關于七年級下冊數學教案
身為七年級數學教師,要讓學生體驗到學習數學是一個探索過程,使學生對數學產生興趣。下面是小編給大家帶來的關于七年級下冊數學教案【7篇】,歡迎大家閱讀轉發!
關于七年級下冊數學教案精選篇1
一、教學目標
1、知識目標:掌握數軸三要素,會畫數軸。
2、能力目標:能將已知數在數軸上表示,能說出數軸上的點表示的數,知道有理數都可以用數軸上的點表示;
3、情感目標:向學生滲透數形結合的思想。
二、教學重難點
教學重點:數軸的三要素和用數軸上的點表示有理數。
教學難點:有理數與數軸上點的對應關系。
三、教法
主要采用啟發式教學,引導學生自主探索去觀察、比較、交流。
四、教學過程
(一)創設情境激活思維
1.學生觀看鐘祥二中相關背景視頻
意圖:吸引學生注意力,激發學生自豪感。
2.聯系實際,提出問題。
問題1:鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
師生活動:學生思考解決問題的方法,學生代表畫圖演示。
學生畫圖后提問:
1.馬路用什么幾何圖形代表?(直線)
2.文中相關地點用什么代表?(直線上的點)
3.學校大門起什么作用?(基準點、參照物)
4.你是如何確定問題中各地點的位置的?(方向和距離)
設計意圖:“三要素”為定向,用直線、點、方向、距離等幾何符號表示實際問題,這是實際問題的第一次數學抽象。
問題2:上面的問題中,“南”和“北”具有相反意義。我們知道,正數和負數可以表示兩種具有相反意義的量,我們能不能直接用數來表示這些地理位置和學校大門的相對位置關系呢?
師生活動:
學生思考后回答解決方法,學生代表畫圖。
學生畫圖后提問:
1.0代表什么?
2.數的符號的實際意義是什么?
3.-75表示什么?100表示什么?
設計意圖:繼續以三要素為定向,將點用數表示,實現第二次抽象,為定義數軸概念提供直觀基礎。
問題3:生活中常見的溫度計,你能描述一下它的結構嗎?
設計意圖:借助生活中的常用工具,說明正數和負數的作用,引導學生用三要素表達,為定義數軸的概念提供直觀基礎。
問題4:你能說說上述2個實例的共同點嗎?
設計意圖:進一步明確“三要素”的意義,體會“用點表示數”和“用數表示點的思想方法,為定義數軸概念提供又一個直觀基礎。
(二)自主學習探究新知
學生活動:帶著以下問題自學課本第8頁:
1.什么樣的直線叫數軸?它具備什么條件。
2.如何畫數軸?
3.根據上述實例的經驗,“原點”起什么作用?
4.你是怎么理解“選取適當的長度為單位長度”的?
師生活動:
學生自學完后,請代表上黑板畫一條數軸,講解畫數軸的一般步驟。
設計意圖:明確畫數軸的步驟,使數軸的三要素在同學們的頭腦中留下更深刻的印象,同時得到數軸的定義。
至此,學生已會畫數軸,師生共同歸納總結(板書)
①數軸的定義。
②數軸三要素。
練習:(媒體展示)
1.判斷下列圖形是否是數軸。
2.口答:數軸上各點表示的數。
3.在數軸上描出下列各點:1.5,-2,-2.5,2,2.5,0,-1.5。
(三)小組合作交流展示
問題:觀察數軸上的點,你有什么發現?
數軸上表示3的點在原點的哪一側?與原點的距離是多少個單位長度?表示-2的點在原點的哪一側?與原點的距離是多少個單位長度?設a是一個正數,對表示a的點和-a的點進行同樣的討論。
設計意圖:通過從特殊到一般的方法歸納出數軸上不同位置點的特點,培養學生的抽象概括能力。
(四)歸納總結反思提高
師生共同回顧本節課所學主要內容,回答以下問題:
1.什么是數軸?
