高中數(shù)學(xué)教案怎么寫
好的教案應(yīng)該有及時(shí)的教學(xué)反思,對(duì)本次教學(xué)過程中的優(yōu)缺點(diǎn)進(jìn)行總結(jié)和反思,為今后的教學(xué)提供經(jīng)驗(yàn)和啟示。好的高中數(shù)學(xué)教案怎么寫要怎么寫?小編給大家?guī)砀咧袛?shù)學(xué)教案怎么寫,供大家參考。
高中數(shù)學(xué)教案怎么寫篇1
一 教材分析
本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。因此,正弦定理和余弦定理的知識(shí)非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):
認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。
二 教法
根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點(diǎn)
三 學(xué)法:
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
四 教學(xué)過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實(shí)踐探究,形成概念,大約用25分鐘
第三:應(yīng)用概念,拓展反思,大約用13分鐘
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。
3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:
在三角形中,角與所對(duì)的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明
(四)歸納總結(jié),簡(jiǎn)單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡(jiǎn)單,結(jié)果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認(rèn)識(shí)
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
(從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
五 板書設(shè)計(jì)
板書設(shè)計(jì)可以讓學(xué)生一目了然本節(jié)課所學(xué)的知識(shí),證明正弦定理的方法以及正弦定理可以解決的兩類問題。
高中數(shù)學(xué)教案怎么寫篇2
教學(xué)目標(biāo):
1、橢圓是圓錐曲線的一種,是高中數(shù)學(xué)教學(xué)中的重點(diǎn)和難點(diǎn),所以這部分內(nèi)容中的知識(shí)點(diǎn)學(xué)生必須達(dá)到理解、應(yīng)用的水平;
2、利用投影、計(jì)算機(jī)模擬動(dòng)點(diǎn)的運(yùn)動(dòng),增強(qiáng)直觀性,激勵(lì)學(xué)生的學(xué)習(xí)動(dòng)機(jī),培養(yǎng)學(xué)生的數(shù)學(xué)想象和抽象思維能力。
教學(xué)重點(diǎn):對(duì)橢圓定義的理解,其中a>c容易出錯(cuò)。
教學(xué)難點(diǎn):方程的推導(dǎo)過程。
教學(xué)過程(www.fwsir.com):
(1)復(fù)習(xí)
提問:動(dòng)點(diǎn)軌跡的一般求法?
(通過回憶性質(zhì)的提問,明示這節(jié)課所要學(xué)的內(nèi) 容與原來所學(xué)知識(shí)之間的內(nèi)在聯(lián)系。并為后面橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)作好準(zhǔn)備。)
(2)引入
舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽(yáng)運(yùn)行的軌道等等;
計(jì)算機(jī):動(dòng)態(tài)演示行星運(yùn)行的軌道。
(進(jìn)一步使學(xué)生明確學(xué)習(xí)橢圓的重要性和必要性,借計(jì)算機(jī)形成生動(dòng)的直觀,使學(xué)生印象加深,以便更好地掌握橢圓的形狀。)
(3)教學(xué)實(shí)施
投影:橢圓的定義:
平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做焦距(一般用2c表示)
常數(shù)一般用2表示。(講解定義時(shí)要注意條件:)
計(jì)算機(jī):動(dòng)態(tài)模擬動(dòng)點(diǎn)軌跡的形成過程。
提問:如何求軌跡的方程?
