教育巴巴 > 高中教案 > 數學教案 >

高三數學教案反思

時間: 新華 數學教案

教案的編寫有助于增強學生的專注度,激發他們的學習熱情,從而提升教學效果。下面小編給大家提供一些高三數學教案反思參考,希望對大家寫高三數學教案反思有幫助。

高三數學教案反思篇1

一、導入新課,探究標準方程

二、掌握知識,鞏固練習

練習:

1.說出下列圓的方程

⑴圓心(3,-2)半徑為5

⑵圓心(0,3)半徑為3

2.指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

3.判斷3x-4y-10=0和x2+y2=4的位置關系

4.圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)

練習:

1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

四、小結練習P771,2,3,4

五、作業P811,2,3,4

高三數學教案反思篇2

一、抓好基礎。

數學習題無非就是數學概念和數學思想的組合應用,弄清數學基本概念、基本定理、基本方法是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據。只有概念清楚,方法全面,遇到題目時,就能很快的得到解題方法,或者面對一個新的習題,就能聯想到我們平時做過的習題的方法,達到迅速解答。弄清基本定理是正確、快速解答習題的前提條件,特別是在立體幾何等章節的復習中,對基本定理熟悉和靈活掌握能使習題解答條理清楚、邏輯推理嚴密。反之,會使解題速度慢,邏輯混亂、敘述不清。

那么如何抓基礎呢?

1、看課本;

2、在做練習時遇到概念題是要對概念的內涵和外延再認識,注意從不同的側面去認識、理解概念。

3、理解定理的條件對結論的約束作用,反問:如果沒有該條件會使定理的結論發生什么變化?

4、歸納全面的解題方法。要積累一定的典型習題以保證解題方法的完整性。

5、認真做好我們網校同步課堂里面的每期的練習題,采用循環交替、螺旋式推進的方法,克服對基本知識基本方法的遺忘現象。

二、制定好計劃和奮斗目標。

復習數學時,要制定好計劃,不但要有本學期大的規劃,還要有每月、每周、每天的小計劃,計劃要與老師的復習計劃吻合,不能相互沖突,如按照老師的復習進度,今天復習到什么知識點,就應該在今天之內掌握該知識點,加深對該知識點的理解,研究該知識點考查的不同側面、不同角度。在每天的復習計劃里,要留有一定的時間看課本,看筆記,回顧過去知識點,思考老師當天講了什么知識,歸納當天所學的知識。可以說,每天的習題可以少做,但這些歸納、反思、回顧是必不可少的。望你在制定計劃時注意。

三、嚴防題海戰術,克服盲目做題而不注重歸納的現象。

做習題是為了鞏固知識、提高應變能力、思維能力、計算能力。學數學要做一定量的習題,但學數學并不等于做題,在各種考試題中,有相當的習題是靠簡單的知識點的堆積,利用公理化知識體系的演繹而就能解決的,這些習題是要通過做一定量的習題達到對解題方法的展移而實現的,但,隨著高考的改革,高考已把考查的重點放在創造型、能力型的考查上。因此要精做習題,注意知識的理解和靈活應用,當你做完一道習題后不訪自問:本題考查了什么知識點?什么方法?我們從中得到了解題的什么方法?這一類習題中有什么解題的通性?實現問題的完全解決我應用了怎樣的解題策略?只有這樣才會培養自己的悟性與創造性,開發其創造力。也將在遇到即將來臨的期末考試和未來的高考題目中那些綜合性強的題目時可以有一個科學的方法解決它。

數學是高考科目之一,故從初一開始就要認真地學習數學。進入高中以后,往往有不少同學不能適應數學學習,進而影響到學習的積極性,甚至成績一落千丈。出現這樣的情況,原因很多。但主要是由于同學們不了解高中數學教學內容特點與自身學習方法有問題等因素所造成的。有不少同學把提高數學成績的希望寄托在大量做題上。我認為這是不妥當的,我認為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做一定量的練習是必要的。

其次要掌握正確的學習方法。鍛煉自己學數學的能力,轉變學習方式,要改變單純接受的學習方式,要學會采用接受學習與探究學習、合作學習、體驗學習等多樣化的方式進行學習,要在教師的指導下逐步學會“提出問題—實驗探究—開展討論—形成新知—應用反思”的學習方法。這樣,通過學習方式由單一到多樣的轉變,我們在學習活動中的自主性、探索性、合作性就能夠得到加強,成為學習的主人。

