教育巴巴 > 初中教案 > 九年級教案 > 數學教案 >

初三數學第一節課教案

時間: 龔鍇 數學教案

作為一個致力于教育事業的教師,經常要針對教學實際編寫教案,教案是教學活動的總體架構和執行計劃。那么,在創作教案時應注意哪些細節?以下是小編整理的一些初三數學第一節課教案,僅供參考。

初三數學第一節課教案

初三數學第一節課教案篇1

教學目的

1、使學生了解無理數和實數的概念,掌握實數的分類,會準確判斷一個數是有理數還是無理數。

2、使學生能了解實數絕對值的意義。

3、使學生能了解數軸上的點具有一一對應關系。

4、由實數的分類,滲透數學分類的思想。

5、由實數與數軸的一一對應,滲透數形結合的思想。

教學分析

重點:無理數及實數的概念。

難點:有理數與無理數的區別,點與數的一一對應。

教學過程

一、復習

1、什么叫有理數?

2、有理數可以如何分類?

(按定義分與按大小分。)

二、新授

1、無理數定義:無限不循環小數叫做無理數。

判斷:無限小數都是無理數;無理數都是無限小數;帶根號的數都是無理數。

2、實數的定義:有理數與無理數統稱為實數。

3、按課本中列表,將各數間的聯系介紹一下。

除了按定義還能按大小寫出列表。

4、實數的相反數:

5、實數的絕對值:

6、實數的運算

講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

例2,判斷題:

(1)任何實數的偶次冪是正實數。( )

(2)在實數范圍內,若| x|=|y|則x=y。( )

(3)0是最小的實數。( )

(4)0是絕對值最小的實數。( )

解:略

三、練習

P148 練習:3、4、5、6。

四、小結

1、今天我們學習了實數,請同學們首先要清楚,實數是如何定義的,它與有理數是怎樣的關系,二是對實數兩種不同的分類要清楚。

2、要對應有理數的相反數與絕對值定義及運算律和運算性質,來理解在實數中的運用。

五、作業

1、P150 習題A:3。

2、基礎訓練:同步練習1。

初三數學第一節課教案篇2

教學目標

1、掌握有理數的概念,會對有理數按照一定的標準進行分類,培養分類能力;

2、了解分類的標準與分類結果的相關性,初步了解“集合”的含義;

3、體驗分類是數學上的常用處理問題的方法。

教學難點

正確理解分類的標準和按照一定的標準進行分類

知識重點

正確理解有理數的概念

教學過程

探索新知 在前兩個學段,我們已經學習了很多不同類型的數,通過上兩節課的學習,又知道了現在的數包括了負數,現在請同學們在草稿紙上任意寫出3個數(同時請3個同學在黑板上寫出).

問題1:觀察黑板上的9個數,并給它們進行分類.

學生思考討論和交流分類的情況.

學生可能只給出很粗略的分類,如只分為“正數”和“負數”或“零”三類,此時,教師應給予引導和鼓勵.

例如,

對于數5,可這樣問:5和5. 1有相同的類型嗎?5可以表示5個人,而5. 1可以表示人數嗎?(不可以)所以它們是不同類型的數,數5是正數中整個的數,我們就稱它為“正整數”,而5. 1不是整個的數,稱為“正分數,,.…(由于小數可化為分數,以后把小數和分數都稱為分數)

通過教師的引導、鼓勵和不斷完善,以及學生自己的概括,最后歸納出我們已經學過的5類不同的數,它們分別是“正整數,零,負整數,正分數,負分數,’.

按照書本的說法,得出“整數”“分數”和“有理數”的概念.

看書了解有理數名稱的由來.

“統稱”是指“合起來總的名稱”的意思.

試一試:按照以上的分類,你能作出一張有理數的分類表嗎?你能說出以上有理數的分類是以什么為標準的嗎?(是按照整數和分數來劃分的) 分類是數學中解決問題的常用手段,這個引入具有開放的特點,學生樂于參與

學生自己嘗試分類時,可能會很粗略,教師給予引導和鼓勵,劃分數的類型要從文字所表示的意義上去引導,這樣學生易于理解。

有理數的分類表要在黑板或媒體上展示,分類的標準要引導學生去體會

練一練 1,任意寫出三個有理數,并說出是什么類型的數,與同伴進行交流.

2,教科書第10頁練習.

此練習中出現了集合的概念,可向學生作如下的說明.