2.數軸的“三要素”各指什么?
3.數軸的畫法。
設計意圖:梳理本節課內容,掌握本節課的核心――數軸“三要素”。
(五)目標檢測設計
1.下列命題正確的是()
A.數軸上的點都表示整數。
B.數軸上表示4與-4的`點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C.數軸包括原點與正方向兩個要素。
D.數軸上的點只能表示正數和零。
2.畫數軸,在數軸上標出-5和+5之間的所有整數,列舉到原點的距離小于3的所有整數。
3.畫數軸,表示下列有理數數的點中,觀察數軸,在原點左邊的點有_______個。4.在數軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數軸上點A表示的數是_______。
五、板書
1.數軸的定義。
2.數軸的三要素(圖)。
3.數軸的畫法。
4.性質。
六、課后反思
附:活動單
活動一:畫一畫
鐘祥二中學校大門南75米是鐘祥市統計局,100米是中國建設銀行,在她北75米是海韻藝術學校,200米處是中百倉儲,請同學們畫圖表示這一情景。
思考:如何簡明地用數表示這些地理位置與學校大門的相對位置關系?
活動二:讀一讀
帶著以下問題閱讀教科書P8頁:
1.什么樣的直線叫數軸?
定義:規定了_______、_______、_______的直線叫數軸。
數軸的三要素:_______、_______、_______。
2.畫數軸的步驟是什么?
3.“原點”起什么作用?_______
4.你是怎么理解“選取適當的長度為單位長度”的?
練習:
1.畫一條數軸
2.在你畫好的數軸上表示下列有理數:1.5,-2,-2.5,2,2.5,0,-1.5
活動三:議一議
小組討論:觀察你所畫的數軸上的點,你有什么發現?
歸納:一般地,設a是一個正數,則數軸上表示數a在原點的_______邊,與原點的距離是_______個單位長度;表示數-a的點在原點的_______邊,與原點的距離是_______個單位長度.
練習:
1.數軸上表示-3的點在原點的_______側,距原點的距離是_______;表示6的點在原點的_______側,距原點的距離是_______;兩點之間的距離為_______個單位長度。
2.距離原點距離為5個單位的點表示的數是_______。
3.在數軸上,把表示3的點沿著數軸負方向移動5個單位長度,到達點B,則點B表示的數是_______。
附:目標檢測
1.下列命題正確的是( )
A.數軸上的點都表示整數。
B.數軸上表示4與-4的點分別在原點的兩側,并且到原點的距離都等于4個單位長度。
C.數軸包括原點與正方向兩個要素。
D.數軸上的點只能表示正數和零。
2.畫數軸,在數軸上標出-5和+5之間的所有整數.列舉到原點的距離小于3的所有整數。
3.畫數軸,觀察數軸,在原點左邊的點有_______個。
4.在數軸上點A表示-4,如果把原點O向負方向移動1.5個單位,那么在新數軸上點A表示的數是_______。
關于七年級下冊數學教案精選篇2
一、教學目標
【知識與技能】
了解數軸的概念,能用數軸上的點準確地表示有理數。
【過程與方法】
通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。
【情感、態度與價值觀】
在數與形結合的過程中,體會數學學習的樂趣。
二、教學重難點
【教學重點】
數軸的三要素,用數軸上的點表示有理數。
【教學難點】
數形結合的思想方法。
三、教學過程
(一)引入新課
提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。
(二)探索新知
學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:
提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數和負數可以表示具有相反意義的量,那么,如何用數表示這些樹、電線桿與汽車站牌的相對位置呢?
學生活動:畫圖表示后提問。
提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。
教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。
提問3:你是如何理解數軸三要素的?
師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規定的,要依據實際問題選取合適的單位長度。
(三)課堂練習
如圖,寫出數軸上點A,B,C,D,E表示的數。
(四)小結作業
提問:今天有什么收獲?
引導學生回顧:數軸的三要素,用數軸表示數。
課后作業:
課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?
