教育巴巴 > 初中教案 > 七年級教案 > 數學教案 >

人教版七年級數學上冊教案

時間: 新華 數學教案

教師是學生的一個引導者,每一個七年級數學老師要在課堂上引導學生正確的理解教學內容。經歷了一段時間的數學教學,作為七年級數學老師的你知道如何寫七年級數學教案?你是否在找正準備撰寫“人教版七年級數學上冊教案”,下面小編收集了相關的素材,供大家寫文參考!

人教版七年級數學上冊教案篇1

教學目標: 

1、使學生在現實情境中理解有理數加法的意義

2、經歷探索有理數加法法則的過程,掌握有理數加法法則,并能準確地進行加法運算。

3、在教學中適當滲透分類討論思想。

重點:有理數的加法法則

重點:異號兩數相加的法則

教學過程:

二、講授新課

1、同號兩數相加的法則

問題:一個物體作左右方向的運動,我們規定向左為負,向右為正。向右運動5m記作5m,向左運動5m記作-5m。如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少?

學生回答:兩次運動后物體從起點向右運動了8m。寫成算式就是5+3=8(m)

教師:如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少?

學生回答:兩次運動后物體從起點向左運動了8m。寫成算式就是(-5)+(-3)=-8(m)

師生共同歸納法則:同號兩數相加,取與加數相同的符號,并把絕對值相加。

2、異號兩數相加的法則

教師:如果物體先向右運動5m,再向左運動3m,那么兩次運動后物體從起點向哪個方向運動了多少米?

學生回答:兩次運動后物體從起點向右運動了2m。寫成算式就是5+(-3)=2(m)

師生借此結論引導學生歸納異號兩數相加的法則:異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值。

3、互為相反數的兩個數相加得零。

教師:如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少?

學生回答:經過兩次運動后,物體又回到了原點。也就是物體運動了0m。

師生共同歸納出:互為相反數的兩個數相加得零

教師:你能用加法法則來解釋這個法則嗎?

學生回答:可用異號兩數相加的法則來解釋。

一般地,還有一個數同0相加,仍得這個數。

三、鞏固知識

課本P18 例1,例2、課本P118 練習1、2題

四、總結

運算的關鍵:先分類,再按法則運算;

運算的步驟:先確定符號,再計算絕對值。

注意:要借用數軸來進一步驗證有理數的加法法則;異號兩數相加,首先要確定符號,再把絕對值相加。

五、布置作業

課本P24習題1.3第1、7題。

人教版七年級數學上冊教案篇2

教學目的

通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。

重點、難點

1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。

2.難點:找出能表示整個題意的等量關系。

教學過程

一、復習

1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數

本利和=本金×利息×年數+本金

2.商品利潤等有關知識。

利潤=售價-成本 ; =商品利潤率

二、新授

問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?

利息-利息稅=48.6

可設小明爸爸前年存了x元,那么二年后共得利息為

2.43%×X×2,利息稅為2.43%X×2×20%

根據等量關系,得 2.43%x·2-2.43%x×2×20%=48.6

問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的80%,因此可得

2.43%x·2·80%=48.6

解方程,得 x=1250

例1.一家商店將某種服裝按成本價提高40%后標價,又以8折 (即按標價的80%)優惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?

大家想一想這15元的利潤是怎么來的?

標價的80%(即售價)-成本=15

若設這種服裝每件的成本是x元,那么

每件服裝的標價為:(1+40%)x

每件服裝的實際售價為:(1+40%)x·80%

每件服裝的利潤為:(1+40%)x·80%-x

由等量關系,列出方程:

(1+40%)x·80%-x=15

解方程,得 x=125

答:每件服裝的成本是125元。

三、鞏固練習

教科書第15頁,練習1、2。

四、小結

當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。

五、作業

教科書第16頁,習題6.3.1,第4、5題。

人教版七年級數學上冊教案篇3

絕對值

教學目標 

1,掌握絕對值的概念,有理數大小比較法則.

2,學會絕對值的計算,會比較兩個或多個有理數的大小.

3.體驗數學的概念、法則來自于實際生活,滲透數形結合和分類思想.

教學難點 兩個負數大小的比較

知識重點 絕對值的概念

教學過程(師生活動) 設計理念

設置情境

引入課題 星期天黃老師從學校出發,開車去游玩,她先向東行20千米,到朱家尖,下午她又向西行30千米,回到家中(學校、朱家尖、家在同一直線上),如果規定向東為正,①用有理數表示黃老師兩次所行的路程;②如果汽車每公里耗油0.15升,計算這天汽車共耗油多少升?