高三數學教案反思篇3

一、教學目標

1、理解一次函數和正比例函數的概念,以及它們之間的關系。

2、能根據所給條件寫出簡單的一次函數表達式。

二、能力目標

1、經歷一般規律的探索過程、發展學生的抽象思維能力。

2、通過由已知信息寫一次函數表達式的過程,發展學生的數學應用能力。

三、情感目標1、通過函數與變量之間的關系的聯系,一次函數與一次方程的聯系,發展學生的數學思維。

2、經歷利用一次函數解決實際問題的過程,發展學生的數學應用能力。

四、教學重難點1、一次函數、正比例函數的概念及關系。2、會根據已知信息寫出一次函數的表達式。

五、教學過程

1、新課導入有關函數問題在我們日常生活中隨處可見,如彈簧秤有自然長度,在彈性限度內,隨著所掛物體的重量的&39;增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,請看:某彈簧的自然長度為3厘米,在彈性限度內,所掛物體的質量x每增加1千克、彈簧長度y增加0.5厘米。

(1)計算所掛物體的質量分別為1千克、2千克、3千克、4千克、5千克時彈簧的長度,

(2)你能寫出x與y之間的關系式嗎?

分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

2、做一做某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。你能寫出x與y之間的關系嗎?(y=1000.18x或y=100x)接著看下面這些函數,你能說出這些函數有什么共同的特點嗎?上面的幾個函數關系式,都是左邊是因變量,右邊是含自變量的代數式,并且自變量和因變量的指數都是一次。

3、一次函數,正比例函數的概念若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的&39;一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。

4、例題講解例1:下列函數中,y是x的一次函數的是()①y=x6;②y=;③y=;④y=7xA、①②③B、①③④C、①②③④D、②③④分析:這道題考查的是一次函數的概念,特別要強調一次函數自變量與因變量的指數都是1,因而②不是一次函數,答案為B

高三數學教案反思篇4

一、教學內容分析

本節課是《普通高中課程標準實驗教科書·數學5》(人教版)第二章數列第二節等差數列第一課時。

數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了“聯想”、“類比”的思想方法。

二、學生學習情況分析

教學內容針對的是高二的學生,經過高中一年的學習,大部分學生知識經驗已較為豐富,具備了較強的抽象思維能力和演繹推理能力,但也可能有一部分學生的基礎較弱,所以在授課時要從具體的生活實例出發,使學生產生學習的興趣,注重引導、啟發學生的積極主動的去學習數學,從而促進思維能力的進一步提高。

三、設計思想

1.教法

⑴誘導思維法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性。

⑵分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性。

⑶講練結合法:可以及時鞏固所學內容,抓住重點,突破難點。2.學法

引導學生首先從四個現實問題(數數問題、女子舉重獎項設置問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法。

用多種方法對等差數列的通項公式進行推導。

在引導分析時,留出“空白”,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

四、教學目標

通過本節課的學習使學生能理解并掌握等差數列的概念,能用定義判斷一個數列是否為等差數列,引導學生了解等差數列的通項公式的推導過程及思想,掌握等差數列的通項公式與前n項和公式,并能解決簡單的實際問題;并在此過程中培養學生觀察、分析、歸納、推理的能力,在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力。

五、教學重點與難點

重點:

①等差數列的概念。

②等差數列的通項公式的推導過程及應用。難點:

①理解等差數列“等差”的特點及通項公式的含義。②理解等差數列是一種函數模型。關鍵:

等差數列概念的理解及由此得到的“性質”的方法。

六、教學過程(略)

高三數學教案反思篇5

一、 知識梳理

1.三種抽樣方法的聯系與區別:

類別 共同點不同點相互聯系適用范圍

簡單隨機抽樣 都是等概率抽樣從總體中逐個抽取總體中個體比較少

系統抽樣 將總體均勻分成若干部分;按事先確定的規則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多

分層抽樣 將總體分成若干層,按個體個數的比例抽取在各層抽樣時采用簡單隨機抽樣或系統抽樣總體中個體有明顯差異

(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為

(2)系統抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規則抽取樣本.

