教育巴巴 > 高中教案 > 數學教案 >

高中數學教案合集

時間: 新華 數學教案

編寫教案有助于教師更好地把握教學目標和教學內容,提高教學質量和效果。想知道如何寫出優秀的高中數學教案合集嗎?這里為大家分享高中數學教案合集,快來學習吧!

高中數學教案合集篇1

一、教學目標

掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學生初步理解公式的結構及其功能,為建立其它和(差)公式打好基礎.

二、教學重、難點

1.教學重點:通過探索得到兩角差的余弦公式;

2.教學難點:探索過程的組織和適當引導,這里不僅有學習積極性的問題,還有探索過程必用的基礎知識是否已經具備的問題,運用已學知識和方法的能力問題,等等.

三、學法與教學用具

1.學法:啟發式教學

2.教學用具:多媒體

四、教學設想:

(一)導入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?

根據我們在第一章所學的&39;知識可知我們的猜想是錯誤的!下面我們就一起探討兩角差的余弦公式

(二)探討過程:

在第一章三角函數的學習當中我們知道,在設角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標,也可以用角的余弦線來表示,大家思考:怎樣構造角和角?(注意:要與它們的正弦線、余弦線聯系起來.)

展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關系探索與__之間的關系,由此得到,認識兩角差余弦公式的結構.

思考:我們在第二章學習用向量的知識解決相關的幾何問題,兩角差余弦公式我們能否用向量的知識來證明?

提示:

1、結合圖形,明確應該選擇哪幾個向量,它們是怎樣表示的?

2、怎樣利用向量的數量積的概念的計算公式得到探索結果?

展示多媒體課件

比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處.

思考:再利用兩角差的余弦公式得出

(三)例題講解

例1、利用和、差角余弦公式求、的值.

解:分析:把、構造成兩個特殊角的和、差.

點評:把一個具體角構造成兩個角的和、差形式,有很多種構造方法,例如:,要學會靈活運用.

例2、已知,是第三象限角,求的值.

解:因為,由此得

又因為是第三象限角,所以

所以

點評:注意角、的象限,也就是符號問題.

(四)小結:本節我們學習了兩角差的余弦公式,首先要認識公式結構的特征,了解公式的推導過程,熟知由此衍變的兩角和的余弦公式.在解題過程中注意角、的象限,也就是符號問題,學會靈活運用.

高中數學教案合集篇2

自我介紹:;我姓鞠,今后我將和大家一起學習高中數學課程,手機;討論數學:;相信大家對于高中學習都充滿著好奇,和初中相比,高;我們不急于上新課,我想和大家聊一聊數學,一起來思;一、為什么要學習數學?;數學是科學的大門和鑰匙;馬克思說:一種科學只有在成功地運用數學時,才算達;著名數學家華羅庚在《人民日報》精彩描述:數學在“;大家知道海王星是怎高中數學開學第一課

自我介紹:

我姓鞠,今后我將和大家一起學習高中數學課程,手機:????,QQ:????。告訴我的通訊方式是希望能拓寬與大家交流的平臺。希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者,成為朋友。

討論數學:

相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節課

我們不急于上新課,我想和大家聊一聊數學,一起來思考為什么要學習數學及如何學好數學這兩個問題。

一、為什么要學習數學?

數學是科學的大門和鑰匙。

馬克思說:一種科學只有在成功地運用數學時,才算達到完善的地步。

著名數學家華羅庚在《人民日報》精彩描述:數學在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁”等方面無處不有重要貢獻。

大家知道海王星是怎么發現的,冥王星又是怎么被請出十大行星行列的???

其實在我們的周圍有很多事情都是可以用數學可以來解決的,無非很多人都沒有用數學的眼光來看待。

當然,我們學習的數學只是數學學科體系中很基礎,很小的一部分。現在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:“讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數學使人聰明?”,也有人形象地稱數學是思維的體操。下面我們通過具體的例子來體驗一下某些數學思想方法和思維方式。

故事一:據說國際象棋是古印度的一位宰相發明的。國王很欣賞他的這項發明,問他的宰相要什么賞賜。聰明的宰相說,“我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數加倍,??如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。”國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發現即使把全國所有的谷子抬來也遠遠不夠。

數學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。

數學思想:退到最簡單、最特殊的地方。

故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就不用這一現象中受到啟發,很好地解決了這一問題,你認為他會怎么做呢?

渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現了數學學習中經常用到的發散式思維。在數學學習中,既要有集中式思維又要有發散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯系思維方式,表現為對解題方法的模仿和繼承;而發散式思維即對問題開拓、創新,表現為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。

學數學有利于培養人的思維品質:結構意識、整體意識、抽象意識、化歸意識、優化意識、反思意識,盡管數學在培養學生的這些思維品質方面和其他學科存在著交集,但數學在其中的地位是無法被代替的。總之,學習數學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創造??