關于七年級下冊數學教案精選篇3
教材分析:
平行線的性質是空間與圖形領域的基礎知識,在以后的學習中經常要用到。這部分內容是后續學習的基礎,它們不但為三角形內角和定理的證明提供了轉化的方法,而且也為今后三角形全等、三角形相似等知識的學習奠定了理論基礎,學好這部分內容至關重要
教學目標:
知識技能:
1、掌握平行線的三個性質
2、會用平行線的性質進行有關的簡單推理和計算
3、通過對比,理解平行線的性質和判定的區別
過程與方法:
在探索圖形的過程中,通過觀察、操作、推理等手段,有條理地思考和表達自己的探索過程和結果,從而進一步增強分析、概括、表達能力
情感、態度與價值觀:
讓學生在活動中體驗探索、交流、成功與提升的喜悅,激發學生學習數學的興趣,培養學生勇于實踐,大膽猜想、推理的科學態度
教學重點:平行線的三個性質的探索
教學難點:平行線的性質和判定的區別以及應用它們進行簡單的推理
教學過程:
1、創設情境:
(1)、回顧直線平行的條件。(學生回答后,教師板書。)
(2)、設問:根據同位角相等可以判定兩條直線平行,反過來,如果兩條直線平行,同位角之間有什么關系呢?內錯角、同旁內角之間又有什么關系呢?
設計意圖:通過復習回憶平行線的判定來引入新課,主要目的有兩個,一是溫故而知新,促使學生實現知識思維的正遷移;二是有利于學生在學習過程中去比較性質與判定的不同。同時,開門見山較直接地提出了本節課的目標,讓學生明確本節課的學習任務,有利于實現學生對學習過程的自我監控。
2、探究新知:
(1)、畫平行線:
教師通過多媒體演示。
學生用方格或筆記本上的橫線。
設計意圖:畫平行線的這個過程主要讓學生明白確定平行線性質的前提是要兩條平行線,幫助學生區分平行線的性質與判定。
(2)、問題1:如何得到同位角? a
學生獨立思考后回答:如可隨意畫 2 b
條直線與兩條平行線相交,如圖1,∠1 c
和∠2是同位角。 圖1
設計意圖:讓學生體驗得到同位角的過程,特別要讓學生明白所得的同位角是任意的而不是特殊角、特殊位置的。
問題2:你準備怎樣去找∠1和∠2的關系?
學生分組合作交流,進行探究后發表見解。
學生回答:如測量或剪下其中某一個角把它貼到另一個同位角的位置上去觀察等。
設計意圖:讓學生明確探究的具體環節與步驟,形成整個班級內的合作與交流,讓部分學習有困難的學生也能探究出結論。
關于七年級下冊數學教案精選篇4
認識三角形教學目標:
1、知識與技能
結合具體實例,進一步認識三角形的概念,掌握三角形三條邊的關系
2、過程與方法
通過觀察、操作、想象、推理、交流等活動,發展空間觀念,推理能力和有條理地表達能力
3、情感、態度與價值觀
聯系學生的生活環境、創設情景,幫助學生樹立幾何知識源于實際、用于實際的觀念,激發學生的學習興趣
教學重點難點:
1、重點
讓學生掌握三角形的概念及三角形的三邊關系,并能運用三邊關系解決生活中的實際問題
2、難點
探究三角形的三邊關系應用三邊關系解決生活中的實際問題
教學設計:
本節課件設計了以下幾個環節:回顧與思考、情境引入、三角形的概念、探索三角形三邊關系、練習應用、課堂小結、探究拓展思考、布置作業
第一環節 回顧與思考
1、如何表示線段、射線和直線?
2、如何表示一個角?