把一些數放在一起,就組成了一個數的集合,簡稱“數集”,所有有理數組成的數集叫做有理數集.類似地,所有整數組成的數集叫做整數集,所有負數組成的數集叫做負數集……;

數集一般用圓圈或大括號表示,因為集合中的數是無限的,而本題中只填了所給的幾個數,所以應該加上省略號.

思考:上面練習中的四個集合合并在一起就是全體有理數的集合嗎?

也可以教師說出一些數,讓學生進行判斷。

集合的概念不必深入展開。

創新探究 問題2:有理數可分為正數和負數兩大類,對嗎?為什么?

教學時,要讓學生總結已經學過的數,鼓勵學生概括,通過交流和討論,教師作適當的指導,逐步得到如下的分類表。

有理數 這個分類可視學生的程度確定是否有必要教學。

應使學生了解分類的標準不一樣時,分類的結果也是不同的,所以分類的標準要明確,使分類后每一個參加分類的象屬于其中的某一類而只能屬于這一類,教學中教師可舉出通俗易懂的例子作些說明,可以按年齡,也可以按性別、地域來分等

小結與作業

課堂小結到現在為止我們學過的數都是有理數(圓周率除外),有理數可以按不同的標準進行分類,標準不同,分類的結果也不同。

本課作業

1, 必做題:教科書第18頁習題1.2第1題

2, 教師自行準備

本課教育評注(課堂設計理念,實際教學效果及改進設想)

1,本課在引人了負數后對所學過的數按照一定的標準進行分類,提出了有理數的概念.分類是數學中解決問題的常用手段,通過本節課的學習使學生了解分類的思想并進行簡單的分類是數學能力的體現,教師在教學中應引起足夠的重視.關于分類標準與分類結果的關系,分類標準的確定可向學生作適當的滲透,集合的概念比較抽象,學生真正接受需要很長的過程,本課不要過多展開。

2,本課具有開放性的特點,給學生提供了較大的思維空間,能促進學生積極主動地參加學習,親自體驗知識的形成過程,可避免直接進行分類所帶來的枯燥性;同時還體現合作學習、交流、探究提高的特點,對學生分類能力的養成有很好的作用。

3,兩種分類方法,應以第一種方法為主,第二種方法可視學生的情況進行。

初三數學第一節課教案篇3

一、教學目標:

1、知識目標:能熟練掌握簡單圖形的移動規律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

2、能力目標:

①,在實踐操作過程中,逐步探索圖形之間的平移關系;

②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

3、情感目標:經歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發展初步的審美能力,增強對圖形欣賞的意識。

二、重點與難點:

重點:圖形連續變化的特點;

難點:圖形的劃分。

三、教學方法:

講練結合。使用多媒體課件輔助教學。

四、教具準備:

多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

五、教學設計:

創設情景,探究新知:

(演示課件):教材上小狗的圖案。提問:

(1)這個圖案有什么特點?

(2)它可以通過什么“基本圖案”,經過怎樣的平移而形成?

(3)在平移過程中,“基本圖案”的大小、形狀、位置是否發生了變化?

小組討論,派代表回答。(答案可以多種)

讓學生充分討論,歸納總結,老師給予適當的指導,并對每種答案都要肯定。

看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經過怎樣的平移能得到右圖?誰到黑板做做看?

小組討論,派代表到臺上給大家講解。

氣氛要熱烈,充分調動學生的積極性,發掘他們的想象力。

暢所欲言,互相補充。

課堂小結:

在教師的引導下學生總結本節課的主要內容,并啟發學生在我們周圍尋找平移的例子。

課堂練習:

小組討論。

小組討論完成。

例子一定要和大家接觸緊密、典型。

答案不惟一,對于每種答案,教師都要給予充分的肯定。

六、教學反思:

本節的內容并不是很復雜,借助多媒體進行直觀、形象,內容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數學美學思想,促進學生綜合素質的提高。

初三數學第一節課教案篇4

一、教學目標:

1、理解極差的定義,知道極差是用來反映數據波動范圍的一個量.

2、會求一組數據的極差.

二、重點、難點和難點的突破方法

1、重點:會求一組數據的極差.

2、難點:本節課內容較容易接受,不存在難點.

三、課堂引入:

下表顯示的是上海2001年2月下旬和2002年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

從表中你能得到哪些信息?