二、如何學好高中數學

與初中數學相比,高中數學更注重提高數學思維能力,要求同學們在學習數學和運用數學解決問題時,不斷地經歷直觀感知、觀察發現、歸納類比、空間想象、抽象概括、符號表示、運算求解、數據處理、演繹證明、反思與建構等思維過程。高一數學一開始便在必修1中觸及集合語言、函數模型,在必修2中涉及空間立體圖形、坐標法、文字符號圖形語言的轉換,相對初中數學而言,抽象程度高,邏輯推理強,知識難度大,同學們會感到難學,認為數學神秘莫測,有些章節如聽天書,從而可能會產生畏懼感。我認為學好高中數學要注意以下幾點:

第一:培養數學興趣

只有愛好某項事業或專業才能對它產生興趣,才能激發學習、工作和自覺性與積極性;很難說哪個人天生愛好數學,愛好都是在生活和學習中逐漸產生的。如果你認為數學枯燥、乏味,那么你不可能真正學好數學,只有在學習中,逐漸發現數學的簡單美、對稱美以及數學高度的嚴謹與和諧,才能在學習過程中喜歡這門學科,才能產生興趣。愛因斯坦說:興趣是最好的老師;在諸多非智力因素中,興趣處于一種特殊的地位,她可以激發一定的情感,喚起某種動機,培養人的意志,也可以改變人的態度。

第二:要改變一個觀念。

有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現在你們是在同一個起跑線上的,無所謂基礎好不好。今后的學習中,我會照顧大多數同學的數學基礎。

第三:養成良好的學習習慣

㈠課前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。

㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。

㈢關于作業。絕對不允許有抄作業的情況發生。如果我發現有誰抄作業,那么既然他這樣喜歡抄,我就要你把當天的作業多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養成多想多問的習慣。

㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數學成績提高。

好的開始是成功的一半,新的學期開始了,請大家調整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。

高中數學教案合集篇3

第二教時教材:

1、復習

2、《課課練》及《教學與測試》中的有關內容目的:復習集合的概念;鞏固已經學過的內容,并加深對集合的理解。

過程:

一、復習:(結合提問)

1.集合的概念含集合三要素

2.集合的表示、符號、常用數集、列舉法、描述法

3.集合的分類:有限集、無限集、空集、單元集、二元集

4.關于“屬于”的概念

二、例一用適當的方法表示下列集合:

1.平方后仍等于原數的數集解:{x x2=x}={0,1}

2.比2大3的數的集合解:{x x=2+3}={5}

3.不等式x2-x-6<0的整數解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}

4.過原點的直線的集合解:{(x,y)y=kx}

5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}

6.使函數y=有意義的實數x的集合解:{x x2+x-60}={x x2且x3,xR}

三、處理蘇大《教學與測試》第一課含思考題、備用題

四、處理《課課練》

五、作業《教學與測試》第一課練習題

高中數學教案合集篇4

教學目標:明確等差數列的定義,掌握等差數列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養學生觀察能力,進一步提高學生推理、歸納能力,培養學生的&39;應用意識.

教學重點:1.等差數列的概念的理解與掌握.2.等差數列的通項公式的推導及應用.教學難點:等差數列“等差”特點的理解、把握和應用.教學過程:

Ⅰ.復習回顧上兩節課我們共同學習了數列的定義及給出數列的兩種方法——通項公式和遞推公式.這兩個公式從不同的角度反映數列的特點,下面我們看這樣一些例子

Ⅱ.講授新課10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,請同學們仔細觀察這些數列有什么共同的&39;特點?是否可以寫出這些數列的通項公式?(引導學生積極思考,努力尋求各數列通項公式,并找出其共同特點)它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數.也就是說,這些數列均具有相鄰兩項之差“相等”的特點.具有這種特點的數列,我們把它叫做等差數列.

1.定義等差數列:一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.

2.等差數列的通項公式等差數列定義是由一數列相鄰兩項之間關系而得.若一等差數列{an}的首項是a1,公差是d,則據其定義可得:(n-1)個等式若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d即:an=a1+(n-1)d當n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N-時上述公式都成立,所以它可作為數列{an}的通項公式.看來,若已知一數列為等差數列,則只要知其首項a1和公差d,便可求得其通項.由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d

請同學們來思考這樣一個問題.如果在a與b中間插入一個數A,使a、A、b成等差數列,那么A應滿足什么條件?由等差數列定義及a、A、b成等差數列可得:A-a=b-A,即:a=.反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數列.總之,A=a,A,b成等差數列.如果a、A、b成等差數列,那么a叫做a與b的等差中項.例題講解[

例1]在等差數列{an}中,已知a5=10,a15=25,求a25.

思路一:根據等差數列的已知兩項,可求出a1和d,然后可得出該數列的通項公式,便可求出a25.

思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關系式an=am+(n-m)d.這樣可簡化運算.思路三:若注意到在等差數列{an}中,a5,a15,a25也成等差數列,則利用等差中項關系式,便可直接求出a25的值.