(引導(dǎo)學(xué)生推導(dǎo)橢圓的標(biāo)準(zhǔn)方程)
板書:橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)過程。(略)
(推導(dǎo)中注意:1)結(jié)合已畫出的圖形建立坐標(biāo)系,容易為學(xué)生所接受;2)在推導(dǎo)過程中,要抓住“怎樣消去方程中的根式”這一關(guān)鍵問題,演算雖較繁,也能迎刃而解;3)其中焦點(diǎn)為F1(,0)、F2(c,0),;4)如果焦點(diǎn)在軸上,焦點(diǎn)為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)
投影:橢圓的標(biāo)準(zhǔn)方程:
()
()
投影:例1平面內(nèi)兩個(gè)定點(diǎn)的距離是8,寫出到這兩個(gè)定點(diǎn)的距離的和是10的點(diǎn)的軌跡方程
(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)
形成性練習(xí):課本P74:2,3
(4)小結(jié) 本節(jié)課學(xué)習(xí)了橢圓的定義及標(biāo)準(zhǔn)方程,應(yīng)注意以下幾點(diǎn):
①橢圓的定義中,
②橢圓的標(biāo)準(zhǔn)方程中,焦點(diǎn)的位置看,的分母大小來確定
③、、的幾何意義
(5)作業(yè)
P80:2,4(1)(3)
高中數(shù)學(xué)教案怎么寫篇3
教學(xué)準(zhǔn)備
1.教學(xué)目標(biāo)
1、知識(shí)與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依
賴關(guān)系,同時(shí)還用集合與對(duì)應(yīng)的語(yǔ)言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識(shí).
2、過程與方法:
(1)通過實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語(yǔ)言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
(2)了解構(gòu)成函數(shù)的要素;
(3)會(huì)求一些簡(jiǎn)單函數(shù)的定義域和值域;
(4)能夠正確使用“區(qū)間”的符號(hào)表示函數(shù)的定義域;
3、情感態(tài)度與價(jià)值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.
教學(xué)重點(diǎn)/難點(diǎn)
重點(diǎn):理解函數(shù)的模型化思想,用集合與對(duì)應(yīng)的語(yǔ)言來刻畫函數(shù);
難點(diǎn):符號(hào)“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)用具
多媒體
4.標(biāo)簽
函數(shù)及其表示
教學(xué)過程
(一)創(chuàng)設(shè)情景,揭示課題
1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2、閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時(shí)間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;
(3)“八五”計(jì)劃以來我國(guó)城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題.
3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);
4、引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語(yǔ)言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;
5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.
(二)研探新知
1、函數(shù)的有關(guān)概念
(1)函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的.集合{f(x)x∈A}叫做函數(shù)的值域(range).
注意:
①“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;
②函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.
(2)構(gòu)成函數(shù)的三要素是什么?
定義域、對(duì)應(yīng)關(guān)系和值域
(3)區(qū)間的概念
①區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
②無窮區(qū)間;
③區(qū)間的數(shù)軸表示.
(4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?
通過三個(gè)已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對(duì)應(yīng)語(yǔ)言刻畫的定義,談?wù)勼w會(huì).
師:歸納總結(jié)
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
(1)求函數(shù)的定義域;
(2)求f(-3),f()的值;
(3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
例2、設(shè)一個(gè)矩形周長(zhǎng)為80,其中一邊長(zhǎng)為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.
分析:由題意知,另一邊長(zhǎng)為x,且邊長(zhǎng)x為正數(shù),所以0<x<40.
所以s==(40-x)x(0<x<40)
引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:
(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R.
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合.
(3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)
(5)滿足實(shí)際問題有意義.
鞏固練習(xí):課本P19第1
2、如何判斷兩個(gè)函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個(gè)與函數(shù)y=x相等?
分析:
1、構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))
2、兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
解:
課本P18例2
(四)歸納小結(jié)
①?gòu)木唧w實(shí)例引入了函數(shù)的概念,用集合與對(duì)應(yīng)的語(yǔ)言描述了函數(shù)的定義及其相關(guān)概念;
②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時(shí)引出了區(qū)間的概念.
(五)設(shè)置問題,留下懸念
1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題
2、舉出生活中函數(shù)的例子(三個(gè)以上),并用集合與對(duì)應(yīng)的語(yǔ)言來描述函數(shù),同時(shí)說出函數(shù)的定義域、值域和對(duì)應(yīng)關(guān)系.