比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

經計算可以看出,對于2月下旬的這段時間而言,2001年和2002年上海地區的平均氣溫相等,都是12度.

這是不是說,兩個時段的氣溫情況沒有什么差異呢?

根據兩段時間的氣溫情況可繪成的折線圖.

觀察一下,它們有區別嗎?說說你觀察得到的結果.

用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化范圍.用這種方法得到的差稱為極差(range).

四、例習題分析

本節課在教材中沒有相應的例題,教材P152習題分析

問題1可由極差計算公式直接得出,由于差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶復習已學知識.問題3答案并不唯一,合理即可。

初三數學第一節課教案篇5

一、教學目標:

1.了解方差的定義和計算公式。

2.理解方差概念的產生和形成的過程。

3.會用方差計算公式來比較兩組數據的波動大小。

二、重點、難點和難點的突破方法:

1.重點:方差產生的必要性和應用方差公式解決實際問題。

2.難點:理解方差公式

3.難點的突破方法:

方差公式:S = [( - ) +( - ) +…+( - )]比較復雜,學生理解和記憶這個公式都會有一定困難,以致應用時常常出現計算的錯誤,為突破這一難點,我安排了幾個環節,將難點化解。

(1)首先應使學生知道為什么要學習方差和方差公式,目的不明確學生很難對本節課內容產生興趣和求知欲望。教師在授課過程中可以多舉幾個生活中的小例子,不如選擇儀仗隊隊員、選擇運動員、選擇質量穩定的電器等。學生從中可以體會到生活中為了更好的做出選擇判斷經常要去了解一組數據的波動程度,僅僅知道平均數是不夠的。

(2)波動性可以通過什么方式表現出來?第一環節中點明了為什么去了解數據的波動性,第二環節則主要使學生知道描述數據,波動性的方法。可以畫折線圖方法來反映這種波動大小,可是當波動大小區別不大時,僅用畫折線圖方法去描述恐怕不會準確,這自然希望可以出現一種數量來描述數據波動大小,這就引出方差產生的必要性。

(3)第三環節教師可以直接對方差公式作分析和解釋,波動大小指的是與平均數之間差異,那么用每個數據與平均值的差完全平方后便可以反映出每個數據的波動大小,整體的波動大小可以通過對每個數據的波動大小求平均值得到。所以方差公式是能夠反映一組數據的波動大小的一個統計量,教師也可以根據學生程度和課堂時間決定是否介紹平均差等可以反映數據波動大小的其他統計量。

三、例習題的意圖分析:

1.教材P125的討論問題的意圖:

(1).創設問題情境,引起學生的學習興趣和好奇心。

(2).為引入方差概念和方差計算公式作鋪墊。

(3).介紹了一種比較直觀的衡量數據波動大小的方法——畫折線法。

(4).客觀上反映了在解決某些實際問題時,求平均數或求極差等方法的局限性,使學生體會到學習方差的意義和目的。

2.教材P154例1的設計意圖:

(1).例1放在方差計算公式和利用方差衡量數據波動大小的規律之后,不言而喻其主要目的是及時復習,鞏固對方差公式的掌握。

(2).例1的解題步驟也為學生做了一個示范,學生以后可以模仿例1的格式解決其他類似的實際問題。

四、課堂引入:

除采用教材中的引例外,可以選擇一些更時代氣息、更有現實意義的引例。例如,通過學生觀看2004年奧運會劉翔勇奪110米欄冠軍的錄像,進而引導教練員根據平時比賽成績選擇參賽隊員這樣的實際問題上,這樣引入自然而又真實,學生也更感興趣一些。

五、例題的分析:

教材P154例1在分析過程中應抓住以下幾點:

1.題目中“整齊”的含義是什么?說明在這個問題中要研究一組數據的什么?學生通過思考可以回答出整齊即波動小,所以要研究兩組數據波動大小,這一環節是明確題意。

2.在求方差之前先要求哪個統計量,為什么?學生也可以得出先求平均數,因為公式中需要平均值,這個問題可以使學生明確利用方差計算步驟。

3.方差怎樣去體現波動大小?

這一問題的提出主要復習鞏固方差,反映數據波動大小的規律。

六、隨堂練習:

1.從甲、乙兩種農作物中各抽取1株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、11、12、7、13、10、8、12、8;

乙:8、13、12、11、10、12、7、7、9、11;

問:(1)哪種農作物的苗長的比較高?

