教育巴巴 > 初中教案 > 七年級教案 > 數學教案 >

七年級數學上冊教案10篇

時間: 陳翠 數學教案

數學有學習、學問、科學之意。古希臘學者視其為哲學之起點,“學問的基礎”。下面給大家帶來一些關于七年級數學上冊教案,歡迎閱讀與借鑒,希望對你們有幫助!

七年級數學上冊教案10篇

七年級數學上冊教案篇1

一、目的要求

1、使學生初步理解一次函數與正比例函數的概念。

2、使學生能夠根據實際問題中的條件,確定一次函數與正比例函數的解析式。

二、內容分析

1、初中主要是通過幾種簡單的函數的初步介紹來學習函數的,前面三小節,先學習函數的概念與表示法,這是為學習后面的幾種具體的函數作準備的,從本節開始,將依次學習一次函數(包括正比例函數)、二次函數與反比例函數的有關知識,大體上,每種函數是按函數的解析式、圖象及性質這個順序講述的,通過這些具體函數的學習,學生可以加深對函數意義、函數表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數的知識及有關的數學思想方法在解決實際問題中的應用。

2、舊教材在講幾個具體的函數時,是按先講正反比例函數,后講一次、二次函數順序編排的,這是適當照顧了學生在小學數學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數,并且,把正比例函數作為一次函數的特例予以介紹,而最后才學習反比例函數,為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規津,從函數角度看,一次函數的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數就要復雜一些了,特別是,反比例函數的圖象是由兩條曲線組成的,先學習反比例函數難度可能要大一些。第二,把正比例函數作為一次函數的特例介紹,既可以提高學習效益,又便于學生了解正比例函數與一次函數的關系,從而,可以更好地理解這兩種函數的概念、圖象與性質。

3、“函數及其圖象”這一章的重點是一次函數的概念、圖象和性質,一方面,在學生初次接觸函數的有關內容時,一定要結合具體函數進行學習,因此,全章的主要內容,是側重在具體函數的講述上的。另一方面,在大綱規定的幾種具體函數中,一次函數是最基本的,教科書對一次函數的討論也比較全面。通過一次函數的學習,學生可以對函數的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數、反比例函數的學習方法。

三、教學過程

復習提問:

1、什么是函數?

2、函數有哪幾種表示方法?

3、舉出幾個函數的例子。

新課講解:

可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數的例子。然后讓學生觀察這些例子(實際上均是一次函數的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

(1)這些式子表示的是什么關系?(在學生明確這些式子表示函數關系后,可指出,這是函數。)

(2)這些函數中的自變量是什么?函數是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數,等號右邊是一個代數式,其中的字母x與t是自變量。)

(3)在這些函數式中,表示函數的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

(4)x的'一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的層層設問,最后給出一次函數的定義。

一般地,如果y=kx+b(k,b是常數,k≠0)那么,y叫做x的一次函數。

對這個定義,要注意:

(1)x是變量,k,b是常數;

(2)k≠0 (當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數函數,這點,不一定向學生講述。)

由一次函數出發,當常數b=0時,一次函數kx+b(k≠0)就成為:y=kx(k是常數,k≠0)我們把這樣的函數叫正比例函數。

在講述正比例函數時,首先,要注意適當復習小學學過的正比例關系,小學數學是這樣陳述的:

兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

寫成式子是(一定)

需指出,小學因為沒有學過負數,實際的例子都是k>0的例子,對于正比例函數,k也為負數。

其次,要注意引導學生找出一次函數與正比例函數之間的關系:正比例函數是特殊的一次函數。

課堂練習:

教科書13、4節練習第1題.

七年級數學上冊教案篇2

教學目標:

1、通過解題,使學生了解到數學是具有趣味性的。

2、培養學生勤于動腦的習慣。

教學過程:

一、出示趣味題

師:老師這里有一些有趣的問題,希望大家開動腦筋,積極思考。

1、小衛到文具店買文具,他買毛筆用去了所帶錢的一半,買鉛筆用去了剩下錢的一半,最后用去剩下的8分,問小衛原有( )錢?

2、蘋蘋做加法,把一個加數22錯寫成12,算出結果是48,問正確結果是( )。

3、小明做減法,把減數30寫成20,這樣他算出的得數比正確得數多( ),如果小明算出的結果是10,正確結果是( )。

4、同學們種樹,要把9棵樹分3行種,每一行都是4棵,你能想出幾種

辦法來用△表示。

5、把一段布5米,一次剪下1米,全部剪下要( )次。

6、李小松有10本本子,送給小剛2本后,兩人本子數同樣多,小剛原來

有( )本本子。

二、小組討論

三、指名講解

四、評價

1、同學互評

2、老師點評

五、小結

師:通過今天的學習,你有哪些收獲呢?