[例2](1)求等差數列8,5,2…的第20項.分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項

答案:這個數列的第20項為-49.(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?分析:要想判斷-401是否為這數列的一項,關鍵要求出通項公式,看是否存在正整數n,可使得an=-401.∴-401是這個數列的第100項.

Ⅲ.課堂練習

1.(1)求等差數列3,7,11,……的&39;第4項與第10項.

(2)求等差數列10,8,6,……的第20項.(3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由.2.在等差數列{an}中,

(1)已知a4=10,a7=19,求a1與d;

(2)已知a3=9,a9=3,求a12.

Ⅳ.課時小結通過本節學習,首先要理解與掌握等差數列的定義及數學表達式:an-an-1=d(n≥2).其次,要會推導等差數列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應用.最后,還要注意一重要關系式:an=am+(n-m)d的理解與應用以及等差中項。

Ⅴ.課后作業課本P39習題1,2,3,4

高中數學教案合集篇5

1、教學目標:

一、借助單位圓理解任意角的三角函數的定義。

二、根據三角函數的定義,能夠判斷三角函數值的符號。

三、通過學生積極參與知識的"發現"與"形成"的過程,培養合情猜測的能力,從中感悟數學概念的嚴謹性與科學性。

四、讓學生在任意角三角函數概念的形成過程中,體會函數思想,體會數形結合思想。

2、教學重點與難點:

重點:任意角的正弦、余弦、正切的定義;三角函數值的符號。

難點:任意角的三角函數概念的建構過程。

授課過程:

一、引入

在我們的現實世界中的許多運動變化都有循環往復、周而復始的現象,這種變化規律稱為周期性。如何用數學的方法來刻畫這種變化?從這節課開始,我們要來學習刻畫這種規律的數學模型之一――三角函數。

二、創設情境

三角函數是與角有關的函數,在學習任意角概念時,我們知道在直角坐標系中研究角,可以給學習帶來許多方便,比如我們可以根據角終邊的位置把它們進行歸類,現在大家考慮:若在直角坐標系中來研究銳角,則銳角三角函數又可怎樣定義呢?

學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的坐標。

問題:

1、銳角三角函數能否表示成第二種比值方式?

2、點P能否取在終邊上的其它位置?為什么?

3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的函數依舊表示一個比值,不過其分母為1而已。

練習:計算的各三角函數值。

三、任意角的三角函數的定義

角的概念已經推廣道了任意角,那么三角函數的定義在任意角的范圍里改怎么定義呢?

嘗試:根據銳角三角函數的定義,你能嘗試著給出任意角三角函數的定義嗎?

評價學生給出的定義。給出任意角三角函數的定義。

四、解析任意角三角函數的定義

三角函數首先是函數。你能從函數觀點解析三角函數嗎?(定義域)

對于確定的角a,上面三個函數值都是唯一確定的,所以,正弦、余弦、正切都是以角為自變量,以單位圓上點的坐標或坐標的比值為函數值的函數,我們將它們統稱為三角函數。由于角的集合和實數集之間可以建立一一對應的關系,三角函數可以看成是自變量為實數的函數。

五、三角函數的應用。

1、已知角,求a的三角函數值。

2、已知角a終邊上的一點P(-3,-4),求各三角函數值。

以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:

1、已知角如何求三角函數值?

2、利用角a的終邊上任意一點的坐標也可以定義三角函數,你能給出這種定義嗎?(這種定義與課本中給出的定義各有什么特點?)

3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函數值。

4、探究:三角函數的值在各象限的符號。

六、小結及作業

教案設計說明:

新教材的教學理念之一是讓學生去體驗新知識的發生過程,這節《任意角三角函數》的教案,主要圍繞這一點來設計。

首先,角的概念推廣了,那么銳角三角函數的定義是否也該推廣到任意角的三角函數的定義呢?通過這個問題,讓學生體會到新知識的發生是可能的,自然的。

其次,到底應該怎樣去合理定義任意角的三角函數呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹的,科學的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函數的定義有所沖突。在這個立-破的過程中,讓學生去體驗一個新的數學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助于學生對任意角三角函數概念的理解。

再次,讓學生充分體會在任意角三角函數定義的推廣中,是如何將直角三角形這個"形"的問題,轉換到直角坐標系下點的坐標這個"數"的過程的。培養數形結合的思想。

高中數學教案合集篇6

1.1.1任意角

教學目標

(一)知識與技能目標

理解任意角的概念(包括正角、負角、零角)與區間角的概念.

(二)過程與能力目標

會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區間角的集合的書寫.

(三)情感與態度目標

1.提高學生的推理能力;

2.培養學生應用意識.教學重點

任意角概念的理解;區間角的集合的書寫.教學難點

終邊相同角的集合的表示;區間角的集合的書寫.

教學過程

一、引入:

1.回顧角的定義

①角的第一種定義是有公共端點的兩條射線組成的圖形叫做角.

②角的第二種定義是角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.

二、新課:

1.角的有關概念:

①角的定義:

角可以看成平面內一條射線繞著端點從一個位置旋轉到另一個位置所形成的圖形.