(2)哪種農作物的苗長得比較整齊?

2.段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什么?

測試次數1 2 3 4 5

段巍13 14 13 12 13

金志強10 13 16 14 12

參考答案:1.(1)甲、乙兩種農作物的苗平均高度相同;(2)甲整齊

2.段巍的成績比金志強的成績要穩定。

七、課后練習:

1.已知一組數據為2、0、-1、3、-4,則這組數據的方差為。

2.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

甲:7、8、6、8、6、5、9、10、7、4

乙:9、5、7、8、7、6、8、6、7、7

經過計算,兩人射擊環數的平均數相同,但S S,所以確定去參加比賽。

3.甲、乙兩臺機床生產同種零件,10天出的次品分別是( )

甲:0、1、0、2、2、0、3、1、2、4

乙:2、3、1、2、0、2、1、1、2、1

分別計算出兩個樣本的平均數和方差,根據你的計算判斷哪臺機床的性能較好?

4.小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

小爽10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

答案:1. 6 2. >、乙;3. =1.5、S =0.975、 =1. 5、S =0.425,乙機床性能好

4. =10.9、S =0.02;

=10.9、S =0.008

選擇小兵參加比賽。

初三數學第一節課教案篇6

一、教學目標

1.使學生理解并掌握分式的概念,了解有理式的概念;

2.使學生能夠求出分式有意義的條件;

3.通過類比分數研究分式的教學,培養學生運用類比轉化的思想方法解決問題的能力;

4.通過類比方法的教學,培養學生對事物之間是普遍聯系又是變化發展的辨證觀點的再認識.

二、重點、難點、疑點及解決辦法

1.教學重點和難點 明確分式的分母不為零.

2.疑點及解決辦法 通過類比分數的意義,加強對分式意義的理解.

三、教學過程

【新課引入】

前面所研究的因式分解問題是把整式分解成若干個因式的積的問題,但若有如下問題:某同學分鐘做了60個仰臥起坐,每分鐘做多少個?可表示為,問,這是不是整式?請一位同學給它試命名,并說一說怎樣想到的?(學生有過分數的經驗,可猜想到分式)

【新課】

1.分式的定義

(1)由學生分組討論分式的定義,對于“兩個整式相除叫做分式”等錯誤,由學生舉反例一一加以糾正,得到結論:

用、表示兩個整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

(2)由學生舉幾個分式的例子.

(3)學生小結分式的概念中應注意的問題.

①分母中含有字母.

②如同分數一樣,分式的分母不能為零.

(4)問:何時分式的值為零?[以(2)中學生舉出的分式為例進行討論]

2.有理式的分類

請學生類比有理數的分類為有理式分類:

例1 當取何值時,下列分式有意義?

(1);

解:由分母得.

∴當時,原分式有意義.

(2);

解:由分母得.

∴當時,原分式有意義.

(3);

解:∵恒成立,

∴取一切實數時,原分式都有意義.

(4).

解:由分母得.

∴當且時,原分式有意義.

思考:若把題目要求改為:“當取何值時下列分式無意義?”該怎樣做?

例2 當取何值時,下列分式的值為零?

(1);

解:由分子得.

而當時,分母.

∴當時,原分式值為零.

小結:若使分式的值為零,需滿足兩個條件:①分子值等于零;②分母值不等于零.

(2);

解:由分子得.

而當時,分母,分式無意義.

當時,分母.

∴當時,原分式值為零.

(3);

解:由分子得.

而當時,分母.

當時,分母.

∴當或時,原分式值都為零.

(4).

解:由分子得.

而當時分式無意義.

∴沒有使原分式的值為零的的值,即原分式值不可能為零.

(四)總結、擴展

1.分式與分數的區別.

2.分式何時有意義?

3.分式何時值為零?

(五)隨堂練習

1.填空題:

(1)當時,分式的值為零

(2)當時,分式的值為零

(3)當時,分式的值為零

2.教材P55中1、2、3.

八、布置作業

教材P56中A組3、4;B組(1)、(2)、(3).

九、板書設計

課題 例1

1.定義例2

2.有理式分類

初三數學第一節課教案篇7

一、教學目的:

1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關的論證和計算;

2.在菱形的判定方法的探索與綜合應用中,培養學生的觀察能力、動手能力及邏輯思維能力.

二、重點、難點

1.教學重點:菱形的兩個判定方法.