七年級數學上冊教案篇3

教學目標:

利用數形結合的數學思想分析問題解決問題。

利用已有二次函數的知識經驗,自主進行探究和合作學習,解決情境中的數學問題,初步形成數學建模能力,解決一些簡單的實際問題。

在探索中體驗數學來源于生活并運用于生活,感悟二次函數中數形結合的美,激發學生學習數學的興趣,通過合作學習獲得成功,樹立自信心。

教學重點和難點:

運用數形結合的思想方法進行解二次函數,這是重點也是難點。

教學過程:

(一)引入:

分組復習舊知。

探索:從二次函數y=x2+4x+3在直角坐標系中的圖象中,你能得到哪些信息?

可引導學生從幾個方面進行討論:

(1)如何畫圖

(2)頂點、圖象與坐標軸的交點

(3)所形成的三角形以及四邊形的面積

(4)對稱軸

從上面的問題導入今天的課題二次函數中的圖象與性質。

(二)新授:

1、再探索:二次函數y=x2+4x+3圖象上找一點,使形成的圖形面積與已知圖形面積有數量關系。例如:拋物線y=x2+4x+3的頂點為點A,且與x軸交于點B、C;在拋物線上求一點E使SBCE= SABC。

再探索:在拋物線y=x2+4x+3上找一點F,使BCE與BCD全等。

再探索:在拋物線y=x2+4x+3上找一點M,使BOM與ABC相似。

2、讓同學討論:從已知條件如何求二次函數的解析式。

例如:已知一拋物線的頂點坐標是C(2,1)且與x軸交于點A、點B,已知SABC=3,求拋物線的解析式。

(三)提高練習

根據我們學校人人皆知的船模特色項目設計了這樣一個情境:

讓班級中的上科院小院士來簡要介紹學校船模組的情況以及在繪制船模圖紙時也常用到拋物線的知識的情況,再出題:船身的龍骨是近似拋物線型,船身的最大長度為48cm,且高度為12cm。求此船龍骨的拋物線的解析式。

讓學生在練習中體會二次函數的圖象與性質在解題中的作用。

(四)讓學生討論小結(略)

(五)作業布置

1、在直角坐標平面內,點O為坐標原點,二次函數y=x2+(k—5)x—(k+4)的圖象交x軸于點A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

(1)求二次函數的解析式;

(2)將上述二次函數圖象沿x軸向右平移2個單位,設平移后的圖象與y軸的交點為C,頂點為P,求 POC的面積。

2、如圖,一個二次函數的圖象與直線y= x—1的交點A、B分別在x、y軸上,點C在二次函數圖象上,且CBAB,CB=AB,求這個二次函數的解析式。

3、盧浦大橋拱形可以近似看作拋物線的一部分,在大橋截面1:11000的比例圖上,跨度AB=5cm,拱高OC=0。9cm,線段DE表示大橋拱內橋長,DE∥AB,如圖1,在比例圖上,以直線AB為x軸,拋物線的對稱軸為y軸,以1cm作為數軸的單位長度,建立平面直角坐標系,如圖2。

(1)求出圖2上以這一部分拋物線為圖象的函數解析式,寫出函數定義域;

(2)如果DE與AB的距離OM=0。45cm,求盧浦大橋拱內實際橋長(備用數據: ,計算結果精確到1米)

七年級數學上冊教案篇4

一、教學目的

【知識與技能】

了解數軸的概念,能用數軸上的點準確地表示有理數。

【過程與方法】

通過觀察與實際操作,理解有理數與數軸上的點的對應關系,體會數形結合的思想。

【情感、態度與價值觀】

在數與形結合的過程中,體會數學學習的樂趣。

二、教學重難點

【教學重點】

數軸的三要素,用數軸上的點表示有理數。

【教學難點】

數形結合的思想方法。

三、教學過程

(一)引入新課

提出問題:通過實例溫度計上數字的意義,引出數學中也有像溫度計一樣可以用來表示數的軸,它就是我們今天學習的數軸。

(二)探索新知

學生活動:小組討論,用畫圖的形式表示東西向馬路上楊樹,柳樹,汽車站牌三者之間的關系:

提問1:上面的問題中,“東”與“西”、“左”與“右”都具有相反意義。我們知道,正數和負數可以表示具有相反意義的量,那么,如何用數表示這些樹、電線桿與汽車站牌的相對位置呢?