課堂小結(jié)
高中數(shù)學(xué)教案怎么寫篇4
一、說教材
等差數(shù)列為人教版必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的性質(zhì)與應(yīng)用等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。
二、說學(xué)情
對(duì)于我校的高中學(xué)生,知識(shí)經(jīng)驗(yàn)比較貧乏,雖然他們的智力發(fā)展已到了形式運(yùn)演階段,但并不具備教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、說教學(xué)目標(biāo)
【知識(shí)與技能】能夠準(zhǔn)確的說出等差數(shù)列的特點(diǎn);能夠推導(dǎo)出等差數(shù)列的通項(xiàng)公式,并可以利用等差數(shù)列解決些簡(jiǎn)單的實(shí)際問題。
【過程與方法】在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,鍛煉知識(shí)、方法遷移能力;通過階梯性練習(xí),提高分析問題和解決問題的能力。
【情感態(tài)度價(jià)值觀】通過對(duì)等差數(shù)列的研究,激發(fā)主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
四、說教學(xué)重難點(diǎn)
【重點(diǎn)】等差數(shù)列的概念,等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。
【難點(diǎn)】等差數(shù)列通項(xiàng)公式的推導(dǎo),用“數(shù)學(xué)建模”的思想解決實(shí)際問題。
五、說教法與學(xué)法
數(shù)學(xué)教學(xué)是師生之間交往活動(dòng)共同發(fā)展的課程,結(jié)合本節(jié)課的特點(diǎn),我采取指導(dǎo)自主學(xué)習(xí)方法,并在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
六、說教學(xué)過程
(一)復(fù)習(xí)導(dǎo)入
類比函數(shù),復(fù)習(xí)提問數(shù)列的函數(shù)意義,即數(shù)列可看作是定義域?yàn)檎麛?shù)對(duì)應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的解析式。
設(shè)計(jì)意圖:通過復(fù)習(xí),為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備,將課堂設(shè)置成為階梯型教學(xué),消除學(xué)生的畏難情緒。
(二)新課教學(xué)
教師創(chuàng)設(shè)具體情境,從具體事例中抽象出數(shù)學(xué)概念。
1.小明目前會(huì)100個(gè)單詞,他打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92
2.小芳只會(huì)5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25
通過練習(xí)1和2引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。
接下來由學(xué)生嘗試總結(jié)歸納等差數(shù)列的定義:
如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,
這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。
(三)深化概念
教師請(qǐng)學(xué)生深度剖析等差數(shù)列的概念,進(jìn)一步強(qiáng)調(diào)
①“從第二項(xiàng)起”滿足條件;
②公差d一定是由后項(xiàng)減前項(xiàng)所得;
③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)”);
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:an+1-an=d(n≥1)
同時(shí)為配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。其中第一個(gè)數(shù)列公差小于0,第二個(gè)數(shù)列公差大于0,第三個(gè)數(shù)列公差等于0。由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0。
(四)歸納通項(xiàng)公式
在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。由學(xué)生研究,分組討論上述四個(gè)等差數(shù)列的通項(xiàng)公式。通過總結(jié)對(duì)比找出共同點(diǎn)猜想一般等差數(shù)列的通向公式應(yīng)為怎樣的形式整個(gè)過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識(shí)又化解了教學(xué)難點(diǎn)。
猜想等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d
此時(shí)指出:這種求通項(xiàng)公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項(xiàng)公式的辦法---迭加法:
在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。