2.教學難點:判定方法的證明方法及運用.

三、例題的意圖分析

本節課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學生掌握菱形的判定方法,并會用這些判定方法進行有關的論證和計算.這些題目的推理都比較簡單,學生掌握起來不會有什么困難,可以讓學生自己去完成.程度好一些的班級,可以選講例3.

四、課堂引入

1.復習

(1)菱形的定義:一組鄰邊相等的平行四邊形;

(2)菱形的性質1 菱形的四條邊都相等;

性質2 菱形的對角線互相平分,并且每條對角線平分一組對角;

(3)運用菱形的定義進行菱形的判定,應具備幾個條件?(判定:2個條件)

2.【問題】要判定一個四邊形是菱形,除根據定義判定外,還有其它的判定方法嗎?

3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉動木條,這個四邊形什么時候變成菱形?

通過演示,容易得到:

菱形判定方法1 對角線互相垂直的平行四邊形是菱形.

注意此方法包括兩個條件:(1)是一個平行四邊形;(2)兩條對角線互相垂直.

通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:

菱形判定方法2 四邊都相等的四邊形是菱形.

五、例習題分析

例1 (教材P109的例3)略

例2(補充)已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F.

求證:四邊形AFCE是菱形.

證明:∵ 四邊形ABCD是平行四邊形,

∴ AE∥FC.

∴ ∠1=∠2.

又 ∠AOE=∠COF,AO=CO,

∴ △AOE≌△COF.

∴ EO=FO.

∴ 四邊形AFCE是平行四邊形.

又 EF⊥AC,

∴ AFCE是菱形(對角線互相垂直的平行四邊形是菱形).

※例3(選講) 已知:如圖,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F.

求證:四邊形CEHF為菱形.

略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形.

六、隨堂練習

1.填空:

(1)對角線互相平分的四邊形是 ;

(2)對角線互相垂直平分的四邊形是;

(3)對角線相等且互相平分的四邊形是;

(4)兩組對邊分別平行,且對角線 的四邊形是菱形.

2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm.

3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。

七、課后練習

1.下列條件中,能判定四邊形是菱形的是 ( ).

(A)兩條對角線相等 (B)兩條對角線互相垂直

(C)兩條對角線相等且互相垂直 (D)兩條對角線互相垂直平分

2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求證:四邊形MEND是菱形.

3.做一做:

設計一個由菱形組成的花邊圖案.花邊的長為15 cm,寬為4 cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點.畫出花邊圖形.

初三數學第一節課教案篇8

教學目標

1.使學生正確理解的意義,掌握的三要素;

2.使學生學會由上的已知點說出它所表示的數,能將有理數用上的點表示出來;

3.使學生初步理解數形結合的思想方法.

教學重點和難點

重點:初步理解數形結 設計

一、從學生原有認知結構提出問題

1.用“射線”能不能表示有理數?為什么?

2.你認為把“射線”做怎樣的改動,才能用來表示有理數呢?

待學生回答后,教師指出,這就是我們本節課所要學習的內容——.

二、講授新課

讓學生觀察掛圖——放大的溫度計,同時教師給予語言指導:利用溫度計可以測量溫度,在溫度計上有刻度,刻度上標有讀數,根據溫度計的液面的不同位置就可以讀出不同的數,從而得到所測的溫度.在0上10個刻度,表示10℃;在0下5個刻度,表示-5℃.

與溫度計類似,我們也可以在一條直線上畫出刻度,標上讀數,用直線上的點表示正數、負數和零.具體方法如下(邊說邊畫):

1.畫一條水平的直線,在這條直線上任取一點作為原點(通常取適中的位置,如果所需的都是正數,也可偏向左邊)用這點表示0(相當于溫度計上的0℃);

2.規定直線上從原點向右為正方向(箭頭所指的方向),那么從原點向左為負方向(相當于溫度計上0℃以上為正,0℃以下為負);

3.選取適當的長度作為單位長度,在直線上,從原點向右,每隔一個長度單位取一點,依次表示為1,2,3,…從原點向左,每隔一個長度單位取一點,依次表示為-1,-2,-3,…

提問:我們能不能用這條直線表示任何有理數?(可列舉幾個數)

在此基礎上,給出的定義,即規定了原點、正方向和單位長度的直線叫做.

