教育巴巴 > 初中教案 > 七年級教案 > 數(shù)學教案 >

七年級數(shù)學上冊教案人教版

時間: 新華 數(shù)學教案

教師是學生的一個引導者,每一個七年級數(shù)學老師要在課堂上引導學生正確的理解教學內(nèi)容。數(shù)學是我們每一個人都必須掌握的技能,作為七年級數(shù)學老師你會寫七年級數(shù)學教案?你是否在找正準備撰寫“七年級數(shù)學上冊教案人教版”,下面小編收集了相關的素材,供大家寫文參考!

七年級數(shù)學上冊教案人教版篇1

學習目標

1. 理解三線八角中沒有公共頂點的角的位置關系 ,知道什么是同位角、內(nèi)錯角、同旁內(nèi)角.

2. 通過比較、觀察、掌握同位角、內(nèi)錯角、同旁內(nèi)角的特征,能正確識別圖形中的同位角、內(nèi)錯角和同旁內(nèi)角.

重點難點

同位角、內(nèi)錯角、同旁內(nèi)角的特征

教學過程

一·導入

1.指出右圖中所有的鄰補角和對頂角?

2. 圖中的∠1與∠5,∠3與∠5,∠3與∠6 是鄰補角或對頂角嗎?

若都不是,請自學課本P6內(nèi)容后回答它們各是什么關系的角?

二·問題導學

1.如圖⑴,將木條,與木條c釘在一起,若把它們看成三條直 線則該圖可說成"直線 和直線 與直線 相交" 也可以說成"兩條直線 , 被第三條直線 所截".構成了小于平角的角共有 個,通常將這種圖形稱作為"三線八角"。其中直線 , 稱為兩被截線,直線 稱為截線。

2. 如圖⑶是"直線 , 被直線 所截"形成的圖形

(1)∠1與∠5這對角在兩被截線AB,CD的 ,在截線EF 的 ,形如" " 字型.具有這種關系的一對角叫同位角。

(2)∠3與∠5這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫內(nèi)錯角。

(3)∠3與∠6這對角在兩被截線AB,CD的 ,在截線EF的 ,形如" " 字型.具有這種關系的一對角叫同旁內(nèi)角。

3.找出圖⑶中所有的同位角、內(nèi)錯角、同旁內(nèi)角

4.討論與交流:

(1)"同位角、內(nèi)錯角、同旁內(nèi)角"與"鄰補角、對頂角"在識別方法上有什么區(qū)別?

(2)歸納總結同位角、內(nèi)錯角、同旁內(nèi)角的特征:

同位角:"F" 字型,"同旁同側"

"三線八角" 內(nèi)錯角:"Z" 字型,"之間兩側"

同旁內(nèi)角:"U" 字型,"之間同側"

三·典題訓練

例1. 如圖⑵中∠1與∠2,∠3與∠4, ∠1與∠4分別是哪兩條直線被哪一條直線所截形成的什么角?

小結 將左右手的大拇指和食指各組成一個角,兩食指相對成一條直線,兩個大拇指反向的時候,組成內(nèi)錯角;

兩食指相對成一條直線,兩個大拇指同向的時候,組成同旁內(nèi)角;

自我檢測

⒈如圖⑷,下列說法不正確的是( )

A、∠1與∠2是同位角 B、∠2與∠3是同位角

C、∠1與∠3是同位角 D、∠1與∠4不是同位角

⒉如圖⑸,直線AB、CD被直線EF所截,∠A和 是同位角,∠A和 是內(nèi)錯角,∠A和 是同旁內(nèi)角.

⒊如圖⑹, 直線DE截AB, AC, 構成八個角:

① 指出圖中所有的同位角、內(nèi)錯角、同旁內(nèi)角.

②∠A與∠5, ∠A與∠6, ∠A與∠8, 分別是哪一條直線截哪兩條直線而成的什么角?

⒋如圖⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .

①指出當BC、DE被AB所截時,∠3的同位角、內(nèi)錯角和同旁內(nèi)角.