(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數;③各層抽樣;④匯合成樣本.

(4) 要懂得從圖表中提取有用信息

如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數是矩形的中點的橫坐標③中位數的左邊與右邊的直方圖的面積相等,可以由此估計中位數的值

2.方差和標準差都是刻畫數據波動大小的數字特征,一般地,設一組樣本數據 ,,…,,其平均數為則方差,標準差

3.古典概型的概率公式:如果一次試驗中可能出現的結果有 個,而且所有結果都是等可能的,如果事件包含個結果,那么事件的概率P=

特別提醒:古典概型的兩個共同特點:

○1 ,即試中有可能出現的基本事件只有有限個,即樣本空間Ω中的元素個數是有限的;

○2 ,即每個基本事件出現的可能性相等。

4. 幾何概型的概率公式:P(A)=

特別提醒:幾何概型的特點:試驗的結果是無限不可數的;○2每個結果出現的可能性相等。

二、夯實基礎

(1)某單位有職工160名,其中業務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業務人員、管理人員、后勤人員的人數應分別為____________.

(2)某賽季,甲、乙兩名籃球運動員都參加了

11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,

則甲、乙兩名運動員得分的中位數分別為( )

A.19、13 B.13、19C.20、18D.18、20

(3)統計某校1000名學生的數學會考成績,

得到樣本頻率分布直方圖如右圖示,規定不低于60分為

及格,不低于80分為優秀,則及格人數是 ;

優秀率為 。

(4)在一次歌手大獎賽上,七位評委為歌手打出的分數如下:

9.4 8.49.49.99.69.49.7

去掉一個分和一個最低分后,所剩數據的平均值

和方差分別為( )

A.9.4, 0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016

(5)將一顆骰子先后拋擲2次,觀察向上的點數,則以第一次向上點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.

(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )

三、高考鏈接

07、某班50名學生在一次百米測試中,成績全部介于13秒與19秒之間,將測試結果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒

; 第六組,成績大于等于18秒且小于等于19秒.右圖

是按上述分組方法得到的頻率分布直方圖.設成績小于17秒

的學生人數占全班總人數的百分比為 ,成績大于等于15秒

且小于17秒的學生人數為 ,則從頻率分布直方圖中可分析

出 和分別為()

08、從某項綜合能力測試中抽取100人的成績,統計如表,則這100人成績的標準差為( )

分數 54321

人數 2010303010

09、在區間 上隨機取一個數x,的值介于0到之間的概率為().

08、現有8名奧運會志愿者,其中志愿者 通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

(Ⅰ)求 被選中的概率;(Ⅱ)求和不全被選中的概率.

高三數學教案反思篇6

高三第一階段復習,也稱“知識篇”。在這一階段,學生重溫高一、高二所學課程,全面復習鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學過的知識產生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關知識還沒有學到,不能進行縱向聯系,所以,學的知識往往是零碎和散亂,而在第一輪復習時,以章節為單位,將那些零碎的、散亂的知識點串聯起來,并將他們系統化、綜合化,把各個知識點融會貫通。對于普通高中的學生,第一輪復習更為重要,我們希望能做高考試題中一些基礎題目,必須側重基礎,加強復習的針對性,講求實效。

一、內容分析說明

1、本小節內容是初中學習的多項式乘法的繼續,它所研究的二項式的乘方的展開式,與數學的其他部分有密切的聯系:

(1)二項展開式與多項式乘法有聯系,本小節復習可對多項式的變形起到復習深化作用。

(2)二項式定理與概率理論中的二項分布有內在聯系,利用二項式定理可得到一些組合數的恒等式,因此,本小節復習可加深知識間縱橫聯系,形成知識網絡。

(3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

2、高考中二項式定理的試題幾乎年年有,多數試題的難度與課本習題相當,是容易題和中等難度的試題,考察的題型穩定,通常以選擇題或填空題出現,有時也與應用題結合在一起求某些數、式的近似值。

二、學校情況與學生分析

(1)我校是一所鎮普通高中,學生的基礎不好,記憶力較差,反應速度慢,普遍感到數學難學。但大部分學生想考大學,主觀上有學好數學的愿望。

(2)授課班是政治、地理班,學生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續從事某項數學活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學生好記筆記。