進而提問學生:在上,已知一點P表示數-5,如果上的原點不選在原來位置,而改選在另一位置,那么P對應的數是否還是-5?如果單位長度改變呢?如果直線的正方向改變呢?

通過上述提問,向學生指出:的三要素——原點、正方向和單位長度,缺一不可.

三、運用舉例 變式練習

例1 畫一個,并在上畫出表示下列各數的點:

例2 指出上A,B,C,D,E各點分別表示什么數.

課堂練習

示出來.

2.說出下面上A,B,C,D,O,M各點表示什么數?

最后引導學生得出結論:正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,零用原點表示.

四、小結

指導學生閱讀教材后指出:是非常重要的數學工具,它使數和直線上的點建立了對應關系,它揭示了數和形之間的內在聯系,為我們研究問題提供了新的方法.

本節課要求同學們能掌握的三要素,正確地畫出,在此還要提醒同學們,所有的有理數都可用上的點來表示,但是反過來不成立,即上的點并不是都表示有理數,至于上的哪些點不能表示有理數,這個問題以后再研究.

五、作業

1.在下面上:

(1)分別指出表示-2,3,-4,0,1各數的點.

(2)A,H,D,E,O各點分別表示什么數?

2.在下面上,A,B,C,D各點分別表示什么數?

3.下列各小題先分別畫出,然后在上畫出表示大括號內的一組數的點:

(1){-5,2,-1,-3,0}; (2){-4,2.5,-1.5,3.5};

初三數學第一節課教案篇9

教學目標:

1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

2、在加權平均數中,知道權的差異對平均數的影響,并能用加權平均數解釋現實生活中一些簡單的現象。

3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的應用。

4、能利和計算器求一組數據的算術平均數。

教學重點:

體會平均數、中位數、眾數在具體情境中的意義和應用。

教學難點:

對于平均數、中位數、眾數在不同情境中的應用。

教學方法:

歸納教學法。

教學過程:

一、知識回顧與思考

1、平均數、中位數、眾數的概念及舉例。

一般地對于n個數X1,……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

眾數就是一組數據中出現次數最多的那個數據。

如3,2,3,5,3,4中3是眾數。

2、平均數、中位數和眾數的特征:

(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。

(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

3、算術平均數和加權平均數有什么區別和聯系:

算術平均數是加權平均數的一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

4、利用計算器求一組數據的平均數。

利用科學計算器求平均數的方法計算平均數。

二、例題講解:

例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:

每人銷售件數 1800 510 250 210 150 120

人數 113532

(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;

(2)假設銷售部負責人把每位營銷員的月銷售額定為平均數,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由。

例2,某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

三、課堂練習:復習題A組

四、小結:

1、掌握平均數、中位數與眾數的概念及計算。

2、理解算術平均數與加權平均數的聯系與區別。

五、作業:復習題B組、C組(選做)

初三數學第一節課教案篇10

一、 教學目標

1、 知識與技能目標

掌握有理數乘法法則,能利用乘法法則正確進行有理數乘法運算。

2、 能力與過程目標

經歷探索、歸納有理數乘法法則的過程,發展學生觀察、歸納、猜測、驗證等能力。

3、 情感與態度目標

通過學生自己探索出法則,讓學生獲得成功的喜悅。

二、 教學重點、難點

重點:運用有理數乘法法則正確進行計算。

難點:有理數乘法法則的探索過程,符號法則及對法則的理解。

三、 教學過程

1、 創設問題情景,激發學生的求知欲望,導入新課。

教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經放了3天,現在水深20米,問放水抗旱前水庫水深多少米?

學生:26米。

教師:能寫出算式嗎?學生:……

教師:這涉及有理數乘法運算法則,正是我們今天需要討論的問題

2、 小組探索、歸納法則

(1)教師出示以下問題,學生以組為單位探索。

以原點為起點,規定向東的方向為正方向,向西的方向為負方向。

① 2 ×3

2看作向東運動2米,×3看作向原方向運動3次。

結果:向 運動 米

2 ×3=

② -2 ×3

-2看作向西運動2米,×3看作向原方向運動3次。

結果:向 運動 米

-2 ×3=

③ 2 ×(-3)

2看作向東運動2米,×(-3)看作向反方向運動3次。

結果:向 運動 米

2 ×(-3)=

④ (-2) ×(-3)

-2看作向西運動2米,×(-3)看作向反方向運動3次。

結果:向 運動 米

(-2) ×(-3)=

(2)學生歸納法則

①符號:在上述4個式子中,我們只看符號,有什么規律?