②試說明∠1=∠2=∠3的理由.(提示:三角形內(nèi)角和是1800)

相交線與平行線練習

課型:復習課: 備課人:徐新齊 審核人:霍紅超

一.基礎知識填空

1、如圖,∵AB⊥CD(已知)

∴∠BOC=90°( )

2、如圖,∵∠AOC=90°(已知)

∴AB⊥CD( )

3、∵a∥b,a∥c(已知)

∴b∥c( )

4、∵a⊥b,a⊥c(已知)

∴b∥c( )

5、如圖,∵∠D=∠DCF(已知)

∴_____//______( )

6、如圖,∵∠D+∠BAD=180°(已知)

∴_____//______( )

(第1、2題) (第5、6題) (第7題) (第9題)

7、如圖,∵ ∠2 = ∠3( )

∠1 = ∠2(已知)

∴∠1 = ∠3( )

∴CD____EF ( )

8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)

∴∠1 = ∠3( )

9、∵a//b(已知)

∴∠1=∠2( )

∠2=∠3( )

∠2+∠4=180°( )

10.如圖,CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

二.基礎過關題:

1、如圖:已知∠A=∠F,∠C=∠D,求證:BD∥CE 。

證明:∵∠A=∠F ( 已知 )

∴AC∥DF ( )

∴∠D=∠ ( )

又∵∠C=∠D ( 已知 ),

∴∠1=∠C ( 等量代換 )

∴BD∥CE( )。

2、如圖:已知∠B=∠BGD,∠DGF=∠F,求證:∠B + ∠F =180°。

證明:∵∠B=∠BGD ( 已知 )

∴AB∥CD ( )

∵∠DGF=∠F;( 已知 )

∴CD∥EF ( )

∵AB∥EF ( )

∴∠B + ∠F =180°( )。

3、如圖,已知AB∥CD,EF交AB,CD于G、H, GM、HN分別平分∠AGF,∠EHD,試說明GM ∥HN.

七年級數(shù)學上冊教案人教版篇2

列代數(shù)式

教學目標

1. 使學生在了解代數(shù)式概念的基礎上,能把簡單的與數(shù)量有關的詞語用代數(shù)式表示出來;

2. 初步培養(yǎng)學生觀察、分析和抽象思維的能力.

教學重點和難點

重點:列代數(shù)式.

難點:弄清楚語句中各數(shù)量的意義及相互關系.

課堂教學過程設計

一、從學生原有的認知結構提出問題

1用代數(shù)式表示乙數(shù):(投影)

(1)乙數(shù)比x大5;(x+5)

(2)乙數(shù)比x的2倍小3;(2x-3)

(3)乙數(shù)比x的倒數(shù)小7;( -7)

(4)乙數(shù)比x大16%((1+16%)x)

(應用引導的方法啟發(fā)學生解答本題)

2在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關系式,列成代數(shù)式,正如上面的練習中的問題一樣,這一點同學們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字敘述的一句話或計算關系式(即日常生活語言)列成代數(shù)式本節(jié)課我們就來一起學習這個問題。

二、講授新課

例1 用代數(shù)式表示乙數(shù):

(1)乙數(shù)比甲數(shù)大5; (2)乙數(shù)比甲數(shù)的2倍小3;

(3)乙數(shù)比甲數(shù)的倒數(shù)小7; (4)乙數(shù)比甲數(shù)大16%

分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設出來,才能解決欲求的乙數(shù)。

解:設甲數(shù)為x,則乙數(shù)的代數(shù)式為

(1)x+5 (2)2x-3; (3) -7; (4)(1+16%)x

(本題應由學生口答,教師板書完成)

最后,教師需指出:第4小題的答案也可寫成x+16%x

例2 用代數(shù)式表示:

(1)甲乙兩數(shù)和的2倍;

(2)甲數(shù)的 與乙數(shù)的 的差;

(3)甲乙兩數(shù)的平方和;

(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;

