人教版九年級上冊數學教案
九年級數學老師應該引導學生發現數學課的精彩之處,用心去體會、揣摩,發現其中的美。所有的九年級數學老師都必須知道如何寫九年級數學教案,你也來寫一篇和我們分享吧。你是否在找正準備撰寫“人教版九年級上冊數學教案”,下面小編收集了相關的素材,供大家寫文參考!
人教版九年級上冊數學教案篇1
配方法的基本形式
理解間接即通過變形運用開平方法降次解方程,并能熟練應用它解決一些具體問題.
通過復習可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面兩種形式的一元二次方程的解題步驟.
重點
講清直接降次有困難,如x2+6x-16=0的一元二次方程的解題步驟.
難點
將不可直接降次解方程化為可直接降次解方程的“化為”的轉化方法與技巧.
一、復習引入
(學生活動)請同學們解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老師點評:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9嗎?
二、探索新知
列出下面問題的方程并回答:
(1)列出的經化簡為一般形式的方程與剛才解題的方程有什么不同呢?
(2)能否直接用上面前三個方程的解法呢?
問題:要使一塊矩形場地的長比寬多6 m,并且面積為16 m2,求場地的長和寬各是多少?
(1)列出的經化簡為一般形式的方程與前面講的三道題不同之處是:前三個左邊是含有x的完全平方式而后二個不具有此特征.
既然不能直接降次解方程,那么,我們就應該設法把它轉化為可直接降次解方程的方程,下面,我們就來講如何轉化:
x2+6x-16=0移項→x2+6x=16
兩邊加(6/2)2使左邊配成x2+2bx+b2的形式→x2+6x+32=16+9
左邊寫成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以驗證:x1=2,x2=-8都是方程的根,但場地的寬不能是負值,所以場地的寬為2 m,長為8 m.
像上面的解題方法,通過配成完全平方形式來解一元二次方程的方法,叫配方法.
可以看出,配方法是為了降次,把一個一元二次方程轉化為兩個一元一次方程來解.
例1 用配方法解下列關于x的方程:
(1)x2-8x+1=0 (2)x2-2x-21=0
三、鞏固練習
教材第9頁 練習1,2.(1)(2).
四、課堂小結
本節課應掌握:
左邊不含有x的完全平方形式的一元二次方程化為左邊是含有x的完全平方形式,右邊是非負數,可以直接降次解方程的方程.
五、作業 教材第17頁 復習鞏固2,3.(1)(2).
人教版九年級上冊數學教案篇2
二次根式的乘除法
教學目標
1、使學生掌握二次根式的除法運算法則,會用它進行簡單的二次根式的除法運算。
2、使學生了解兩個二次根式的商仍然是一個二次根式或有理式。
3、使學生會將分母中含有一個二次根式的式子進行分母有理化。
4、經歷探索二次根式的除法運算法則過程,培養學生的探究精神和合作交流的習慣。
教學過程
一、創設問題情境
問題l 上一節課,我們采取什么方法來研究二次根式的乘法法則?
問題2 是否也有二次根式的除法法則呢?
問題2 兩個二次根式相除,怎樣進行呢?
二、加強合作,探索規律
讓抽象的問題具體化,這是我們研究抽象問題的一個重要方法、請同學們參考二次根式的乘法法則的研究,分組討論兩個二次根式相除,會有什么結論,并提出你的見解,然后其他小組同學補充,歸納為:
提問:
1、a和b有沒有限制?如果有限制,其取值范圍是什么?
2、= (a≥0,b>0)成立嗎?為什么?請舉例。
三、范例
例1、計算。
教學要求:(1)對于(1)可由教師解答示范;(2)對于(2)可由學生自己計算。
提問:
1、除了課本中的解答外,是否還有其他解法?如果有,請給出另外解法。
2、哪種方法更簡便?
例2、化簡:(要求分母不帶根號)
說明:二次根式的化簡要求滿足以下兩條:
(1)被開方數的因數是整數,因式是整式,也就是說“被開方數不含分母”。
(2)被開方數中不含能開得盡的因數或因式,也就是說“被開方數的每一個因數或因式的指數都小于2”。
把一個二次根式化簡的具體方法是:化去根號下的分母;并把被開方數中能開得盡方的因數或因式用它的算術平方根代替后移到根號外面。
四、做一做
化簡:
教學要點:(1)叫兩位同學板演,其他同學做完練習進行評價、(2)可用提問的方式引導學生探索其他解法。
五、課堂練習
P12 練習1、(3)、(4)
六、小結
本節課,我們學習了二次根式的除法法則,即= (a≥0,b>0),并利用它進行計算和化簡?;喴龅健氨婚_方數不含分母”和“被開方數的每一個因數或因式的指數都小于2”。具體辦法是:化去根號下的分母;并把被開方數中能開得盡方的因數或因式用它的算術平方根代替后移到根號外面、化簡的具體方法可用于計算。
七、作業
P14頁習題22.2 2(3)、3(3)
教學后記:
人教版九年級上冊數學教案篇3
弧、弦、圓心角
1.理解圓心角的概念和圓的旋轉不變性,會辨析圓心角.