(+)×(+)=( ) 同號得

(-)×(+)=( ) 異號得

(+)×(-)=( ) 異號得

(-)×(-)=( ) 同號得

②積的絕對值等于 。

③任何數與零相乘,積仍為 。

(3)師生共同用文字敘述有理數乘法法則。

3、 運用法則計算,鞏固法則。

(1)教師按課本P75 例1板書,要求學生述說每一步理由。

(2)引導學生觀察、分析例子中兩因數的關系,得出兩個有理數互為倒數,它們的積為 。

(3)學生做練習,教師評析。

(4)教師引導學生做例題,讓學生說出每步法則,使之進一步熟悉法則,同時讓學生總結出多因數相乘的符號法則。

初三數學第一節課教案篇11

教學目標:

1、知識與技能:

(1)通過學生熟悉的問題情景,以過探索有理數減法法則得出的過程,理解有理數減法法則的合理性。

(2)能熟練進行有理數的減法法則。

2、過程與方法

通過實例,歸納出有理數的減法法則,培養學生的邏輯思維能力和運算能力,通過減法到加法的轉化,讓學生初步體會人歸的數學思想。

重點、難點

1、重點:有理數減法法則及其應用。

2、難點:有理數減法法則的應用符號的改變。

教學過程:

一、創設情景,導入新課

1、有理數加法運算是怎樣做的?(-5)+3= —3+(—5)=

—3+(+5)=

2、-(-2)= -[-(+23)]=,+[-(-2)]=

3、2012的某天,北京市的最高氣溫是-20C,最低氣溫是-100C,這天北京市的溫差是多少?

導語:可見,有理數的減法運算在現實生活中也有著很廣泛的應用。(出示課題)

二、合作交流,解讀探究

1(-2)-(-10)=8=(-2)+8

2:珠穆朗瑪峰海拔高度為8848米,與吐魯番盆地海拔高度為-155米,珠穆朗瑪峰比吐魯番盆地高多少米?

3、通過以上列式,你能發現減法運算與加法運算的關系嗎?

(學生分組討論,大膽發言,總結有理數的減法法則)

減去一個數等于加上這個數的相反數

教師提問、啟發:(1)法則中的“減去一個數”,這個數指的是哪個數?“減去”兩字怎樣理解?(2)法則中的“加上這個數的相反數”“加上”兩字怎樣理解?“這個數的相反數”又怎樣理解?(3)你能用字母表示有理數減法法則嗎?

三、應用遷移,鞏固提高

1、P.24例1 計算:

(1) 0-(-3.18)(2)(-10)-(-6)(3)-

解:(1)0-(-3.18)=0+3.18=3.18

(2)(-10)-(-6)=(-10)+6=-4

(3)-=+=1

2、課內練習:P.241、2、3

3、游戲:兩人一組,用撲克牌做有理數減法運算游戲(每人27張牌,黑牌點數為正數,紅牌點數為負數,王牌點數為0。每人每次出一張牌,兩人輪流先出(先出者為被減數),先求出這兩張牌點數之差者獲勝,直至其中一人手中無牌為止)。

四、總結反思

(1) 有理數減法法則:減去一個數,等于加上這個數的相反數。

(2) 有理數減法的步驟:先變為加法,再改變減數的符號,最后按有理數加法法則計算。

五、作業

P.27習題1.4A組1、2、5、6

備選題

填空:比2小-9的數是 。

а比а+2小 。

若а小于0,е是非負數,則2а-3е 0。

初三數學第一節課教案篇12

一、教學目標

1.通過七巧板的制作,拼擺等活動,進一步豐富對平行,垂直及角等有關內容的認識,積累數學活動經驗。

2.能用適當的圖形和語言表示自己的思考結果。

二、教學重點和難點

本堂內容的重點是七巧板的制作和拼擺,難點是拼圖所要表現的幾何圖形,對已學過的平行,垂直及角等有關內容的有機聯系和語言表達。

三、教學手段

引導活動討論

引導:意在教師講解七巧板的歷史,七巧板制作的方法。

活動:人人參與制作七巧板,拼擺七巧板的圖案。

討論:對自己所拼擺的圖形與同伴交流,與全班同學交流(利用多媒體工具)與老師進行交流。

四、教學方法

啟發式教學

五、教學過程

1 創設情景,引入新課

先用多媒體顯示各種已拼擺好的動物,交通工具,植物等等然后介紹它是由怎樣的一副拼板拼擺而成的(不一定要七巧板)。緊接著就介紹七巧板的歷史,制作方法,讓學生制作一副七巧板,并涂上不同的顏色。

2 合作交流,探索新知

利用所做的七巧板拼出兩個不同的圖案,并與同伴交流,與全班同學交流,與老師交流。

(1) 你的拼圖用了什么形狀的板?你想表現什么?