第二環節 情境引入
活動內容:讓學生收集生活中有關三角形的圖片,課上讓學生舉例,并觀察圖片
活動目的:讓學生能從生活中抽象出幾何圖形,感受到我們生活在幾何圖形的世界之中,培養學生善于觀察生活、樂于探索研究的學習品質,從而更大地激發學生學習數學的興趣
第三環節 三角形概念的講解
(1)你能從中找出四個不同的三角形嗎?
(2)與你的同伴交流各自找到的三角形
(3)這些三角形有什么共同的特點?
通過上題的分析引出三角形的概念、三角形的表示方法及三角形的邊角的表示方法,并出兩道習題加以練習,從練習中歸納出三角形的三要素和注意事項
第四環節 探索三角形三邊關系第一部分 探索三角形的任意兩邊之和大于第三邊
活動內容:在四根長度分別是8cm、10cm、15cm、20cm的小木棒中選三根木棒擺三角形,學生統計能否擺成三角形的情況
第二部分 探索三角形的任意兩邊之差小于第三邊
活動內容:通過讓學生測量任意三角形三邊長度來比較兩邊之差與第三邊的關系,教師通過幾何畫板驗證,從而得出結論
第五環節 練習提高
活動內容:
1、有兩根長度分別為5厘米和8厘米的木棒,用長度為2厘米的木棒與它們能擺成三角形嗎?為什么?長度為13厘米的木棒呢?
2、如果三角形的兩邊長分別是2和4,且第三邊是奇數,那么第三邊長為若第三邊為偶數,那么三角形的周長
3、有兩根長度分別為5cm和8cm的木棒,用長度為2cm的木棒與它們能擺成三角形嗎?為什么?長度為13cm的木棒呢?動手擺一擺。學生回答完上面問題后想一想能取一根木棒與原來的兩根木棒擺成三角形嗎?
第六環節 課堂小結
活動內容:學生自我談收獲體會,說說學完本節課的困惑,教師做最終總結并指出注意事項
學生對本節內容歸納為以下兩點:
1、了解了三角形的概念及表示方法;
2、三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊
注意事項為:判斷a,b,c三條線段能否組成一個三角形,應注意:a+b>c,a+c>b,b+c>a三個條件缺一不可當a是a,b,c三條線段中最長的一條時,只要b+c>a就是任意兩條線段的和大于第三邊
第七環節 探究拓展思考
1、若三角形的周長為17,且三邊長都有是整數,那么滿足條件的三角形有多少個?你可以先固定一邊的長,用列表法探求
2、在例1中,你能取一根木棒,與原來的兩根木棒擺成三角形嗎?
3、以三根長度相同的火柴為邊,可以組成一個三角形,現在給你六根火柴,如果以每根火柴為邊來組成三角形,最多可組成多少個三角形?試試看
第八環節 作業布置
關于七年級下冊數學教案精選篇5
教學目標
1、通過動手、操作、推斷、交流等活動,進一步發展空間觀念,培養識圖能力,推理能力和有條理表達能力
2、在具體情境中了解鄰補角、對頂角,能找出圖形中的一個角的鄰補角和對頂角,理解對頂角相等,并能運用它解決一些簡單問題
教學重點與難點
重點:鄰補角與對頂角的概念,對頂角性質與應用
難點:理解對頂角相等的性質的探索
教學設計
一、創設情境 激發好奇 觀察剪刀剪布的過程,引入兩條相交直線所成的角
在我們的生活的世界中,蘊涵著大量的相交線和平行線,本章要研究相交線所成的角和它的特征。
觀察剪刀剪布的過程,引入兩條相交直線所成的角。
學生觀察、思考、回答問題
教師出示一塊布和一把剪刀,表演剪布過程,提出問題:剪布時,用力握緊把手,兩個把手之間的的角發生了什么變化?剪刀張開的口又怎么變化?
教師點評:如果把剪刀的構造看作是兩條相交的直線,以上就關系到兩條直線相交所成的角的問題,
二、認識鄰補角和對頂角,探索對頂角性質
1、學生畫直線AB、CD相交于點O,并說出圖中4個角,兩兩相配
共能組成幾對角?根據不同的位置怎么將它們分類?