(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積

分析:本題應首先把甲乙兩數(shù)具體設出來,然后依條件寫出代數(shù)式

解:設甲數(shù)為a,乙數(shù)為b,則

(1)2(a+b); (2) a- b; (3)a2+b2;

(4)(a+b)(a-b); (5)(a+b)(b-a)或(b+a)(b-a)

(本題應由學生口答,教師板書完成)

此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律但a與b的差指的是(a-b),而b與a的差指的是(b-a)兩者明顯不同,這就是說,用文字語言敘述的句子里應特別注意其運算順序

例3 用代數(shù)式表示:

(1)被3整除得n的數(shù);

(2)被5除商m余2的數(shù)

分析本題時,可提出以下問題:

(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?

(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?

解:(1)3n; (2)5m+2

(這個例子直接為以后讓學生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準備)

例4 設字母a表示一個數(shù),用代數(shù)式表示:

(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的 ;

(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的 的和

分析:啟發(fā)學生,做分析練習如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”

解:(1)3(a+5); (2) (a-1); (3) (5a+7); (4) a2+ a

(通過本例的講解,應使學生逐步掌握把較復雜的數(shù)量關系分解為幾個基本的數(shù)量關系,培養(yǎng)學生分析問題和解決問題的能力)

例5 設教室里座位的行數(shù)是m,用代數(shù)式表示:

(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?

(2)教室里座位的行數(shù)是每行座位數(shù)的 ,教室里總共有多少個座位?

分析本題時,可提出如下問題:

(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?

(3)通過上述問題的解答結果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))

解:(1)m(m+6)個; (2)( m)m個

三、課堂練習

1設甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)

(1)甲數(shù)的2倍,與乙數(shù)的 的和; (2)甲數(shù)的 與乙數(shù)的3倍的差;

(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的差;(4)甲乙的差除以甲乙兩數(shù)的積的商

2用代數(shù)式表示:

(1)比a與b的和小3的數(shù); (2)比a與b的差的一半大1的數(shù);

(3)比a除以b的商的3倍大8的數(shù); (4)比a除b的商的3倍大8的數(shù)

3用代數(shù)式表示:

(1)與a-1的和是25的數(shù); (2)與2b+1的積是9的數(shù);

(3)與2x2的差是x的數(shù); (4)除以(y+3)的商是y的數(shù)

〔(1)25-(a-1); (2) ; (3)2x2+2; (4)y(y+3)〕

四、師生共同小結

首先,請學生回答:

1怎樣列代數(shù)式?2列代數(shù)式的關鍵是什么?

其次,教師在學生回答上述問題的基礎上,指出:對于較復雜的數(shù)量關系,應按下述規(guī)律列代數(shù)式:

(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關系為準(代數(shù)式的形式不);

(2)要善于把較復雜的數(shù)量關系,分解成幾個基本的數(shù)量關系;

(3)把用日常生活語言敘述的數(shù)量關系,列成代數(shù)式,是為今后學習列方程解應用題做準備要求學生一定要牢固掌握

五、作業(yè)

1用代數(shù)式表示:

(1)體校里男生人數(shù)占學生總數(shù)的60%,女生人數(shù)是a,學生總數(shù)是多少?

(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學生人數(shù)之比是1∶10,教練人數(shù)是多?

2已知一個長方形的周長是24厘米,一邊是a厘米,

求:(1)這個長方形另一邊的長;(2)這個長方形的面積.

學法探究

已知圓環(huán)內(nèi)直徑為acm,外直徑為bcm,將100個這樣的圓環(huán)一個接著一個環(huán)套環(huán)地連成一條鎖鏈,那么這條鎖鏈拉直后的長度是多少厘米?

分析:先深入研究一下比較簡單的情形,比如三個圓環(huán)接在一起的情形,看 有沒有規(guī)律.