(2) 在你的拼出的圖案中,指出三組互相平行或垂直的線段,并將它們間的關系表示出來。

(3) 在你拼出的圖案中,找出一個銳角、一個直角、一個鈍角,并將它們表示出來,它們分別是多少度。

通過學生的展示,教師作適時的評價,樹立榜樣,培養學生之間的競爭意識。

3 范例教學

介紹老師制作的3副游戲板,并用多媒體顯示十幾種的拼擺圖案,通過生動有趣的圖案,激發學生的創造欲望,提出你還有材料嗎?有信心憑自己的智慧制作一副游戲板嗎?意在充分發揮學生的創造能力、想象能力、合作交流能力(可由附近的同學四人小組制作完成)。

4 反饋練習

由四人小組制作的游戲板,拼擺二個不同圖案,利用多媒體,展示給全體同學,用語言表示拼圖所表現的內容,與所學的知識的聯系,呈現平行,垂直及角的有關知識。

5 歸納小結

通過制作七巧板及游戲板進一步學會了畫平行線段、垂線段、找線段中點的方法,通過拼擺豐富了對平行、垂直及角等有關內容的認識,積累數學活動的經驗,提高了空間觀念和觀察、分析、概括表達的能力。

六、練習設計

利用20cm20cm的硬紙板做一副游戲板,利用它拼出5個自己喜歡的圖案,并把它畫下來,布置教室的環境。

七、板書設計

4.7有趣的七巧板

(一)知識回顧 (三)例題解析 (五)課堂小結

(二)觀察發現 (四)課堂練習 練習設計

初三數學第一節課教案篇13

學習目標:

理解多項式乘法法則,會利用法則進行簡單的多項式乘法運算。

學習重點:

多項式乘法法則及其應用。

學習難點:

理解運算法則及其探索過程。

一、課前訓練:

(1)-3a2b+2b2+3a2b-14b2 = ,(2)- = ;

(3)3a2b2 ab3 = , (4) = ;

(5)- = ,(6) = 。

二、探索練習:

(1)如圖1大長方形,其面積用四個小長方形面積

表示為: ;

(2)大長方形的長為 ,寬為 ,要

計算其面積就是 ,其中包含的

運算為 。

由上面的問題可發現:( )( )=

多項式乘以多項式法則:多項式與多項式相乘,先用一個多項式的 以另一個多項式的每一項,再把所得的積 。

三.運用法則規范解題。

四.鞏固練習:

3.計算:① ,

4.計算:

五.提高拓展練習:

5.若 求m,n的值.

6.已知 的結果中不含 項和 項,求m,n的值.

7.計算(a+b+c)(c+d+e),你有什么發現?

六.晚間訓練:

(7) 2a2(-a)4 + 2a45a2 (8)

3、(1)觀察:4×6=24

14×16=224

24×26=624

34×36=1224

你發現其中的規律嗎?你能用代數式表示這一規律嗎?

(2)利用(1)中的規律計算124×126。

4、如圖,AB= ,P是線段AB上一點,分別以AP,BP為邊作正方形。

(1)設AP= ,求兩個正方形的面積之和S;

(2)當AP分別 時,比較S的大小。

99853 主站蜘蛛池模板: 广河县| 天峻县| 敦化市| 台湾省| 泸定县| 远安县| 萨嘎县| 斗六市| 建阳市| 黄石市| 石首市| 尼木县| 新巴尔虎左旗| 辽宁省| 黑山县| 句容市| 乌拉特中旗| 肥城市| 彰武县| 勃利县| 湟中县| 百色市| 常熟市| 渭源县| 平远县| 广平县| 贞丰县| 广丰县| 托克逊县| 凤凰县| 鄂托克旗| 岑溪市| 隆尧县| 仙居县| 普宁市| 田东县| 景洪市| 富平县| 马公市| 庆城县| 洛浦县|