利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個(gè)等式。
對(duì)照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。
在這里通過該知識(shí)點(diǎn)引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想”的教學(xué)要求
接著舉例說明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)×2,
即an=2n-1,以此來鞏固等差數(shù)列通項(xiàng)公式的運(yùn)用。
同時(shí)要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個(gè)孤立點(diǎn)。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
(五)應(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強(qiáng)對(duì)通項(xiàng)公式含義的理解以及對(duì)通項(xiàng)公式的運(yùn)用,提高解決實(shí)際問題的能力。
先讓學(xué)生求等差數(shù)列的第20項(xiàng)、30項(xiàng)等。向?qū)W生表明:要用運(yùn)動(dòng)變化的觀點(diǎn)看等差數(shù)列通項(xiàng)公式中的a1、d、n、an這4個(gè)量之間的關(guān)系。當(dāng)其中的部分量已知時(shí),可根據(jù)該公式求出另一部分量。
此外還可以聯(lián)系實(shí)際建模問題,如建造房屋時(shí)要設(shè)計(jì)樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計(jì)為等高的16級(jí)臺(tái)階,問每級(jí)臺(tái)階高為多少米?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級(jí)臺(tái)階“等高”使學(xué)生想到每級(jí)臺(tái)階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)模型--等差數(shù)列。
設(shè)置此題的目的:
1.加強(qiáng)同學(xué)們對(duì)應(yīng)用題的綜合分析能力;
2.通過數(shù)學(xué)實(shí)際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;
3.再者通過數(shù)學(xué)實(shí)例展示了“從實(shí)際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實(shí)際問題的“數(shù)學(xué)建模”的數(shù)學(xué)思想方法。
(六)小結(jié)作業(yè)
小結(jié):(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式。
強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。
2.等差數(shù)列的通項(xiàng)公式:an=a1+(n-1),會(huì)知三求一。
3.用“數(shù)學(xué)建模”思想方法解決實(shí)際問題
作業(yè):現(xiàn)實(shí)生活中還有哪些等差數(shù)列的實(shí)際應(yīng)用呢?根據(jù)實(shí)際問題自己編寫兩道等差數(shù)列的題目并進(jìn)行求解。
激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,以及認(rèn)識(shí)到學(xué)習(xí)數(shù)學(xué)的重要性,將數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問題的解決不僅回顧加深了本堂課的教學(xué)內(nèi)容,開闊學(xué)生思維,還鍛煉了學(xué)生學(xué)以致用、觀察分析問題解決問題的能力。
七、說板書設(shè)計(jì)
在板書中突出本節(jié)重點(diǎn),將強(qiáng)調(diào)的地方如定義中,“從第二項(xiàng)起”及“同一常數(shù)”等幾個(gè)字用紅色粉筆標(biāo)注,同時(shí)給學(xué)生留有作題的地方,整個(gè)板書充分體現(xiàn)了精講多練的教學(xué)方法。
高中數(shù)學(xué)教案怎么寫篇5
各位老師你們好!今天我要為大家講的課題是
首先,我對(duì)本節(jié)教材進(jìn)行一些分析:
一、教材分析(說教材):
1.教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《__》是中數(shù)學(xué)教材第冊(cè)第章第節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2.教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
(1)知識(shí)目標(biāo):
(2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實(shí)際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語(yǔ)言表達(dá)能力以及通過師生雙邊活動(dòng),初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,
(3)情感目標(biāo):通過的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