②角的名稱:

③角的分類:A

正角:按逆時針方向旋轉形成的角零角:射線沒有任何旋轉形成的角

負角:按順時針方向旋轉形成的角

④注意:

⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;

⑵零角的終邊與始邊重合,如果α是零角α=0°;

⑶角的概念經過推廣后,已包括正角、負角和零角.

⑤練習:請說出角α、β、γ各是多少度?

2.象限角的概念:

①定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角.

例1.在直角坐標系中,作出下列各角,并指出它們是第幾象限的角.

⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;

答:分別為1、2、3、4、1、2象限角.

3.探究:教材P3面

終邊相同的角的表示:

所有與角α終邊相同的角,連同α在內,可構成一個集合S={ββ=α+

k·360°,

k∈Z},即任一與角α終邊相同的角,都可以表示成角α與整個周角的和.注意:⑴k∈Z

⑵α是任一角;

⑶終邊相同的角不一定相等,但相等的角終邊一定相同.終邊相同的角有無限個,它們相差

360°的整數倍;

⑷角α+k·720°與角α終邊相同,但不能表示與角α終邊相同的所有角.

例2.在0°到360°范圍內,找出與下列各角終邊相等的角,并判斷它們是第幾象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.寫出終邊在y軸上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.

例5.寫出終邊在y?x上的角的集合S,并把S中適合不等式-360°≤β<720°的元素β寫出來.

4.課堂小結

①角的定義;

②角的分類:

正角:按逆時針方向旋轉形成的角零角:射線沒有任何旋轉形成的角

負角:按順時針方向旋轉形成的角

③象限角;

④終邊相同的角的表示法.

5.課后作業:

①閱讀教材P2-P5;

②教材P5練習第1-5題;

③教材P.9習題1.1第1、2、3題思考題:已知α角是第三象限角,則2α,

解:??角屬于第三象限,

?k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)

故2α是第一、二象限或終邊在y軸的非負半軸上的角.又k·180°+90°<

各是第幾象限角?

<k·180°+135°(k∈Z).

<n·360°+135°(n∈Z),

當k為偶數時,令k=2n(n∈Z),則n·360°+90°<此時,

屬于第二象限角

<n·360°+315°(n∈Z),

當k為奇數時,令k=2n+1(n∈Z),則n·360°+270°<此時,

屬于第四象限角

因此

屬于第二或第四象限角.

1.1.2弧度制

(一)

教學目標

(二)知識與技能目標

理解弧度的意義;了解角的集合與實數集R之間的可建立起一一對應的關系;熟記特殊角的弧度數.

(三)過程與能力目標

能正確地進行弧度與角度之間的換算,能推導弧度制下的弧長公式及扇形的面積公式,并能運用公式解決一些實際問題

(四)情感與態度目標

通過新的度量角的單位制(弧度制)的引進,培養學生求異創新的精神;通過對弧度制與角度制下弧長公式、扇形面積公式的對比,讓學生感受弧長及扇形面積公式在弧度制下的簡潔美.教學重點

弧度的概念.弧長公式及扇形的面積公式的推導與證明.教學難點

“角度制”與“弧度制”的區別與聯系.

教學過程

一、復習角度制:

初中所學的角度制是怎樣規定角的度量的?規定把周角的作為1度的角,用度做單位來度量角的制度叫做角度制.

二、新課:

1.引入:

由角度制的定義我們知道,角度是用來度量角的`,角度制的度量是60進制的,運用起來不太方便.在數學和其他許多科學研究中還要經常用到另一種度量角的制度—弧度制,它是如何定義呢?

2.定義

我們規定,長度等于半徑的弧所對的圓心角叫做1弧度的角;用弧度來度量角的單位制叫做弧度制.在弧度制下,1弧度記做1rad.在實際運算中,常常將rad單位省略.

3.思考:

(1)一定大小的圓心角?所對應的弧長與半徑的比值是否是確定的?與圓的半徑大小有關嗎?

(2)引導學生完成P6的探究并歸納:弧度制的性質:

①半圓所對的圓心角為

②整圓所對的圓心角為

③正角的弧度數是一個正數.

④負角的弧度數是一個負數.

⑤零角的弧度數是零.

⑥角α的弧度數的絕對值α=.

4.角度與弧度之間的轉換:

①將角度化為弧度:

②將弧度化為角度:

5.常規寫法:

①用弧度數表示角時,常常把弧度數寫成多少π的形式,不必寫成小數.

②弧度與角度不能混用.

弧長等于弧所對應的圓心角(的弧度數)的絕對值與半徑的積.

例1.把67°30’化成弧度.

例2.把?rad化成度.

例3.計算:

(1)sin4

(2)tan1.5.

8.課后作業:

①閱讀教材P6–P8;

②教材P9練習第1、2、3、6題;

③教材P10面7、8題及B2、3題.