學生活動:畫圖表示后提問。

提問2:“0”代表什么?數的符號的實際意義是什么?對照體溫計進行解答。

教師給出定義:在數學中,可以用一條直線上的點表示數,這條直線叫做數軸,它滿足:任取一個點表示數0,代表原點;通常規定直線上向右(或上)為正方向,從原點向左(或下)為負方向;選取合適的長度為單位長度。

提問3:你是如何理解數軸三要素的?

師生共同總結:“原點”是數軸的“基準”,表示0,是表示正數和負數的分界點,正方向是人為規定的,要依據實際問題選取合適的單位長度。

(三)課堂練習

如圖,寫出數軸上點A,B,C,D,E表示的數。

(四)小結作業

提問:今天有什么收獲?

引導學生回顧:數軸的三要素,用數軸表示數。

課后作業:

課后練習題第二題;思考:到原點距離相等的兩個點有什么特點?

七年級數學上冊教案篇5

教學目標:

1、知識與技能:(1)通過學生熟悉的問題情景,以過探索有理數減法法則得出的過程,理解有理數減法法則的合理性。

(2)能熟練進行有理數的減法法則。

2、過程與方法

通過實例,歸納出有理數的減法法則,培養學生的邏輯思維能力和運算能力,通過減法到加法的轉化,讓學生初步體會人歸的數學思想。

重點、難點

1、重點:有理數減法法則及其應用。

2、難點:有理數減法法則的應用符號的改變。

教學過程:

一、創設情景,導入新課

1、有理數加法運算是怎樣做的?(-5)+3= —3+(—5)=

—3+(+5)=

2、-(-2)= -[-(+23)]=,+[-(-2)]=

3、20__的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?

導語:可見,有理數的減法運算在現實生活中也有著很廣泛的應用。(出示課題)

二、合作交流,解讀探究

1(-2)-(-10)=8=(-2)+8

2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?

3、通過以上列式,你能發現減法運算與加法運算的關系嗎?

(學生分組討論,大膽發言,總結有理數的減法法則)

減去一個數等于加上這個數的相反數

教師提問、啟發:(1)法則中的“減去一個數”,這個數指的是哪個數?“減去”兩字怎樣理解?(2)法則中的“加上這個數的相反數”“加上”兩字怎樣理解?“這個數的相反數”又怎樣理解?(3)你能用字母表示有理數減法法則嗎?

三、應用遷移,鞏固提高

1、P.24例1 計算:

(1) 0-(-3.18)(2)(-10)-(-6)(3)-

解:(1)0-(-3.18)=0+3.18=3.18

(2)(-10)-(-6)=(-10)+6=-4

(3)-=+=1

2、課內練習:P.241、2、3

3、游戲:兩人一組,用撲克牌做有理數減法運算游戲(每人27張牌,黑牌點數為正數,紅牌點數為負數,王牌點數為0。每人每次出一張牌,兩人輪流先出(先出者為被減數),先求出這兩張牌點數之差者獲勝,直至其中一人手中無牌為止)。

四、總結反思

(1) 有理數減法法則:減去一個數,等于加上這個數的相反數。

(2) 有理數減法的步驟:先變為加法,再改變減數的符號,最后按有理數加法法則計算。

五、作業

P.27習題1.4A組1、2、5、6

備選題

填空:比2小-9的數是 。

а比а+2小 。

若а小于0,е是非負數,則2а-3е 0。

七年級數學上冊教案篇6

學習目標:

1.理解平行線的意義兩條直線的兩種位置關系;

2.理解并掌握平行公理及其推論的內容;

3.會根據幾何語句畫圖,會用直尺和三角板畫平行線;

學習重點:

探索和掌握平行公理及其推論.

學習難點:

對平行線本質屬性的理解,用幾何語言描述圖形的性質

一、學習過程:預習提問

兩條直線相交有幾個交點?

平面內兩條直線的位置關系除相交外,還有哪些呢?

(一)畫平行線

1、 工具:直尺、三角板

2、 方法:一"落";二"靠";三"移";四"畫"。

3、請你根據此方法練習畫平行線:

已知:直線a,點B,點C.

(1)過點B畫直線a的平行線,能畫幾條?

(2)過點C畫直線a的平行線,它與過點B的平行線平行嗎?