學生思考并在小組內交流,全班交流。
當學生直觀地感知角有“相鄰”、“對頂”關系時,教師引導學生用
幾何語言準確表達;
有公共的頂點O,而且 的兩邊分別是 兩邊的反向延長線
2、學生用量角器分別量一量各角的度數,發現各類角的度數有什么關系?
(學生得出結論:相鄰關系的`兩個角互補,對頂的兩個角相等)
3、學生根據觀察和度量完成下表:
兩條直線相交 所形成的角 分類 位置關系 數量關系
教師提問:如果改變 的大小,會改變它與其它角的位置關系和數量關系嗎?
4、概括形成鄰補角、對頂角概念和對頂角的性質
三、初步應用
練習:
下列說法對不對
(1) 鄰補角可以看成是平角被過它頂點的一條射線分成的兩個角
(2) 鄰補角是互補的兩個角,互補的兩個角是鄰補角
(3) 對頂角相等,相等的兩個角是對頂角
學生利用對頂角相等的性質解釋剪刀剪布過程中所看到的現象
四、鞏固運用例題:如圖,直線a,b相交, ,求 的度數。
鞏固練習(教科書5頁練習)已知,如圖, ,求: 的度數
小結
鄰補角、對頂角
作業課本P9-1,2P10-7,8
關于七年級下冊數學教案精選篇6
1.2二元一次方程組的解法
1.2.1代入消元法
教學目標
1.了解解方程組的基本思想是消元。
2.了解代入法是消元的一種方法。
3.會用代入法解二元一次方程組。
4.培養思維的靈活性,增強學好數學的信心。
教學重點
用代入法解二元一次方程組消元過程。
教學難點
靈活消元使計算簡便。
教學過程
一、引入本課。
接上節課問題,寫出所得一元一次方程及二元一次方程組提問怎樣解二元一次方程組?
二、探究。
比較此列二元一次方程組和一元一次方程,找出它們之間的聯系。
xy46.41(__5.646.4 )__5.646.4與xy46.4比xy5.62較而由(2)可得yx5.6(3)。把(3)代入(1)。xy46.4中的y就是x5.6,
可得一元一次方程。想一想本題是否有其它解法?討論:解二元一次方程組基本想法是什么?
15xy9例1:解方程組 2y3x1
討論:怎樣消去一個未知數?
解出本題并檢驗。
12x3y0例2:解方程組 25x7y1
討論:與例1比較本題中是否有與y3x1類似的方程?
怎樣解本題?
學生完成解題過程。
草稿紙上檢驗所得結果。
簡要概括本課中解二元一次方程組的基本想法,基本步驟。介紹代入消元法。(簡稱代入法)
三、練習
P27.練習題。
四、小結
本節課你有什么收獲?
五、作業
習題2.2A組第1題。
后記
關于七年級下冊數學教案精選篇7
一、教材內容分析
相似變換是圖形的一種基本變換,通過學生所熟悉的實際生活的現象,認識相似圖形,了解相似變換,進而探索相似變換的一些基本性質;并能認識相似變換的現實生活中的一些簡單應用,為今后進一步學習相似三角形打下基礎。教材盡可能多地讓學生主動參與,動手操作,拓展學生思考與探索的空間,在直觀感知,操作確認的基礎上,努力探索圖形之間的變化關系。
二、教學目標
1、認識相似圖形和相似變換。
2、了解相似變換的基本性質,會按要求作出簡單的圖形(經過相似變換后的圖形)。
3、結合教材和聯系生活實際,培養學生的學習興趣和熱愛生活的情感。
三、教材的重點和難點
1、 教材重點:認識相似圖形和相似變換,會按要求作出簡單的圖形(經過變換后的圖形)。
2、 教學難點:了解相似變換的基本性質
四、〔教學過程〕
教學過程 設計說明
一、創設情景、引出課題。
出示教材中的圖形F和F’(運用投影)引導學生觀察圖形的特點。
(學生可能會從圖形的形狀上去描述,例如圖形的形狀一樣;也可能從圖形的大小上去描述,例如圖形的大小不等。)
教師要引導學生細致思考,回答要全面。
二、細致觀察、認識特點
由圖形F到F’,哪些改變了,哪些沒有改變?