高中數學教案合集篇7

教學目標

1、明確等差數列的定義。

2、掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題

3、培養學生觀察、歸納能力。

教學重點

1、等差數列的概念;

2、等差數列的通項公式

教學難點

等差數列“等差”特點的理解、把握和應用

教具準備

投影片1張

教學過程

(I)復習回顧

師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數列有什么共同的特點?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數列共同特點。

對于數列①(1≤n≤6);(2≤n≤6)

對于數列②-2n(n≥1)(n≥2)

對于數列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。

師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。

一、定義:

等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。

如:上述3個數列都是等差數列,它們的公差依次是1,-2。

二、等差數列的通項公式

師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。

如數列①(1≤n≤6)

數列②:(n≥1)

數列③:(n≥1)

由上述關系還可得:即:則:=如:

三、例題講解

例1:(1)求等差數列8,5,2…的第20項

(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結

師:本節主要內容為:

①等差數列定義。

即(n≥2)

②等差數列通項公式(n≥1)

推導出公式:

(V)課后作業

一、課本P118習題3.21,2

二、1、預習內容:課本P116例2P117例4

2、預習提綱:

①如何應用等差數列的定義及通項公式解決一些相關問題?

②等差數列有哪些性質?

高中數學教案合集篇8

1、教材分析:

集合是現代數學的基本語言,可以簡潔、準確地表達數學內容。本節是讓學生學會用集合的語言來描述對象,章末我們會用集合和對應的語言來描述函數的概念,可見它是今后數學學習的基礎,也是培養學生抽象概括能力的重要素材。

2、教材目標:

根據素質教育的要求和新課改的精神,我確定教學目標如下:

①知識與技能:

(1)了解集合的含義與集合中元素的特征

(2)熟記常用數集符號

(3)能用列舉、描述法表示具體集合

②過程與方法:讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.讓學生通過觀察、歸納、總結的過程,提高抽象概括能力。

③情感態度與價值觀:使學生感受到學習集合的必要性,增強學習的積極性.

3、教學重點、難點

教學重點:集合的基本概念與表示方法;

教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;說教法

1.學情分析

《集合的含義及表示》這一課時是學生進入高中階段學習、接觸到高中數學的第一堂課,它直接影響到了學生對高中階段數學學習的認識;如果我們教學上過于草率,學生很容易對數學失去學習興趣。再者,這是高中數學課程的第一章的第一課時,是整個高中數學的奠基部分,所以我們不僅要正確地傳授知識,更要把握好教學的難度。如果傳授得過于簡單,那么學生容易麻痹大意,對今后的學習埋下隱患;如果講得太深,那么學生會有畏難心理,也會對今后的學習造成影響。

2.方法選擇

在教學中注意啟發引導,通過預習學案的形式把知識問題化,通過實例引導學生觀察歸納,上課組織學生分組討論,讓他們經歷觀察、猜測、推理、交流、反思的理性思維的基本過程,切實改變學生的學習方法。

說學法

讓學生通過課前結合學案,閱讀教材,自主預習,課上交流、討論、概括,課后復習鞏固三個環節,更好地完成本節課的教學目標。值得提出的是:集合作為一種數學語言,最好的學習方法是使用,所以應該多做轉換練習,

說教學程序

(一)創設情境,揭示課題

軍訓前學校通知:x月x日x點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。

通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發了學生求知欲,調動了學生主動參與的積極性。讓學生在課堂的一開始就感受到數學就在我們身邊,讓學生學會用數學的眼光去關注生活。

(二)研探新知,建構概念

讓學生閱讀課本P2內容,讓小組思考討論,代表發言,師生共同補充答案它們的共同特征:它們都是指定的一組對象。這時我借此引入集合的概念,把一些元素組成的總體叫做集合,簡稱集,通常用大寫字母A,B,C,?表示。把研究的對象稱為元素,通常用小寫拉丁字母a,b,c,?表示;

接下來,我引導學生把集合的涵義進行拓展,期間結合一些師生互動:我們班上的女生能不能構成一個集合,班上身高在1.75米以上的男生能不能構成一個集合,班上高的男生能不能構成一個集合??,通過身邊這些大量例子,讓學生了解集合的概念,并切實感受到學習集合語言的重要性。

對于集合元素的特征:確定性、互異性、無序性。我則在學生了解集合概念基礎上,通過設置三個問題(1)班里個子高的同學能否構成一個集合?(2)在一個給定的集合中能否有相同的元素?(3)班里的全體同學組成一個集合,調整座位后這個集合有沒有變化?調整后的集合和原來的集合是什么關系?讓學生思考:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

這樣設計將知識問題化,問題生活化,激發學生學習的主動性,引導學生歸納出集合中元素的三大特性,用簡練的語言概括為——確定性、互異性、無序性用兩集合相等的概念。

思考3:(1)設集合A表示“1~20以內的所有質數”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

(2)對于一個給定的集合A,那么某元素a與集合A有哪幾種可能關系?

(3)如果元素a是集合A中的元素,我們如何用數學化的語言表達?