(二)平行公理及推論

1、思考:上圖中,①過點B畫直線a的平行線,能畫 條;

②過點C畫直線a的平行線,能畫 條;

③你畫的直線有什么位置關系? 。

②探索:如圖,P是直線AB外一點,CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

二、自我檢測:

(一)選擇題:

1、下列推理正確的是 ( )

A、因為a//d, b//c,所以c//d B、因為a//c, b//d,所以c//d

C、因為a//b, a//c,所以b//c D、因為a//b, d//c,所以a//c

2.在同一平面內有三條直線,若其中有兩條且只有兩條直線平行,則它們交點的個數為( )

A.0個 B.1個 C.2個 D.3個

(二)填空題:

1、在同一平面內,與已知直線L平行的直線有 條,而經過L外一點,與已知直線L平行的直線有且只有 條。

2、在同一平面內,直線L1與L2滿足下列條件,寫出其對應的位置關系:

(1)L1與L2 沒有公共點,則 L1與L2 ;

(2)L1與L2有且只有一個公共點,則L1與L2 ;

(3)L1與L2有兩個公共點,則L1與L2 。

3、在同一平面內,一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角的大小關系是 。

4、平面內有a 、b、c三條直線,則它們的交點個數可能是 個。

三、CD⊥AB于D,E是BC上一點,EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°。

七年級數學上冊教案篇7

一、內容特點

在知識與方法上類似于數系的第一次擴張。也是后繼內容學習的基礎。

內容定位:了解無理數、實數概念,了解(算術)平方根的概念;會用根號表示數的(算術)平方根,會求平方根、立方根,用有理數估計一個無理數的大致范圍,實數簡單的四則運算(不要求分母有理化)。

二、設計思路

整體設計思路:

無理數的引入----無理數的表示----實數及其相關概念(包括實數運算),實數的應用貫穿于內容的始終。

學習對象----實數概念及其運算;學習過程----通過拼圖活動引進無理數,通過具體問題的解決說明如何表示無理數,進而建立實數概念;以類比,歸納探索的方式,尋求實數的運算法則;學習方式----操作、猜測、抽象、驗證、類比、推理等。

具體過程:

首先通過拼圖活動和計算器探索活動,給出無理數的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。最后教科書總結實數的概念及其分類,并用類比的方法引入實數的相關概念、運算律和運算性質等。

第一節:數怎么又不夠用了:通過拼圖活動,讓學生感受無理數產生的實際背景和引入的必要性;借助計算器探索無理數是無限不循環小數,并從中體會無限逼近的思想;會判斷一個數是有理數還是無理數。

第二、三節:平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術平方根、平方根、立方根等概念和開方運算。

第四節:公園有多寬:在實際生活和生產實際中,對于無理數我們常常通過估算來求它的近似值,為此這一節內容介紹估算的方法,包括通過估算比較大小,檢驗計算結果的合理性等,其目的是發展學生的數感。

第五節:用計算器開方:會用計算器求平方根和立方根。經歷運用計算器探求數學規律的活動,發展合情推理的能力。

第六節:實數。總結實數的概念及其分類,并用類比的方法引入實數的相關概念、運算律和運算性質等。

三、一些建議

1.注重概念的形成過程,讓學生在概念的形成的過程中,逐步理解所學的概念;關注學生對無理數和實數概念的意義理解。

2.鼓勵學生進行探索和交流,重視學生的分析、概括、交流等能力的考察。

3.注意運用類比的方法,使學生清楚新舊知識的區別和聯系。

4.淡化二次根式的概念。

七年級數學上冊教案篇8

教學目標

1、熟練掌握一元一次不等式組的解法,會用一元一次不等式組解決有關的實際問題;

2、理解一元一次不等式組應用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

3、體驗數學學習的樂趣,感受一元一次不等式組在解決實際問題中的價值。

教學難點

正確分析實際問題中的不等關系,列出不等式組。

知識重點

建立不等式組解實際問題的數學模型。

探究實際問題

出示教科書第145頁例2(略)

問:

(1)你是怎樣理解“不能完成任務”的數量含義的?

(2)你是怎樣理解“提前完成任務”的數量含義的?

(3)解決這個問題,你打算怎樣設未知數?列出怎樣的不等式?

師生一起討論解決例2.

歸納小結

1、教科書146頁“歸納”(略).

2、你覺得列一元一次不等式組解應用題與列二元一次方程組解應用題的步驟一樣嗎?

在討論或議論的基礎上老師揭示:

步法一致(設、列、解、答);本質有區別.(見下表)一元一次不等式組應用題與二元一次方程組應用題解題步驟異同表。

七年級數學上冊教案篇9

教學目標:

(1)能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

(2)注重學生參與,聯系實際,豐富學生的感性認識,培養學生的良好的學習習慣

重點難點:

能夠根據實際問題,熟練地列出二次函數關系式,并求出函數的自變量的取值范圍。

教學過程:

一、試一試

1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,

2.x的值是否可以任意取?有限定范圍嗎?