由學生小組討論,然后填入下列的兩個空格中。
形狀: ;大小 。
從而引出相似圖形及相似變換的概念:
由一個圖形改變為另一個圖形,在改變的過程中保持形狀不變(大小可以改變),這樣的圖形改變叫作相似變換。原圖形和經相似變換后得到的像,稱它為相似圖形,圖形的放大和縮小都是相似圖形。
并讓學生舉一些在現實生活中的相似圖形。
如:按不同比例尺畫的地圖、在顯微鏡下觀察到的東西與原東西。
讓學生舉一些在觀察生活中的相似變換的例子。
如:相片的放大,縮小等。
例1:如圖,把方格紙中的圖形作相似變換,放大到形的2倍,并在同一方格紙上畫出變換后所得的像。
圖形
引導學生結合相似變換的概念及其相似圖形的特點來解答這個問題。
1、 取特殊點的方法,在這個方格紙內確定圖形的一些特殊點的對應點的位置。然后將它們按原圖形的形狀用線段連結起來,就得到所得的像。
通過上述的練習,你能回答下列問題嗎?
1、 將一個圖形作相似變換時,圖形中各個角的大小改變嗎?請舉例說明。
2、 將一個圖形作相似變換時,圖形中各條線段的長改變嗎?怎樣改變?
由學生小組討論,并抽代表回答討論結果。
然后歸納出圖形相似變換的性質。
圖形的相似變換不改變圖形中的每一個角的大小,圖形中的每條線段都擴大(或縮小)相同的倍數。
三、應用新知,體驗成功
補充例題:已知,如圖從 ABC 到 A’B’C’是一個相似變換,OA’與OA的長度之比為1 :2
(1) A’B’與AB的長度之比是多少?
(2) 已知 ABC的周長為16cm,面積為18cm2
分別求出 A’B’C’ 的周長和面積。
A
A
B O C
B C
(補充此題的目的是進一步應用前面已經形成的概念解決問題,也為今后學習相似形打好基礎)
四、歸納小結,充實結構
1、 本節課學習了什么內容。
2、 如何作出按要求相似變換后的平面圖形。
3、 相似變換的基本性質。 通過觀察兩幅優美的圖片,導入新課,既激發了學生的濃厚的學習興趣,又為新知識作好鋪墊。
通過小組合作討論的形式,既提高了學生的參與度,又培養了同學間的合作精神。
通過讓學生舉一些現實生活中相似的圖形及相似變換的例子;既加深了學生對概念的理解,又培養了學生的學習興趣和熱愛生活的情感。
在引導學生結合相似變換概念及相似圖形的特點解決問題后,并提出問題。
通過小組討論的形式來共同探討、解決問題的方法。一是體現了合作學習;二是教會學生學習數學的方法。在具體的問題中,解決后,要善于歸納規律,從而體現從具體到一般的原則。
歸納出相似變換的性質后,引導學生運用性質解決問題,從而進一步鞏固,深化了相似變換,體現了數學是從一般到具體的過程。并為今后進一步學習相似三角形打下基礎。
設計思路
1、本設計按“問題情境——數學活動——概括——鞏固應用和拓展”的模式呈現教學內容的,這種方式符合學生的認知規律和學習規律,同時也是課堂教學和設計的立足點。
2、體現了學生動手實踐、自主探索、合作學習的數學學習方式,充分調動學生的學習積極性,提高學生的參與度。
3、首先引導學生從原有的知識經驗中,生成新的知識經驗,然后運用它解決問題,形成數學能力。