(4)如果元素a不是集合A中的元素,我們如何用數學化的語言表達?用符號∈或?填空:

[設計說明]這幾個問題比較簡單,直接提問同學回答,并師生一起完善答案。通過問題的層層深入,目的是引導學生歸納出元素與集合的關系及表示方法。

反饋練習:

(1)設A為所有亞洲國家組成的集合,則

中國____A,美國____A,

印度____A,英國____A;

對于集合中常用的符號,我做了這樣處理:簡要介紹后,讓學生用兩三分鐘的時間結合符號特點記憶。目的在于給學生一個信號:課堂上能消化的東西要及時記住。

2.集合的表示法:列舉法和描述法

讓學生自習閱讀課本P3——P4的內容5-7分鐘,接著讓同學試著解決如下三個問題

(1)由大于10小于20的所有整數組成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以內的所有素數組成的集合;

把集合的元素一一列舉出來,并用花括號“{}”括起來表示的方法叫做列舉法。用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

通過三個問題不僅檢驗了學生的自學效果,同時也讓學生明白列舉法和描述法兩種方法各自的優缺點,更重要的是對集合的列舉法和描述法的規范表達做進一步強調,最后,我帶領學生分析了課本P4的例題,對集合的列舉法和描述法的規范表達做進一

步的強調,讓學生完成書上的習題,并請幾個學生上臺來演練,通過練習達到及時的反饋。

(四)歸納整理,整體認識

1.本節課我們學習了哪些知識內容?

2.你認為學習集合有什么意義?

3.比較列舉法與描述法的優缺點。

(五)布置作業

作業:習題1.1A組:2、3、4.

作業的布置是要突出本節課的重點——集合概念的理解以及集合的表示法,讓學生對數學符號的適用在課外進行延伸和鞏固。

說板書

在教學中我把黑板分為三部分,把知識要點寫在左側,中間是課本例題演練,右側是實例應用。在左側的知識要點主要列出了集合、元素的概念、元素的特性:確定性,互異性,無序性,和集合的表示法:列舉法和描述法。

以上是我對《集合的含義與表示》這節教材的認識和對教學過程的設計。對這節課的設計,我始終在努力貫徹一教師為主導,以學生為主題,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力為指導思想,利用各種教學手段激發學生的學習興趣,體現了對學生創新意識的培養。

高中數學教案合集篇9

排列問題的應用題是學生學習的難點,也是高考的必考內容,筆者在教學中嘗試將排列問題歸納為三種類型來解決:

下面就每一種題型結合例題總結其特點和解法,并附以近年的高考原題供讀者參研.

一.能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題)

解決此類問題的關鍵是特殊元素或特殊位置優先.或使用間接法.

例1.(1)7位同學站成一排,其中甲站在中間的位置,共有多少種不同的排法?

(2)7位同學站成一排,甲、乙只能站在兩端的排法共有多少種?

(3)7位同學站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?

(4)7位同學站成一排,其中甲不能在排頭、乙不能站排尾的排法共有多少種?

解析:(1)先考慮甲站在中間有1種方法,再在余下的6個位置排另外6位同學,共種方法;

(2)先考慮甲、乙站在兩端的排法有種,再在余下的5個位置排另外5位同學的排法有種,共種方法;

(3)先考慮在除兩端外的5個位置選2個安排甲、乙有種,再在余下的5個位置排另外5位同學排法有種,共種方法;本題也可考慮特殊位置優先,即兩端的排法有,中間5個位置有種,共種方法;

(4)分兩類乙站在排頭和乙不站在排頭,乙站在排頭的排法共有種,乙不站在排頭的排法總數為:先在除甲、乙外的5人中選1人安排在排頭的方法有種,中間5個位置選1個安排乙的方法有,再在余下的5個位置排另外5位同學的排法有,故共有種方法;本題也可考慮間接法,總排法為,不符合條件的甲在排頭和乙站排尾的排法均為,但這兩種情況均包含了甲在排頭和乙站排尾的情況,故共有種.

例2.某天課表共六節課,要排政治、語文、數學、物理、化學、體育共六門課程,如果第一節不排體育,最后一節不排數學,共有多少種不同的排課方法?

解法1:對特殊元素數學和體育進行分類解決

(1)數學、體育均不排在第一節和第六節,有種,其他有種,共有種;

(2)數學排在第一節、體育排在第六節有一種,其他有種,共有種;

(3)數學排在第一節、體育不在第六節有種,其他有種,共有種;

(4)數學不排在第一節、體育排在第六節有種,其他有種,共有種;

所以符合條件的排法共有種

解法2:對特殊位置第一節和第六節進行分類解決

(1)第一節和第六節均不排數學、體育有種,其他有種,共有種;

(2)第一節排數學、第六節排體育有一種,其他有種,共有種;

(3)第一節排數學、第六節不排體育有種,其他有種,共有種;

(4)第一節不排數學、第六節排體育有種,其他有種,共有種;

所以符合條件的排法共有種.