3.重點(diǎn),難點(diǎn)以及確定依據(jù):
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):通過突出重點(diǎn)
難點(diǎn):通過突破難點(diǎn)
關(guān)鍵:
下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說教法)
1.教學(xué)手段:
如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法。基于本節(jié)課的特點(diǎn):應(yīng)著重采用的教學(xué)方法。
2.教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問題解決式教法,師生交談法,圖像信號(hào)法,問答式,課堂討論法。在采用問答法時(shí),特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動(dòng)力。
3.學(xué)情分析:(說學(xué)法)
我們常說:“現(xiàn)代的文盲不是不識(shí)字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
(1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)
生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散
(2)知識(shí)障礙上:知識(shí)掌握上,學(xué)生原有的知識(shí),許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙,知識(shí)學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡(jiǎn)單明白,深入淺出的分析。
(3)動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動(dòng)力
最后我來具體談?wù)勥@一堂課的教學(xué)過程:
4.教學(xué)程序及設(shè)想:
(1)由引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強(qiáng)烈的問題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識(shí),這樣獲取知識(shí),不但易于保持,而且易于遷移到陌生的問題情境中。
(2)由實(shí)例得出本課新的知識(shí)點(diǎn)
(3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。
(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運(yùn)用所學(xué)知識(shí)與解題思想方法。
(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。
(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。
(7)板書
(8)布置作業(yè)。針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,
教學(xué)程序:
課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分
高中數(shù)學(xué)教案怎么寫篇6
上個(gè)學(xué)期,根據(jù)需要,學(xué)校安排我上高二數(shù)學(xué)文科,在這一學(xué)期里我從各方面嚴(yán)格要求自己,在教學(xué)上虛心向老教師請(qǐng)教,結(jié)合本校和班級(jí)學(xué)生的實(shí)際狀況,針對(duì)性的開展教學(xué)工作,使工作有計(jì)劃,有組織,有步驟。經(jīng)過了一學(xué)期,我對(duì)教學(xué)工作有了如下感想:
一、認(rèn)真?zhèn)湔n,做到既備學(xué)生又備教材與備教法。
上學(xué)期我根據(jù)教材資料及學(xué)生的實(shí)際狀況設(shè)計(jì)課程教學(xué),擬定教學(xué)方法,并對(duì)教學(xué)過程中遇到的問題盡可能的預(yù)先思考到,認(rèn)真寫好教案。每一課都做到“有備而去”,每堂課都在課前做好充分的準(zhǔn)備,課后及時(shí)對(duì)該課作出小結(jié),并認(rèn)真整理每一章節(jié)的知識(shí)要點(diǎn),幫忙學(xué)生進(jìn)行歸納總結(jié)。
二、增強(qiáng)上課技能,提高教學(xué)質(zhì)量。
增強(qiáng)上課技能,提高教學(xué)質(zhì)量是我們每一名新教師不斷努力的目標(biāo)。因?yàn)閼?yīng)對(duì)的是文科生,基礎(chǔ)普遍比較差,所以我主要是立足于基礎(chǔ),讓學(xué)生學(xué)得簡(jiǎn)單,學(xué)得愉快。注意精講精練,在課堂上講得盡量少些,而讓學(xué)生自己動(dòng)口動(dòng)手動(dòng)腦盡量多些;同時(shí)在每一堂課上都充分思考每一個(gè)層次的學(xué)生學(xué)習(xí)需求和理解潛力,讓各個(gè)層次的學(xué)生都得到提高。
三、虛心向其他老師學(xué)習(xí),在教學(xué)上做到有疑必問。
在每個(gè)章節(jié)的學(xué)習(xí)上都用心征求其他有經(jīng)驗(yàn)老師的意見,學(xué)習(xí)他們的方法。同時(shí)多聽老教師的課,做到邊聽邊學(xué),給自己不斷充電,彌補(bǔ)自己在教學(xué)上的不足,征求他們的意見,改善教學(xué)工作。