三、教學目標

復習課二項式定理計劃安排兩個課時,本課是第一課時,主要復習二項展開式和通項。根據歷年高考對這部分的考查情況,結合學生的特點,設定如下教學目標:

1、知識目標:

(1)理解并掌握二項式定理,從項數、指數、系數、通項幾個特征熟記它的展開式。

(2)會運用展開式的通項公式求展開式的特定項。

2、能力目標:

(1)教給學生怎樣記憶數學公式,如何提高記憶的持久性和準確性,從而優化記憶品質。記憶力是一般數學能力,是其它能力的基礎。

(2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數學思想方法。

3、情感目標:通過對二項式定理的復習,使學生感覺到能掌握數學的部分內容,樹立學好數學的信心。有意識地讓學生演練一些歷年高考試題,使學生體驗到成功,在明年的高考中,他們也能得分。

高三數學教案反思篇7

一 教材分析

本節知識是必修五第一章《解三角形》的第一節內容,與初中學習的三角形的邊和角的基本關系有密切的聯系與判定三角形的全等也有密切聯系,在日常生活和工業生產中也時常有解三角形的問題,而且解三角形和三角函數聯系在高考當中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。

根據上述教材內容分析,考慮到學生已有的認知結構心理特征及原有知識水平,制定如下教學目標:

認知目標:在創設的問題情境中,引導學生發現正弦定理的內容,推證正弦定理及簡單運用正弦定理與三角形的內角和定理解斜三角形的兩類問題。

能力目標:引導學生通過觀察,推導,比較,由特殊到一般歸納出正弦定理,培養學生的創新意識和觀察與邏輯思維能力,能體會用向量作為數形結合的工具,將幾何問題轉化為代數問題。

情感目標:面向全體學生,創造平等的教學氛圍,通過學生之間、師生之間的交流、合作和評價,調動學生的主動性和積極性,給學生成功的體驗,激發學生學習的興趣。

教學重點:正弦定理的內容,正弦定理的證明及基本應用。

教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數。

二 教法

根據教材的內容和編排的特點,為是更有效地突出重點,空破難點,以學業生的發展為本,遵照學生的認識規律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想, 采用探究式課堂教學模式,即在教學過程中,在教師的啟發引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發現”為基本探究內容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當的提示和指導。突破難點的方法:抓住學生的能力線聯系方法與技能使學生較易證明正弦定理,另外通過例題和練習來突破難點

三 學法:

指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結合,體現學生的主體地位,增強學生由特殊到一般的數學思維能力,形成了實事求是的科學態度,增強了鍥而不舍的求學精神。

四 教學過程

第一:創設情景,大概用2分鐘

第二:實踐探究,形成概念,大約用25分鐘

第三:應用概念,拓展反思,大約用13分鐘

(一)創設情境,布疑激趣

“興趣是的老師”,如果一節課有個好的開頭,那就意味著成功了一半,本節課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。

(二)探尋特例,提出猜想

1.激發學生思維,從自身熟悉的特例(直角三角形)入手進行研究,發現正弦定理。

2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

3.讓學生總結實驗結果,得出猜想:

在三角形中,角與所對的邊滿足關系

這為下一步證明樹立信心,不斷的使學生對結論的認識從感性逐步上升到理性。

(三)邏輯推理,證明猜想

1.強調將猜想轉化為定理,需要嚴格的理論證明。

2.鼓勵學生通過作高轉化為熟悉的直角三角形進行證明。

3.提示學生思考哪些知識能把長度和三角函數聯系起來,繼而思考向量分析層面,用數量積作為工具證明定理,體現了數形結合的數學思想。

4.思考是否還有其他的方法來證明正弦定理,布置課后練習,提示,做三角形的外接圓構造直角三角形,或用坐標法來證明

(四)歸納總結,簡單應用

1.讓學生用文字敘述正弦定理,引導學生發現定理具有對稱和諧美,提升對數學美的享受。

2.正弦定理的內容,討論可以解決哪幾類有關三角形的問題。

3.運用正弦定理求解本節課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發學生知識后用于實際的價值觀。

(五)講解例題,鞏固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1簡單,結果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

2. 例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2較難,使學生明確,利用正弦定理求角有兩種可能。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學生。

(六)課堂練習,提高鞏固

1.在△ABC中,已知下列條件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列條件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

學生板演,老師巡視,及時發現問題,并解答。

(七)小結反思,提高認識

通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?