解法3:本題也可采用間接排除法解決

不考慮任何限制條件共有種排法,不符合題目要求的排法有:(1)數學排在第六節有種;(2)體育排在第一節有種;考慮到這兩種情況均包含了數學排在第六節和體育排在第一節的情況種所以符合條件的排法共有種

附:1、(20__北京卷)五個工程隊承建某項工程的五個不同的子項目,每個工程隊承建1項,其中甲工程隊不能承建1號子項目,則不同的承建方案共有()

(A)種(B)種(C)種(D)種

解析:本題在解答時將五個不同的子項目理解為5個位置,五個工程隊相當于5個不同的元素,這時問題可歸結為能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題),先排甲工程隊有,其它4個元素在4個位置上的排法為種,總方案為種.故選(B).

2、(20__全國卷Ⅱ)在由數字0,1,2,3,4,5所組成的沒有重復數字的四位數中,不能被5整除的數共有個.

解析:本題在解答時只須考慮個位和千位這兩個特殊位置的限制,個位為1、2、3、4中的某一個有4種方法,千位在余下的4個非0數中選擇也有4種方法,十位和百位方法數為種,故方法總數為種.

3、(20__福建卷)從6人中選出4人分別到巴黎、倫敦、悉尼、莫斯科四個城市游覽,要求每個城市有一人游覽,每人只游覽一個城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有()

A.300種B.240種C.144種D.96種

解析:本題在解答時只須考慮巴黎這個特殊位置的要求有4種方法,其他3個城市的排法看作標有這3個城市的3個簽在5個位置(5個人)中的排列有種,故方法總數為種.故選(B).

上述問題歸結為能排不能排排列問題,從特殊元素和特殊位置入手解決,抓住了問題的本質,使問題清晰明了,解決起來順暢自然.

二.相鄰不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)

相鄰排列問題一般采用大元素法,即將相鄰的元素捆綁作為一個元素,再與其他元素進行排列,解答時注意釋放大元素,也叫捆綁法.不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)一般采用插空法.

例3.7位同學站成一排,

(1)甲、乙和丙三同學必須相鄰的排法共有多少種?

(2)甲、乙和丙三名同學都不能相鄰的排法共有多少種?

(3)甲、乙兩同學間恰好間隔2人的排法共有多少種?

解析:(1)第一步、將甲、乙和丙三人捆綁成一個大元素與另外4人的排列為種,

第二步、釋放大元素,即甲、乙和丙在捆綁成的大元素內的排法有種,所以共種;

(2)第一步、先排除甲、乙和丙之外4人共種方法,第二步、甲、乙和丙三人排在4人排好后產生的5個空擋中的任何3個都符合要求,排法有種,所以共有種;(3)先排甲、乙,有種排法,甲、乙兩人中間插入的2人是從其余5人中選,有種排法,將已經排好的4人當作一個大元素作為新人參加下一輪4人組的排列,有種排法,所以總的排法共有種.

附:1、(20__遼寧卷)用1、2、3、4、5、6、7、8組成沒有重復數字的八位數,要求1和2相鄰,3與4相鄰,5與6相鄰,而7與8不相鄰,這樣的八位數共有個.(用數字作答)

解析:第一步、將1和2捆綁成一個大元素,3和4捆綁成一個大元素,5和6捆綁成一個大元素,第二步、排列這三個大元素,第三步、在這三個大元素排好后產生的4個空擋中的任何2個排列7和8,第四步、釋放每個大元素(即大元素內的每個小元素在捆綁成的大元素內部排列),所以共有個數.

2、(20__.重慶理)某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,

二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰

好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為()

A.B.C.D.

解析:符合要求的基本事件(排法)共有:第一步、將一班的3位同學捆綁成一個大元素,第二步、這個大元素與其它班的5位同學共6個元素的全排列,第三步、在這個大元素與其它班的5位同學共6個元素的全排列排好后產生的7個空擋中排列二班的2位同學,第四步、釋放一班的3位同學捆綁成的大元素,所以共有個;而基本事件總數為個,所以符合條件的概率為.故選(B).

3、(20__京春理)某班新年聯歡會原定的5個節目已排成節目單,開演前又增加了兩個新節目.如果將這兩個節目插入原節目單中,那么不同插法的種數為()

A.42B.30C.20D.12

解析:分兩類:增加的兩個新節目不相鄰和相鄰,兩個新節目不相鄰采用插空法,在5個節目產生的6個空擋排列共有種,將兩個新節目捆綁作為一個元素叉入5個節目產生的6個空擋中的一個位置,再釋放兩個新節目捆綁成的大元素,共有種,再將兩類方法數相加得42種方法.故選(A).

三.機會均等排列問題(即某兩或某些元素按特定的方式或順序排列的排列問題)

解決機會均等排列問題通常是先對所有元素進行全排列,再借助等可能轉化,即乘以符合要求的某兩(或某些)元素按特定的方式或順序排列的排法占它們(某兩(或某些)元素)全排列的比例,稱為等機率法或將特定順序的排列問題理解為組合問題加以解決.