2.掌握在同圓或等圓中,圓心角與其所對的弦、弧之間的關系,并能應用此關系進行相關的證明和計算.
重點
圓心角、弦、弧之間的相等關系及其理解應用.
難點
從圓的旋轉不變性出發,發現并論證圓心角、弦、弧之間的相等關系.
活動1 動手操作,得出性質及概念
1.在兩張透明紙片上,分別作半徑相等的⊙O和⊙O′.
2.將⊙O繞圓心旋轉任意角度后會出現什么情況?圓是中心對稱圖形嗎?
3.在⊙O中畫出兩條不在同一條直線上的半徑,構成一個角,這個角叫什么角?學生先說,教師補充完善圓心角的概念.
如圖,∠AOB的頂點在圓心,像這樣的角叫做圓心角.
4.判斷圖中的角是否是圓心角,說明理由.
活動2 繼續操作,探索定理及推論
1.在⊙O′中,作與圓心角∠AOB相等的圓心角∠A′O′B′,連接AB,A′B′,將兩張紙片疊在一起,使⊙O與⊙O′重合,固定圓心,將其中一個圓旋轉某個角度,使得OA與O′A′重合,在操作的過程中,你能發現哪些等量關系,理由是什么?請與小組同學交流.
2.學生會出現多對等量關系,教師給予鼓勵,然后,老師小結:在等圓中相等的圓心角所對的弧相等,所對的弦也相等.
3.在同一個圓中,相等的圓心角所對的弧相等嗎?所對的弦相等嗎?
4.綜合2,3,我們可以得到關于圓心角、弧、弦之間的關系定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.請用符號語言把定理表示出來.
5.分析定理:去掉“在同圓或等圓中”這個條件,行嗎?
6.定理拓展:教師引導學生類比定理,獨立用類似的方法進行探究:
(1)在同圓或等圓中,如果兩條弧相等,那么它們所對的圓心角,所對的弦也分別相等嗎?
(2)在同圓或等圓中,如果兩條弦相等,那么它們所對的圓心角,所對的弧也分別相等嗎?
綜上所述,在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對應的其余各組量也相等.
活動3 學以致用,鞏固定理
1.教材第84頁 例3.
多媒體展示例3,引導學生分析要證明三個圓心角相等,可轉化為證明所對的弧或弦相等.鼓勵學生用多種方法解決本題,培養學生解決問題的意識和能力,感悟轉化與化歸的數學思想.
活動4 達標檢測,反饋新知
教材第85頁 練習第1,2題.
活動5 課堂小結,作業布置
課堂小結
1.圓心角概念及圓的旋轉不變性和對稱性.
2.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應的其余各組量都分別相等,以及其應用.
3.數學思想方法:類比的數學方法,轉化與化歸的數學思想.
作業布置
1.如果兩個圓心角相等,那么( )
A.這兩個圓心角所對的弦相等
B.這兩個圓心角所對的弧相等
C.這兩個圓心角所對的弦的弦心距相等
D.以上說法都不對
2.如圖,AB和DE是⊙O的直徑,弦AC∥DE,若弦BE=3,求弦CE的長.
3.如圖,在⊙O中,C,D是直徑AB上兩點,且AC=BD,MC⊥AB,ND⊥AB,M,N在⊙O上.
(1)求證:︵AM=︵BN;
(2)若C,D分別為OA,OB中點,則︵AM=︵MN=︵BN成立嗎?
答案:1.D;2.3;3.(1)連接OM,ON,證明△MCO≌△NDO,得出∠MOA=∠NOB,得出︵AM=︵BN;(2)成立.
人教版九年級上冊數學教案篇4
二次根式的乘除法
教學目標
1、使學生掌握二次根式的乘法運算法則,會用它進行簡單的二次根式的乘法運算。
2、使學生掌握積的算術平方根的性質、會根據這一性質熟練地化簡二次根式.
3、培養學生合情推理能力。
教學過程
一、復習提問
1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?
2、二次根式有哪些性質?計算下列各題:
()2
二、提出問題,導入新知
1、試一試
計算: (1) _=( )=( )
=( )=( )
(2) _=( )=( )
=( )=( )
提問:觀察以上計算結果,你能發現什么?
2、思考
_與是否相等?
提問:(1)你將用什么方法計算?
(2)通過計算,你發現了什么?是否與前面試一試的結果一樣?