3.我們發現,當AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數,試寫出這個函數的關系式,

對于1.,可讓學生根據表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數據的變化情況,提出問題:(1)從所填表格中,你能發現什么?(2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學生分組討論、交流,然后各組派代表發表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0<x p="" <10)就是所求的函數關系式.<="" <x="" 對于3,教師可提出問題,(1)當ab="xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0"

二、提出問題

某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經過市場調查,發現這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大? 在這個問題中,可提出如下問題供學生思考并回答:

1.商品的利潤與售價、進價以及銷售量之間有什么關系?

[利潤=(售價-進價)×銷售量]

2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷

售約多少件商品?

[(10-8-x);(100+100x)]

4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

[x的值不能任意取,其范圍是0≤x≤2]

5.若設該商品每天的利潤為y元,求y與x的函數關系式。

[y=(10-8-x) (100+100x)(0≤x≤2)]

將函數關系式y=x(20-2x)(0<x

y=-2x2+20x(0<x<10)……………………………(1) p="" (0≤x≤2)……………………(2)

三、觀察;概括

1.教師引導學生觀察函數關系式(1)和(2),提出以下問題讓學生思考回答;

(1)函數關系式(1)和(2)的自變量各有幾個?

(各有1個)

(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式? (分別是二次多項式)

(3)函數關系式(1)和(2)有什么共同特點?

(都是用自變量的二次多項式來表示的)

(4)本章導圖中的問題以及P1頁的問題2有什么共同特點? 讓學生討論、交流,發表意見,歸結為:自變量x為何值時,函數y取得最大值。

2.二次函數定義:形如y=ax2+bx+c (a、b、、c是常數,a≠0)的函數叫做x的二次函數,a叫做二次函數的系數,b叫做一次項的系數,c叫作常數項.

四、課堂練習

1.(口答)下列函數中,哪些是二次函數?

(1)y=5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.P3練習第1,2題。

五、小結

1.請敘述二次函數的定義.

2,許多實際問題可以轉化為二次函數來解決,請你聯系生活實際,編一道二次函數應用題,并寫出函數關系式。

六、作業:略

七年級數學上冊教案篇10

一、 教學目標

1、 知識與技能目標

掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

2、 能力與過程目標

經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

3、 情感與態度目標

通過學生自己探索出法則,讓學生獲得成功的喜悅。

二、 教學重點、難點

重點:運用有理數乘法法則正確進行計算。

難點:有理數乘法法則的探索過程,符號法則及對法則的理解。

三、 教學過程

1、 創設問題情景,激發學生的求知欲望,導入新課。

教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

學生:26米。

教師:能寫出算式嗎?學生:……

教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題

2、 小組探索、歸納法則

(1)教師出示以下問題,學生以組為單位探索。

以原點為起點,規定向東的方向為正方向,向西的方向為負方向。

① 2 ×3

2看作向東運動2米,×3看作向原方向運動3次。

結果:向 運動 米

2 ×3=

② -2 ×3

-2看作向西運動2米,×3看作向原方向運動3次。

結果:向 運動 米

-2 ×3=

③ 2 ×(-3)

2看作向東運動2米,×(-3)看作向反方向運動3次。

結果:向 運動 米

2 ×(-3)=

④ (-2) ×(-3)

-2看作向西運動2米,×(-3)看作向反方向運動3次。

結果:向 運動 米

(-2) ×(-3)=

(2)學生歸納法則

①符號:在上述4個式子中,我們只看符號,有什么規律?

(+)×(+)=( ) 同號得

(-)×(+)=( ) 異號得

(+)×(-)=( ) 異號得

(-)×(-)=( ) 同號得

②積的絕對值等于 。

③任何數與零相乘,積仍為 。

(3)師生共同用文字敘述有理數乘法法則。

3、 運用法則計算,鞏固法則。

(1)教師按課本P75 例1板書,要求學生述說每一步理由。

(2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為 。

(3)學生做練習,教師評析。

(4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。

23620 主站蜘蛛池模板: 乐山市| 敖汉旗| 茂名市| 丰台区| 砚山县| 蒙城县| 古蔺县| 连江县| 仁布县| 山东| 姜堰市| 牟定县| 思南县| 旬阳县| 靖远县| 福海县| 崇信县| 新平| 子洲县| 万盛区| 红安县| 南阳市| 任丘市| 湟中县| 中方县| 南平市| 文水县| 富宁县| 瓦房店市| 特克斯县| 浪卡子县| 武汉市| 广河县| 沂南县| 息烽县| 四子王旗| 衡山县| 中方县| 安塞县| 历史| 双江|