學生思考后,教師作如下說明:

實際生活中有些問題只關注量的具體值,而與相反意義無關,即正負性無關,如汽車的耗油量我們只關心汽車行駛的距離和汽油的價格,而與行駛的方向無關;

觀察并思考:畫一條數軸,原點表示學校,在數軸上畫出表示朱家尖和黃老師家的點,觀察圖形,說出朱家尖黃老師家與學校的距離.

學生回答后,教師說明如下:

數軸上表示數的點到原點的距離只與這個點離開原點的長度有關,而與它所表示的數的正負性無關;

一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值,記做|a|

例如,上面的問題中|20|=20,|-10|=10顯然,|0|=0 這個例子中,第一問是相反意義的量,用正負數表示,后一問的解答則與符號沒有關系,說明實際生活中有些問題,人們只需知道它們的具體數值,而并不關注它們所表示的意義.為引入絕對值概念做準備.并使學生體驗數學知識與生活實際的聯系.

因為絕對值概念的幾何意義是數形轉化的典型模型,學生初次接觸較難接受,所以配置此觀察與思考,為建立絕對值概念作準備.

合作交流

探究規律 例1求下列各數的絕對值,并歸納求有理數a的絕對有什么規律?

-3,5,0,+58,0.6

要求小組討論,合作學習.

教師引導學生利用絕對值的意義先求出答案,然后觀察原數與它的絕對值這兩個數據的特征,并結合相反數的意義,最后總結得出求絕對值法則(見教科書第15頁).

鞏固練習:教科書第15頁練習.

其中第1題按法則直接寫出答案,是求絕對值的基本訓練;第2題是對相反數和絕對值概念進行辨別,對學生的分析、判斷能力有較高要求,要注意思考的周密性,要讓學生體會出不同說法之間的區別. 求一個數的絕時值的法則,可看做是絕對值概念的一個應用,所以安排此例.

學生能做的盡量讓學生完成,教師在教學過程中只是組織者.本著這個理念,設計這個討論.

結合實際發現新知 引導學生看教科書第16頁的圖,并回答相關問題:

把14個氣溫從低到高排列;

把這14個數用數軸上的點表示出來;

觀察并思考:觀察這些點在數軸上的位置,并思考它們與溫度的高低之間的關系,由此你覺得兩個有理數可以比較大小嗎?

應怎樣比較兩個數的大小呢?

學生交流后,教師總結:

14個數從左到右的順序就是溫度從低到高的順序:

在數軸上表示有理數,它們從左到右的順序就是從小到大的順序,即左邊的數小于右邊的數.

在上面14個數中,選兩個數比較,再選兩個數試試,通過比較,歸納得出有理數大小比較法則

想象練習:想象頭腦中有一條數軸,其上有兩個點,分別表示數一100和一90,體會這兩個點到原點的距離(即它們的絕對值)以及這兩個數的大小之間的關系.

要求學生在頭腦中有清晰的圖形. 讓學生體會到數學的規定都來源于生活,每一種規定都有它的合理性

數在大小比較法則第2點學生較難掌握,要從絕對值的意義和數軸上的數左小右大這方面結合起來來了解,所以配置想象練習 ,加強數與形的想象。

課堂練習 例2,比較下列各數的大小(教科書第17頁例)

比較大小的過程要緊扣法則進行,注意書寫格式

練習:第18頁練習

小結與作業

課堂小結 怎樣求一個數的絕對值,怎樣比較有理數的大小?

本課作業 1, 必做題:教產書第19頁習題1,2,第4,5,6,10

2, 選做題:教師自行安排

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,情景的創設出于如下考慮:①體現數學知識與生活實際的緊密聯系,讓學生在這些熟悉的日常生活情境中獲得數學體驗,不僅加深對絕對值的理解,更感受到學習絕對值概念的必要性和激發學習的興趣.②教材中數的絕對值概念是根據幾何意義來定義的(其本質是將數轉化為形來解釋,是難點),然后通過練習歸納出求有理數的絕對值的規律,如果直接給出絕對值的概念,灌輸知識的味道很濃,且太抽象,學生不易接受.

2, 一個數絕對值的法則,實際上是絕對值概念的直接應用,也體現著分類的數學思想,所以直接通過例1歸納得出,顯得非常緊湊,是教學重點;從知識的發展和學生的能力培養角度來看,教師應更重視學生的自主學習和探究的過程,關注學生的思維,做好教學的組織和引導,留給學生足夠的空間。

3, 有理數大小的比較法則是大小規定的直接歸納,其中第(2)條學生較難理解,教學中要結合絕對值的意義和規定:“在數軸上表示有理數,它們從左到右的順序就是從小到大的順序”,幫助學生建立“數軸上越左邊的點到原點的距離越大,所以表示的數越小”這個數形結合的模型.為此設置了想象練習.