3、概括
讓學生觀察以上計算結果、歸納得出結論:_=(a≥0,b≥0)
注意,a,b必須都是非負數,上式才能成立。
三、舉例應用
例1、計算。
__
說明:二次根式運算的結果,應該盡量化簡、如(2)結果不要寫成,而應化簡成4。
等式_=(a≥0,b≥0),也可以寫成=_(a≥0,b≥0)
利用它可以進行二次根式的化簡,例如:=_==a2
例2、化簡
說明:(1)如果一個二次根式的被開方數中有的因式(或因數)能開得盡方,可以利用積的算術平方根的性質,將這些因式(或因數)開出來,從而將二次根式化簡;(2)在化簡時,一般先將被開方數進行因式分解或因數分解,然后就將能開得盡方的因式(偶次方因式)或因數用它們的算術平方根代替,移到根號外,也就是開出方來。
四、課堂練習
1、計算下列各式,將所得結果化簡:
_ _
2、P12頁練習1(1)、(2)、2
五、想一想
1、__與是否相等?a、b、c有什么限制?請舉一個例子加以說明。
2、等于__ 嗎?
3、化簡:
六、小結
這節課我們學習了以下知識:
1、二次根式的乘法運算法則,即_= (a≥0,b≥0)
2、積的算術平方根,等于積中各因式的算術平方根的積,即=_ (a≥0,b≥0)……)
要特別注意,以上(1)、(2)中,a、b必須都是非負數,如果a、b中出現了負數,等式就不成立、想一想,=_成立嗎?為什么?
3、應用(1)、(2)進行計算和化簡,在計算和化簡中,復習了性質=a(a≥ 0),加深了對非負數a的算術平方根的性質的認識
七、作業
習題22.2第2、(1),(2)題,第3、(1)、(2)題、第4題
人教版九年級上冊數學教案篇5
垂直于弦的直徑
理解垂徑定理并靈活運用垂徑定理及圓的概念解決一些實際問題.
通過復合圖形的折疊方法得出猜想垂徑定理,并輔以邏輯證明加予理解.
重點
垂徑定理及其運用.
難點
探索并證明垂徑定理及利用垂徑定理解決一些實際問題.
一、復習引入
①在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點所形成的圖形叫做圓.固定的端點O叫做圓心,線段OA叫做半徑.以點O為圓心的圓,記作“⊙O”,讀作“圓O”.
②連接圓上任意兩點的線段叫做弦,如圖線段AC,AB;
③經過圓心的弦叫做直徑,如圖線段AB;
④圓上任意兩點間的部分叫做圓弧,簡稱弧,以A,C為端點的弧記作“︵AC”,讀作“圓弧AC”或“弧AC”.大于半圓的弧(如圖所示︵ABC)叫做優弧,小于半圓的弧(如圖所示︵AC或︵BC)叫做劣弧.
⑤圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫做半圓.
⑥圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線.
二、探索新知
(學生活動)請同學按要求完成下題:
如圖,AB是⊙O的一條弦,作直徑CD,使CD⊥AB,垂足為M.
(1)如圖是軸對稱圖形嗎?如果是,其對稱軸是什么?
(2)你能發現圖中有哪些等量關系?說一說你理由.
(老師點評)(1)是軸對稱圖形,其對稱軸是CD.
(2)AM=BM,︵AC=︵BC,︵AD=︵BD,即直徑CD平分弦AB,并且平分︵AB及︵ADB.
這樣,我們就得到下面的定理:
垂直于弦的直徑平分弦,并且平分弦所對的兩條弧.
下面我們用邏輯思維給它證明一下:
已知:直徑CD、弦AB,且CD⊥AB垂足為M.
求證:AM=BM,︵AC=︵BC,︵AD=︵BD.
分析:要證AM=BM,只要證AM,BM構成的兩個三角形全等.因此,只要連接OA,OB或AC,BC即可.
證明:如圖,連接OA,OB,則OA=OB,
在Rt△OAM和Rt△OBM中,
∴Rt△OAM≌Rt△OBM,
∴AM=BM,
∴點A和點B關于CD對稱,
∵⊙O關于直徑CD對稱,
∴當圓沿著直線CD對折時,點A與點B重合,︵AC與︵BC重合,︵AD與︵BD重合.
∴︵AC=︵BC,︵AD=︵BD.
進一步,我們還可以得到結論:
平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
(本題的證明作為課后練習)
例1 有一石拱橋的橋拱是圓弧形,如圖所示,正常水位下水面寬AB=60 m,水面到拱頂距離CD=18 m,當洪水泛濫時,水面寬MN=32 m時是否需要采取緊急措施?請說明理由.
分析:要求當洪水到來時,水面寬MN=32 m是否需要采取緊急措施,只要求出DE的長,因此只要求半徑R,然后運用幾何代數解求R.
解:不需要采取緊急措施,
設OA=R,在Rt△AOC中,AC=30,CD=18,
R2=302+(R-18)2,
R2=900+R2-36R+324,
解得R=34(m),
連接OM,設DE=x,在Rt△MOE中,ME=16,
342=162+(34-x)2,
162+342-68x+x2=342,x2-68x+256=0,
解得x1=4,x2=64(不合題意,舍去),
∴DE=4,
∴不需采取緊急措施.
三、課堂小結(學生歸納,老師點評)
垂徑定理及其推論以及它們的應用.
四、作業布置
1.垂徑定理推論的證明.
2.教材第89,90頁 習題第8,9,10題.