當圓環(huán)為三個的時候,如圖:

此時鏈長為,這個結論可以繼續(xù)推廣到四個環(huán)、五個環(huán)、…直至100個環(huán),答案不難得到:

解:

=99a+b(cm)

七年級數(shù)學上冊教案人教版篇3

教學目的

通過天平實驗,讓學生在觀察、思考的基礎上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。

重點、難點

1.重點:方程的兩種變形。

2.難點:由具體實例抽象出方程的兩種變形。

教學過程

一、引入

上一節(jié)課我們學習了列方程解簡單的應用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學習如何將方程變形。

二、新授

讓我們先做個實驗,拿出預先準備好的天平和若干砝碼。

測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。

如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。

如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?

讓同學們觀察圖(1)的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關系。

問:圖(1)右邊的天平內(nèi)的砝碼是怎樣由左邊天平變化而來的?它所表示的方程如何由方程x+2=5變形得到的?

學生回答后,教師歸納:方程兩邊都減去同一個數(shù),方程的解不變。

問:若把方程兩邊都加上同一個數(shù),方程的解有沒有變?如果把方程兩邊都加上(或減去)同一個整式呢?

讓同學們看圖(2)。左天平兩盤內(nèi)的砝碼的質(zhì)量關系可用方程表示為3x=2x+2,右邊的天平內(nèi)的砝碼是怎樣由左邊天平變化而來的?

把天平兩邊都拿去2個大砝碼,相當于把方程3x=2x+2兩邊都減去2x,得到的方程的解變化了嗎?如果把方程兩邊都加上2x呢?

由圖(1)、(2)可歸結為;

方程兩邊都加上或都減去同一個數(shù)或同一個整式,方程的解不變。

讓學生觀察(3),由學生自己得出方程的第二個變形。

即方程兩邊都乘以或除以同一個不為零的數(shù),方程的解不變:

通過對方程進行適當?shù)淖冃?可以求得方程的解。

例1.解下列方程

(1)x-5=7 (2)4x=3x-4

(1)解兩邊都加上5,x,x=7+5 即 x=12

(2)兩邊都減去3x,x=3x-4-3x 即 x=-4

請同學們分別將x=7+5與原方程x-5=7;x=3x-4-3,與原方程4x=3x-4比較,你發(fā)現(xiàn)了這些方程的變形。有什么共同特點?

這就是說把方程兩邊都加上(或減去)同一個數(shù)或同一個整式,就相當于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

注意:“移項’’是指將方程的某一項從等號的左邊移到右邊或從右邊移到左邊,移項時要先變號后移項。

例2.解下列方程

(1)-5x=2 (2) x=

這里的變形通常稱為“將未知數(shù)的系數(shù)化為1”。

以上兩個例題都是對方程進行適當?shù)淖冃危玫絰=a的形式。

練習:

課本第6頁練習1、2、3。

練習中的第3題,即第2頁中的方程①先讓學生討論、交流。

鼓勵學生采用不同的方法,要他們說出每一步變形的根據(jù),由他們自己得出采用哪種方法簡便,體會方程的不同解法中所經(jīng)歷的轉化思想,讓學生自己體驗成功的感覺。

三、鞏固練習

教科書第7頁,練習

四、小結

本節(jié)課我們通過天平實驗,得出方程的兩種變形:

1.把方程兩邊都加上或減去同一個數(shù)或整式方程的解不變。

2.把方程兩邊都乘以或除以(不等零)的同一個數(shù),方程的解不變。第①種變形又叫移項,移項別忘了要先變號,注意移項與在方程的一邊交換兩項的位置有本質(zhì)的區(qū)別。

五、作業(yè)

教科書第7—8頁習題6.2.1第1、2、3。

30490 主站蜘蛛池模板: 仁寿县| 新和县| 巨鹿县| 开封市| 界首市| 岳普湖县| 健康| 垫江县| 东港市| 南阳市| 海晏县| 特克斯县| 山东省| 若尔盖县| 邻水| 夏河县| 康定县| 西林县| 日土县| 韩城市| 永州市| 郸城县| 和龙市| 崇礼县| 永宁县| 绥阳县| 如东县| 新疆| 靖安县| 武川县| 毕节市| 徐州市| 玛多县| 长岛县| 都兰县| 明水县| 清镇市| 靖边县| 宿州市| 新邵县| 仁布县|