4,本節課的內容包括絕對值的概念和數的絕對值的求法、有理數大小比較的法則,教學內容很多,學生接受起來可能會有困難,建議把有理數的大小比較移到下節課教學。

人教版七年級數學上冊教案篇4

一、知識導航

1、主要概念:變量是 ;自變量是 ;因變量是 。

2、變量之間關系的三種表示方法: 。

其特點是:列表:對于表中自變量的每一個值,可以不通過計算,直接把 的值找到,查詢方便;但是欠 ,不能反映變化的全貌,不易看出變量間的對應規律。

關系式:簡明扼要、規范準確;但有些變量之間的關系很難或不能用關系式表示。圖像:形象直觀。可以形象地反映出事物變化的過程、變化的趨勢和某些特征;但圖像是近似的、局部的,由圖像確定因變量的值欠準確。

3、主要數學思想方法:類比和比較的方法(舉例說明);數形結合和數學建模思想(舉例說明)。

二、學習導航

1、有關概念應用

例1下列各題中,那些量在發生變化?其中自變量和因變量各是什么?

① 用總長為60的籬笆圍成一邊長為L(m),面積為S(m2)的矩形場地;

②正方形邊長是3,若邊長增加x,則面積增加為y.

2、利用表格尋找變化規律

例2 研究表明,固定鉀肥和磷肥的施用量,土豆的產量與氮肥的施用量有如下關系:

施肥量

(千克/公頃) 0 34 67 101 135 202 259 336 404 471

土豆產量

(噸/公頃) 15.18 21.36 25.72 32.29 30.03 39.45 43.15 43.46 40.83 30.75

上表中反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?根據表格中的數據,你認為氮肥的使用量是多少時比較適宜?

變式(湖南)一輛小汽車在高速公路上從靜止到起動10秒后的速度經測量如下表:

時間/秒 0 1 2 3 4 5 6 7 8 9 10

速度/米/秒 0 0.3 1.3 2.8 4.9 7.6 11.0 14.1 18.4 24.2 28.9

①上表反映了哪兩個變量之間的關系?哪個是因變量?

②如果用t表示時間,v表示速度,那么隨著t的變化,v的變化趨勢是什么?

③當t每增加1秒時,v的變化情況相同嗎?在哪1秒中,v的增加?

④若高速公路上小汽車行駛的速度的上限為120千米/時,試估計大約還需要幾秒小汽車速度就將達到這個上限?

3、用關系式表示兩變量的關系

例3.、①設一長方體盒子高為10,底面積為正方形,求這個長方形的體積v與底面邊長a的關系。②設地面氣溫是20℃,如果每升高1km,氣溫下降6℃,求氣溫與t高度h的關系。

變式(江西)如圖,一個矩形推拉窗,窗高1.5米,則活動窗扇的通風面積A(平方米)與拉開長度b(米)的關系式是: 

4、用圖像表示兩變量的關系

例4、(桂林)今年,在我國內地發生了“非典型肺炎”疫情,在黨和政府的正確領導下,目前疫情已得到有效控制.下圖是今年5月1日至5月14日的內地新增確診病例數據走勢圖(數據來源:衛生部每日疫情通報).從圖中,可知道:

(1)5月6日新增確診病例人數為 人;

(2)在5月9日至5月11日三天中,共新增確診病例人數為 人;

(3)從圖上可看出,5月上半月新增確診病例總體呈 趨勢.

例5、(陜西) 星期天晚飯后,小紅從家里出去散步,下圖描述了她散步過程中離家的距離s(米)與散步所用時間t(分)之間的函數關系.依據圖象,下面描述符合小紅散步情景的是( ).

A.從家出發,到了一個公共閱報欄,看了一會兒報,就回家了

B.從家出發,到了一個公共閱報欄,看了一會兒報后,繼續向前走了一段,然后回家了

C.從家出發,一直散步(沒有停留),然后回家了

D.從家出發,散了一會兒步,就找同學去了,18分鐘后才開始返變式 (成都)右圖表示甲騎電動自行車和乙駕駛汽車沿相同路線行駛45千米,由A地到B地時,行駛的路程y(千米)與經過的時間x(小時)之間的關系.請根據這個行駛過程中的圖象填空:汽車出發 小時與電動自行車相遇;電動自行車的速度為 千米/時;汽車的速度為 千米/時;汽車比電動自行車早 小時到達B地.