1.用向量證明了正弦定理,體現了數形結合的數學思想。

2.它表述了三角形的邊與對角的正弦值的關系。

3.定理證明分別從直角、銳角、鈍角出發,運用分類討論的思想。

(從實際問題出發,通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調研究性學習方法,注重學生的主體地位,調動學生積極性,使數學教學成為數學活動的教學。)

(八)任務后延,自主探究

如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發現正弦定理不適用了,那么自然過渡到下一節內容,余弦定理。布置作業,預習下一節內容。

五 板書設計

板書設計可以讓學生一目了然本節課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。

高三數學教案反思篇8

集合的含義與表示

一.教材分析:集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,

一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合

論及其所反映的數學思想,在越來越廣泛的領域種得到應用。

二.目標分析:

教學重點.難點

重點:集合的含義與表示方法.難點:表示法的恰當選擇.

教學目標

l.知識與技能

(1)通過實例,了解集合的含義,體會元素與集合的屬于關系;

(2)知道常用數集及其專用記號;(3)了解集合中元素的確定性.互異性.無序性;

(4)會用集合語言表示有關數學對象;

2.過程與方法

(1)讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.

(2)讓學生歸納整理本節所學知識.

3.情感.態度與價值觀

使學生感受到學習集合的必要性,增強學習的積極性.

三.教法分析

1.教學方法:學生通過閱讀教材,自主學習.思考.交流.討論和概括,從而更好地完成本節課的教學目標.2.教學手段:在教學中使用投影儀來輔助教學.

四.過程分析

(一)創設情景,揭示課題

1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學校、現在的班級。

(2)問題:像“家庭”、“學校”、“班級”等,有什么共同特征?

引導學生互相交流.與此同時,教師對學生的活動給予評價.

2.活動:(1)列舉生活中的集合的例子;(2)分析、概括各實例的共同特征

由此引出這節要學的內容。

設計意圖:既激發了學生濃厚的學習興趣,又為新知作好鋪墊

(二)研探新知,建構概念

1.教師利用多媒體設備向學生投影出下面7個實例:

(1)1—20以內的所有質數;(2)我國古代的四大發明;

(3)所有的安理會常任理事國;(4)所有的正方形;

(5)海南省在20__年9月之前建成的所有立交橋;

(6)到一個角的兩邊距離相等的所有的點;

(7)國興中學20__年9月入學的高一學生的全體.

2.教師組織學生分組討論:這7個實例的共同特征是什么?

3.每個小組選出——位同學發表本組的討論結果,在此基礎上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.

4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.

設計意圖:通過實例讓學生感受集合的概念,激發學習的興趣,培養學生樂于求索的精神

(三)質疑答辯,發展思維

1.教師引導學生閱讀教材中的相關內容,思考:集合中元素有什么特點?并注意個別輔導,解答學生疑難.使學生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構成兩個集合的元素是一樣的,我們就稱這兩個集合相等.

2.教師組織引導學生思考以下問題:

判斷以下元素的全體是否組成集合,并說明理由:

(1)大于3小于11的偶數;(2)我國的小河流.讓學生充分發表自己的建解.

3.讓學生自己舉出一些能夠構成集合的例子以及不能構成集合的例子,并說明理由.教師對學生的學習活動給予及時的評價.

4.教師提出問題,讓學生思考

b是(1)如果用A表示高—(3)班全體學生組成的集合,用a表示高一(3)班的一位同學,

高一(4)班的一位同學,那么a,b與集合A分別有什么關系?由此引導學生得出元素與集合的關系有兩種:屬于和不屬于.

如果a是集合A的元素,就說a屬于集合A,記作a?A.

如果a不是集合A的元素,就說a不屬于集合A,記作a?A.

(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關系分別是什么?請用數學符號分別表示.

(3)讓學生完成教材第6頁練習第1題.

