+b(cm)

華車師大七年級數學上冊全教案篇2

教學目的

通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數的值。

重點、難點

1.重點:方程的兩種變形。

2.難點:由具體實例抽象出方程的兩種變形。

教學過程

一、引入

上一節課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節課,我們將學習如何將方程變形。

二、新授

讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。

測量一些物體的質量時,我們將它放在天干的左盤內,在右盤內放上砝碼,當天平處于平衡狀態時,顯然兩邊的質量相等。

如果我們在兩盤內同時加入相同質量的砝碼,這時天平仍然平衡,天平兩邊盤內同時拿去相同質量的砝碼,天平仍然平衡。

如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯想到方程的變形嗎?

讓同學們觀察圖(1)的左邊的天平;天平的左盤內有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質量相等。如果我們用x表示大砝碼的質量,1表示小砝碼的質量,那么可用方程x+2=5表示天平兩盤內物體的質量關系。

問:圖(1)右邊的天平內的砝碼是怎樣由左邊天平變化而來的?它所表示的方程如何由方程x+2=5變形得到的?

學生回答后,教師歸納:方程兩邊都減去同一個數,方程的解不變。

問:若把方程兩邊都加上同一個數,方程的解有沒有變?如果把方程兩邊都加上(或減去)同一個整式呢?

讓同學們看圖(2)。左天平兩盤內的砝碼的質量關系可用方程表示為3x=2x+2,右邊的天平內的砝碼是怎樣由左邊天平變化而來的?

把天平兩邊都拿去2個大砝碼,相當于把方程3x=2x+2兩邊都減去2x,得到的方程的解變化了嗎?如果把方程兩邊都加上2x呢?

由圖(1)、(2)可歸結為;

方程兩邊都加上或都減去同一個數或同一個整式,方程的解不變。

讓學生觀察(3),由學生自己得出方程的第二個變形。

即方程兩邊都乘以或除以同一個不為零的數,方程的解不變:

通過對方程進行適當的變形.可以求得方程的解。

例1.解下列方程

(1)x-5=7 (2)4x=3x-4

(1)解兩邊都加上5,x,x=7+5 即 x=12

(2)兩邊都減去3x,x=3x-4-3x 即 x=-4

請同學們分別將x=7+5與原方程x-5=7;x=3x-4-3,與原方程4x=3x-4比較,你發現了這些方程的變形。有什么共同特點?

這就是說把方程兩邊都加上(或減去)同一個數或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

注意:“移項’’是指將方程的某一項從等號的左邊移到右邊或從右邊移到左邊,移項時要先變號后移項。

例2.解下列方程

(1)-5x=2 (2) x=

這里的變形通常稱為“將未知數的系數化為1”。

以上兩個例題都是對方程進行適當的變形,得到x=a的形式。

練習:

課本第6頁練習1、2、3。

練習中的第3題,即第2頁中的方程①先讓學生討論、交流。

鼓勵學生采用不同的方法,要他們說出每一步變形的根據,由他們自己得出采用哪種方法簡便,體會方程的不同解法中所經歷的轉化思想,讓學生自己體驗成功的感覺。

三、鞏固練習

教科書第7頁,練習

四、小結

本節課我們通過天平實驗,得出方程的兩種變形:

1.把方程兩邊都加上或減去同一個數或整式方程的解不變。

2.把方程兩邊都乘以或除以(不等零)的同一個數,方程的解不變。第①種變形又叫移項,移項別忘了要先變號,注意移項與在方程的一邊交換兩項的位置有本質的區別。

五、作業

教科書第7—8頁習題6.2.1第1、2、3。

華車師大七年級數學上冊全教案篇3

學習目標

1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內錯角、同旁內角.

2. 通過比較、觀察、掌握同位角、內錯角、同旁內角的特征,能正確識別圖形中的同位角、內錯角和同旁內角.

重點難點

同位角、內錯角、同旁內角的特征

教學過程

一·導入

1.指出右圖中所有的鄰補角和對頂角?

2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎?

若都不是,請自學課本P6內容后回答它們各是什么關系的角?

二·問題導學

1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。

2. 如圖⑶是"直線 , 被直線 所截"形成的圖形

(1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。

(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內錯角。

(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內角。

3.找出圖⑶中所有的同位角、內錯角、同旁內角

4.討論與交流:

(1)"同位角、內錯角、同旁內角"與"鄰補角、對頂角"在識別方法上有什么區別?

(2)歸納總結同位角、內錯角、同旁內角的特征:

同位角:"F" 字型,"同旁同側"

"三線八角" 內錯角:"Z" 字型,"之間兩側"

同旁內角:"U" 字型,"之間同側"

三·典題訓練

例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?

小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內錯角;

兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內角;

自我檢測

⒈如圖⑷,下列說法不正確的是( )

A、∠1與∠2是同位角 B、∠2與∠3是同位角

C、∠1與∠3是同位角 D、∠1與∠4不是同位角

⒉如圖⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內錯角,∠A和 是同旁內角.

⒊如圖⑹, 直線DE截AB, AC, 構成八個角:

① 指出圖中所有的同位角、內錯角、同旁內角.

②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?

⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出當BC、DE被AB所截時,∠3的同位角、內錯角和同旁內角.

②試說明∠1=∠2=∠3的理由.(提示:三角形內角和是1800)

相交線與平行線練習

課型:復習課: 備課人:徐新齊 審核人:霍紅超

一.基礎知識填空

1、如圖,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如圖,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如圖,∵∠D=∠DCF(已知)

∴_____//______( )

6、如圖,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2題) (第5、6題) (第7題) (第9題)

7、如圖,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

二.基礎過關題:

1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。

證明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代換 )

∴BD∥CE( )。

2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。

證明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.

華車師大七年級數學上冊全教案篇4

教學目的

通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。

重點、難點

1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。

2.難點:找出能表示整個題意的等量關系。

教學過程

一、復習

1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數

本利和=本金×利息×年數+本金

2.商品利潤等有關知識。

利潤=售價-成本 ; =商品利潤率

二、新授

問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

利息-利息稅=48.6

可設小明爸爸前年存了x元,那么二年后共得利息為

2.43%×X×2,利息稅為2.43%X×2×20%

根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6

問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

2.43%x·2·80%=48.6

解方程,得 x=1250

例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

大家想一想這15元的利潤是怎么來的?

標價的80%(即售價)-成本=15

若設這種服裝每件的成本是x元,那么

每件服裝的標價為:(1+40%)x

每件服裝的實際售價為:(1+40%)x·80%

每件服裝的利潤為:(1+40%)x·80%-x

由等量關系,列出方程:

(1+40%)x·80%-x=15

解方程,得 x=125

答:每件服裝的成本是125元。

三、鞏固練習

教科書第15頁,練習1、2。

四、小結

當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。

五、作業

教科書第16頁,習題6.3.1,第4、5題。

31049 主站蜘蛛池模板: 萨嘎县| 延川县| 夏津县| 喜德县| 奉新县| 福清市| 安宁市| 尚志市| 南澳县| 西吉县| 大荔县| 仲巴县| 云林县| 蒲城县| 通海县| 迁安市| 兴安盟| 黄骅市| 西和县| 麻栗坡县| 共和县| 浦县| 兖州市| 明溪县| 神池县| 文山县| 额济纳旗| 丹阳市| 平山县| 新丰县| 吴忠市| 兴国县| 会理县| 兴和县| 玉山县| 乐至县| 天峻县| 汽车| 友谊县| 寿光市| 修水县|