三、一試身手

1、(貴陽)小明根據鄰居家的故事寫了一首小詩:“兒子學成今日返,老父早早到車站,兒子到后細端詳,父子高興把家還.”如果用縱軸y表示父親與兒子行進中離家的距離,用橫軸 表示父親離家的時間,那么下面的圖象與上述詩的含義大致吻合的是(  )

2、在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)

之間的關系如圖所示.

請根據圖象所提供的信息解答下列問題:

(1)甲、乙兩根蠟燭燃燒前的高度分別是______,

從點燃到燃盡所用的時間分別是_______;

(2)燃燒多長時間時,甲、乙兩根蠟燭的高度相等(不考慮都燃盡時的情況)?在什么時間段內,甲蠟燭比乙蠟燭高?在什么時間段內,甲蠟燭比乙蠟燭低?

3、(2006宿遷課改)小明從家騎車上學,先上坡到達A地后再下坡到達學校,所用的時間與路程如圖所示.如果返回時,上、下坡速度仍然保持不變,那么他從學校回到家需要的時間是(  )

A.8.6分鐘 B.9分鐘

C.12分鐘 D.16分鐘

4、某機動車出發前油箱內有油42l,行駛若干小時后,途中在加油站加油若干升.油箱中余油量Q(L)與行駛時間t(L)之間的關系如圖8 所示.

回答問題:(1)機動車行駛幾小時后加油?

(2)中途中加油_________L;

(3)已知加油站距目的地還有 ,車速為 ,

若要達到目的地,油箱中的油是否夠用?并說明原因.

5、在一次實驗中,小明把一根彈簧的上端固定.在其下端懸掛物體,下面是測得的彈簧的長度y與所掛物體質量x的一組對應值.

所掛質量

0 1 2 3 4 5

彈簧長度

18 20 22 24 26 28

(1)上表反映了哪兩個變量之間的關系?哪個是自變量?哪個是因變量?

(2)當所掛物體重量為 時,彈簧多長?不掛重物時呢?

(3)若所掛重物為 時(在允許范圍內),你能說出此時的彈簧長度嗎?

6、小明在暑期社會實距活動中,以每千克0.8元的價格從批發市場購進若干千克瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數之間的關系如圖9所示.請你根據圖象提供的信息完成以下問題:

(1)求降價前銷售金額y(元)與售出西瓜 (千克)之間的關系式;

(2)小明從批發市場共購進多少千克西瓜?

(3)小明這次賣瓜賺子多少錢?

7、如圖中的折線ABC是甲地向乙地打長途電話所需要付的電話費y(元)與通話時間t(分鐘)之間的關系的圖象.

(1)通話1分鐘,要付電話費多少元?通話5分鐘要付多少電話費?

(2)通話多少分鐘內,所支付的電話費不變?

(3)如果通話3分鐘以上,電話費y(元)與時間t(分鐘)的關系式是 ,那么通話4分鐘的電話費是多少元?

8、如圖是某水庫的蓄水量v(萬米3)與干旱持續時間t(天)之間的關系圖,回答下列問題:

(1)該水庫原蓄水量為多少萬米3?持干旱持續時間10天后,水庫蓄水量為多少萬米3?

(2)若水庫的蓄水量小于400萬米3時,將發生嚴重干旱警報,請問:持續干旱多少天后,將發生嚴重干旱警報?

(3)按此規律,持續干旱多少天時,水庫將干涸?

9、(成都市)某移動通信公司開設了兩種通信業務,“全球通”:使用時首先繳50元月租費,然后每通話1分鐘,自付話費0.4元;“動感地帶”:不繳月租費,每通話1分鐘,付話費0.6元(本題的通話均指市內通話),若一個月通話x分鐘,兩種方式的費用分別為 元和 元.

(1)寫出 、 與x之間的關系式;

(2)一個月內通話多少分鐘,兩種移動通訊費用相同?

(3)某人估計一個月內通話300分鐘,應選擇哪種移動通信合算些?

27167 主站蜘蛛池模板: 昂仁县| 曲水县| 岱山县| 都兰县| 柳江县| 静安区| 新津县| 余姚市| 汕尾市| 额尔古纳市| 乾安县| 聂拉木县| 朔州市| 凤凰县| 遵义市| 工布江达县| 新建县| 莱阳市| 平潭县| 武陟县| 永春县| 濉溪县| 永济市| 两当县| 革吉县| 兰考县| 海安县| 循化| 剑阁县| 衡南县| 伊金霍洛旗| 霍林郭勒市| 靖远县| 华坪县| 壶关县| 团风县| 科尔| 连南| 磴口县| 鸡东县| 东源县|