例4、7位同學站成一排.

(1)甲必須站在乙的左邊?

(2)甲、乙和丙三個同學由左到右排列?

解析:(1)7位同學站成一排總的排法共種,包括甲、乙在內的7位同學排隊只有甲站在乙的左邊和甲站在乙的右邊兩類,它們的機會是均等的,故滿足要求的排法為,本題也可將特定順序的排列問題理解為組合問題加以解決,即先在7個位置中選出2個位置安排甲、乙,由于甲在乙的左邊共有種,再將其余5人在余下的5個位置排列有種,得排法數為種;

(2)參見(1)的分析得(或).

高中數學教案合集篇10

教學內容:習慣的養成(養成教育)

教學目標:

1.用輕松親切的語調,讓孩子們對小學生活有一個感性的認識。

2.培養衛生習慣、生活習慣、學習習慣、愛護公物的習慣。

3.通過學習,讓孩子們對小學生活滿懷美好的憧憬。

教學過程:

師:小朋友們好!首先祝賀小朋友們光榮地成為了一名小學生!老師看到每一個孩子的笑臉,真高興啊,你們就像花兒一樣,老師非常喜歡你們!

(在黑板上寫一個大大的“聰”字)

師:認識這個字嗎?

生:聰!

師:對,聰明的聰。你們想不想成為一個聰明的孩子?

生:想!

師:怎么樣才能成為聰明的孩子呢?我們來看,“聰”字是由耳朵、眼睛、嘴巴,還有一個“心”字組成的。小朋友們,我們只要會用耳朵聽,會用眼睛看,會用嘴巴說,再會用心去做,你就一定會是一個聰明的好孩子。你能做到嗎?下面我們開始試一試啦!

首先是會用耳朵聽。聽老師說話要專心,不能東張西望,聽同學發言,要注意聽他回答對了沒有,如果你還有想法,就舉手說出你的想法。誰聽懂了?(試問學生)

第二要會用眼睛看。你看到我們的教室干凈嗎?那是昨天我和曾老師花了很長時間打掃的。那綠色的很新的墻群是我和曾老師親自粉刷的。所以,請同學們不要用手去摸,更不要用腳去踢,就像愛護我們的眼睛一樣地去愛護它,誰能做得到?

第三要會用嘴巴說話。上課時,老師提問后,請你把小手舉起來,回答問題要響亮,讓全班小朋友都聽得到,每個小朋友都要會用你的小嘴巴表達哦!

我們會用耳朵聽,會用眼睛看,會用嘴巴說,是不是就很聰明了呢?不,最重要的是要會用心去聽,會用心去看,會用心去說,一句話,就是做什么事都要用心去做,才是真正聰明的孩子。

聰明的孩子要做到以下幾點:

一、愛護公物。學校的一草一木,一桌一椅,學校里所有的東西都要愛護。不踩花,不摘花,不踩草坪,不摘樹葉,不在桌子上亂刻亂畫,不在教室里追逐打鬧。我們學校的操場正在施工,請小朋友們不要到操場上玩耍。

二、講究衛生。上廁所時,不能在廁所外面隨處大小便,要進到廁所里指定的位置,你能做到了嗎?(課后,帶隊去看男女廁所的位置)在家里,每天早晚要刷牙,勤洗澡,勤換衣服,勤剪指甲。不隨地吐痰,預防傳染病。

三、愛惜糧食。早餐要吃完,午托的中餐要吃完,要多少就吃多少。今天,老師想看看誰是最愛惜糧食的好孩子。(放晚學前總結)

四、排路隊時要做到快、靜、齊。教給大家我編的兒歌:“排路隊,手牽手,不說話,排整齊。”走出校門后,如果找不到家長,不要自己回,要找到老師,或者回到校門口等家長來接。

五、我們是小學生了,不能帶玩具來學校玩,也不要帶錢來買零食吃。現在天氣炎熱,我們每天要從家里自己帶來一瓶水,多喝水,既清嗓來又防病,聽明白了嗎?我相信我們一(7)班的小朋友一定會成為一個聰明的講文明的小學生。

后記:今天加班打印各種材料,包括開學初的養成教案。不知不覺已到教師節。祝各位同行教師節快樂!天天開心!

99928 主站蜘蛛池模板: 泗阳县| 辽宁省| 南漳县| 长春市| 达拉特旗| 白银市| 双牌县| 巴楚县| 巩义市| 博罗县| 米泉市| 惠安县| 济源市| 鹿邑县| 阳信县| 衡阳县| 广饶县| 安义县| 禹城市| 依安县| 合肥市| 肇源县| 天长市| 英超| 镇安县| 冕宁县| 南川市| 浦江县| 凉山| 永城市| 东丽区| 宁明县| 广灵县| 龙门县| 黄大仙区| 洪湖市| 甘德县| 黑河市| 汶上县| 天门市| 元谋县|