5.教師引導學生回憶數集擴充過程,然后閱讀教材中的相交內容,寫出常用數集的記號.并讓學生完成習題1.1A組第1題.

6.教師引導學生閱讀教材中的相關內容,并思考.討論下列問題:

(1)要表示一個集合共有幾種方式?

(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?

(3)如何根據問題選擇適當的集合表示法?

使學生弄清楚三種表示方式的優缺點和體會它們存在的必要性和適用對象。

設計意圖:明確集合元素的三大特性,使學生弄清楚三種表示方式的優缺點,從而突破難點。

(四)鞏固深化,反饋矯正

教師投影學習:

(1)用自然語言描述集合{1,3,5,7,9};(2)用例舉法表示集合A?{x?N1?x?8}

(3)試選擇適當的方法表示下列集合:教材第6頁練習第2題.

設計意圖:使學生及時鞏固所學新知,體會三種表示方式存在的必要性和適用對象

(五)歸納小結,布置作業

小結:在師生互動中,讓學生了解或體會下例問題:

1.本節課我們學習了哪些知識內容?2.你認為學習集合有什么意義?

3.選擇集合的表示法時應注意些什么?

設計意圖:通過回顧,對概念的發生與發展過程有清晰的認識,回顧集合元素的三大特性及集合的三種表示方式。

作業:1.課后書面作業:第13頁習題1.1A組第4題.

2.元素與集合的關系有多少種?如何表示?類似地集合與集合間的關系又有多少種

呢?如何表示?請同學們通過預習教材.

五.板書分析

高三數學教案反思篇9

一、教材與學情分析

《隨機抽樣》是人教版職教新教材《數學(必修)》下冊第六章第一節的內容,“簡單隨機抽樣”是“隨機抽樣”的基礎,“隨機抽樣”又是“統計學‘的基礎,因此,在“統計學”中,“簡單隨機抽樣”是基礎的基礎針對這樣的情況,我做了如下的教學設想。

二、教學設想

(一)教學目標:

(1)理解抽樣的必要性,簡單隨機抽樣的概念,掌握簡單隨機抽樣的兩種方法;

(2)通過實例分析、解決,體驗簡單隨機抽樣的科學性及其方法的可靠性,培養分析問題,解決問題的能力;

(3)通過身邊事例研究,體會抽樣調查在生活中的應用,培養抽樣思考問題意識,養成良好的個性品質。

(二)教學重點、難點

重點:掌握簡單隨機抽樣常見的兩種方法(抽簽法、隨機數表法)

難點:理解簡單隨機抽樣的科學性,以及由此推斷結論的可靠性

為了突出重點,突破難點,達到預期的教學目標,我再從教法、學法上談談我的教學思路及設想。

下面我再具體談談教學實施過程,分四步完成。

三、教學過程

(一)設置情境,提出問題

〈屏幕出示〉例1:請問下列調查宜“普查”還是“抽樣”調查?

A、一鍋水餃的味道

B、旅客上飛機前的安全檢查

C、一批炮彈的殺傷半徑

D、一批彩電的質量情況

E、美國總統的民意支持率

學生討論后,教師指出生活中處處有“抽樣”,并板書課題——____抽樣

「設計意圖」

生活中處處有“抽樣”調查,明確學習“抽樣”的必要性。

(二)主動探究,構建新知

〈屏幕出示〉例2:語文老師為了了解電(1)班同學對某首詩的背誦情況,應采用下列哪種抽查方式?為什么?

A、在班級12名班委名單中逐個抽查5位同學進行背誦

B、在班級45名同學中逐一抽查10位同學進行背誦

先讓學生分析、選擇B后,師生一起歸納其特征:

(1)不放回逐一抽樣,

(2)抽樣有代表性(個體被抽到可能性相等),

學生體驗B種抽樣的科學性后,教師指出這是簡單隨機抽樣,并復習初中講過的有關概念,最后教師補充板書課題——(簡單隨機)抽樣及其定義。

從例1、例2中的正反兩方面,讓學生體驗隨機抽樣的科學性。這是突破教學難點的重要環節之一。

復習基本概念,如“總體”、“個體”、“樣本”、“樣本容量”等。

〈屏幕出示〉例4我們班有44名學生,現從中抽出5名學生去參加學生座談會,要使每名學生的機會均等,我們應該怎么做?談談你的想法。

先讓學生獨立思考,然后分小組合作學習,最后各小組推薦一位同學發言,最后師生一起歸納“抽簽法”步驟:

(1)編號制簽

(2)攪拌均勻

(3)逐個不放回抽取n次。教師板書上面步驟。

請一位同學說說例3采用“抽簽法”的實施步驟。

「設計意圖」

1、反饋練習落實知識點突出重點。

2、體會“抽簽法”具有“簡單、易行”的優點。

〈屏幕出示〉例5、第07374期特等獎號碼為08+25+09+21+32+27+13,本期銷售金額19872409元,中獎金額500萬。

提問:特等獎號碼如何確定呢?彩票中獎號碼適合用抽簽法確定嗎?

讓學生觀看觀看電視搖獎過程,分析抽簽法的局限性,從而引入隨機數表法。教師出示一份隨機數表,并介紹隨機數表,強調數表上的數字都是隨機的,各個數字出現的可能性均等,結合上例讓學生討論隨機數表法的步驟,最后師生一起歸納步驟:

(1)編號

(2)在隨機數表上確定起始位置

(3)取數。教師板書上面步驟。

請一位同學說說例3采用“隨機數表法”的實施步驟。

高三數學教案反思篇10

一、教材分析

1、教材內容

本節課是蘇教版第二章《函數概念和基本初等函數Ⅰ》2、1、3函數簡單性質的第一課時,該課時主要學習增函數、減函數的定義,以及應用__解決一些簡單問題、

2、教材所處地位、作用

函數的性質是研究函數的基石,函數的單調性是首先研究的一個性質、通過對本節課的學習,讓學生領會函數單調性的概念、掌握證明函數單調性的步驟,并能運用單調性知識解決一些簡單的實際問題、通過上述活動,加深對函數本質的認識、函數的單調性既是學生學過的函數概念的延續和拓展,又是后續研究指數函數、對數函數、三角函數的單調性的基礎、此外在比較數的大小、函數的定性分析以及相關的數學綜合問題中也有廣泛的應用,它是整個高中數學中起著承上啟下作用的核心知識之一、從方法__的角度分析,本節教學過程中還滲透了探索發現、數形結合、歸納轉化等數學思想方法、

3、教學目標

(1)知識與技能:使學生理解函數單調性的概念,掌握判別函數單調性的方法;

(2)過程與方法:從實際生活問題出發,引導學生自主探索函數單調性的概念,應用圖象和單調性的__解決函數單調性問題,讓學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力

(3)情感態度價值觀:讓學生體驗數學的科學功能、符號功能和工具功能,培養學生直覺觀察、探索發現、科學論證的良好的數學思維品質

4、重點與難點

教學重點:

(1)函數單調性的概念;

(2)運用函數單調性的定義判斷一些函數的單調性

教學難點:

(1)函數單調性的知識形成;

(2)利用函數圖象、單調性的定義判斷和證明函數的單調性

二、教法分析與學法指導

本節課是一節較為抽象的數學概念課,因此,教法上要注意:

1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主體參與的積極性

2、在運用__解題的過程中,緊扣定義中的關鍵語句,通過學生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決

3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用、具體體現在設問、講評和規范書寫等方面,要教會學生清晰的思維、嚴謹的推理,并成功地完成書面表達

4、采用投影儀、多媒體等現代教學手段,增大教學容量和直觀性

在學法上:

1、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和解決問題的能力

2、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的一個飛躍

99941 主站蜘蛛池模板: 普洱| 文水县| 扎鲁特旗| 江山市| 巩义市| 延边| 东港市| 临桂县| 林芝县| 龙胜| 西乌珠穆沁旗| 宜兴市| 海兴县| 巴彦县| 晋江市| 长丰县| 黄梅县| 安远县| 新巴尔虎右旗| 华蓥市| 洛宁县| 泗水县| 宁海县| 台湾省| 板桥市| 郁南县| 阜新市| 砚山县| 象山县| 共和县| 丹阳市| 洛南县| 南安市| 崇信县| 平和县| 会泽县| 留坝县| 南宫市| 朝阳市| 黄骅市| 昌邑市|