四、認(rèn)真批改作業(yè)、布置作業(yè)有針對(duì)性,有層次性。
作業(yè)是學(xué)生對(duì)所學(xué)知識(shí)鞏固的過程。為了做到布置作業(yè)有針對(duì)性,有層次性,我常常多方面的搜集資料,對(duì)各種輔導(dǎo)資料進(jìn)行篩選,力求每一次練習(xí)都能讓學(xué)生起到的效果。同時(shí)對(duì)學(xué)生的作業(yè)批改及時(shí)、認(rèn)真,并分析學(xué)生的作業(yè)狀況,將他們?cè)谧鳂I(yè)過程出現(xiàn)的問題及時(shí)評(píng)講,并針對(duì)反映出的狀況及時(shí)改善自己的教學(xué)方法,做到有的放矢。
然而,在肯定成績(jī)、總結(jié)經(jīng)驗(yàn)的同時(shí),我清楚地認(rèn)識(shí)到我所獲得的教學(xué)經(jīng)驗(yàn)還是膚淺的,在教學(xué)中存在的問題也不容忽視,也有一些困惑有待解決今后我將努力工作,用心向老老師學(xué)習(xí)以提高自己的教學(xué)水平。
以上幾點(diǎn)便是我的一點(diǎn)心得,期望能發(fā)揚(yáng)優(yōu)點(diǎn),克服不足,總結(jié)經(jīng)驗(yàn)教訓(xùn),為今后的教育教學(xué)工作積累經(jīng)驗(yàn),以便盡快地提高自己的水平。
高中數(shù)學(xué)教案怎么寫篇7
依據(jù)如下:
(1)從認(rèn)知領(lǐng)域上講,它在陳述性知識(shí)、程序性知識(shí)與策略性知識(shí)的分類中,屬于學(xué)生最高需求層次的掌握策略與方法的策略性知識(shí)。
(2)從學(xué)科知識(shí)上講,推導(dǎo)屬于學(xué)科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。
(3)從心理學(xué)上講,學(xué)生對(duì)這項(xiàng)學(xué)習(xí)內(nèi)容的“熟悉度”不高,原有知識(shí)薄弱,不易理解。
突破難點(diǎn)方法:
(1)明確難點(diǎn)、分解難點(diǎn),采用層層推導(dǎo)延伸法,利用學(xué)生已有的知識(shí)切入,淺化知識(shí)內(nèi)容。比如可以先求麥粒的總數(shù),通過設(shè)問使學(xué)生得到麥粒的總數(shù)為,然后引導(dǎo)學(xué)生觀察上式的特點(diǎn),發(fā)現(xiàn)上式中,每一項(xiàng)乘以2后都得它的后一項(xiàng),即有,發(fā)現(xiàn)兩式右邊有62項(xiàng)相同,啟發(fā)同學(xué)們找到解決問題的關(guān)鍵是等式左右同時(shí)乘以2,相減得和。從而得知求等比數(shù)列前n項(xiàng)和……+的關(guān)鍵也應(yīng)是等式左右各項(xiàng)乘以公比q,兩式相減去掉相同項(xiàng),得求和公式,也掌握了這種常用的數(shù)列求和方法——錯(cuò)位相減法,說明這種方法的用途。
(2)值得一提的是公式的證明還有兩種方法:
后兩種方法可以啟發(fā)引導(dǎo)學(xué)生自行完成。這樣學(xué)生從各種途徑,用多種方法推導(dǎo)公式,從而培養(yǎng)學(xué)生的創(chuàng)造性思維。
等比數(shù)列前n項(xiàng)和公式及應(yīng)用是本節(jié)課的重點(diǎn)內(nèi)容。
依據(jù)如下:
(1)新大綱中有較高層次的要求。
(2)教學(xué)地位重要,是教學(xué)中全部學(xué)習(xí)任務(wù)中必須優(yōu)先完成的任務(wù)。
(3)這項(xiàng)知識(shí)內(nèi)容有廣泛的實(shí)際應(yīng)用,很多問題都要轉(zhuǎn)化為等比數(shù)列的求和上來。
突出重點(diǎn)方法:
(1)明確重點(diǎn)。利用高一學(xué)生求知積極性和初步具有的數(shù)學(xué)思維能力,運(yùn)用比較法來突出公式的內(nèi)容(彩色粉筆板書):,強(qiáng)調(diào)公式的應(yīng)用范圍:中可知三求二。
(2)運(yùn)用糾錯(cuò)法對(duì)公式中學(xué)生容易出錯(cuò)的地方,即公式的條件,以精練的語(yǔ)言給予強(qiáng)調(diào),并指出q=1時(shí),。再有就是有些數(shù)列求和的項(xiàng)數(shù)易錯(cuò),例如的項(xiàng)數(shù)是n+1而不是n。
(3)創(chuàng)設(shè)條件、充分保證。設(shè)置低、中、高三個(gè)層次的例題,即公式的直接應(yīng)用、公式的變形應(yīng)用和實(shí)際應(yīng)用來突出這一重點(diǎn)。對(duì)應(yīng)用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。
2.實(shí)際應(yīng)用題.
這樣設(shè)置主要依據(jù):
(1)練習(xí)題與大綱中規(guī)定的教學(xué)目標(biāo)與任務(wù)及本節(jié)課的重點(diǎn)、難點(diǎn)有相對(duì)應(yīng)的匹配關(guān)系。
(2)遵循鞏固性原則和傳授——反饋——再傳授的教學(xué)系統(tǒng)的思想確立這樣的習(xí)題。
(3)應(yīng)用題比較切合對(duì)智力技能進(jìn)行檢測(cè),有利于數(shù)學(xué)能力的提高。同時(shí),它可以使學(xué)生在后半程學(xué)習(xí)中保持興趣的持續(xù)性和學(xué)習(xí)的主動(dòng)性,。
根據(jù)高一學(xué)生心理特點(diǎn)、教材內(nèi)容、遵循因材施教原則和啟發(fā)性教學(xué)思想,本節(jié)課的教學(xué)策略與方法我采用規(guī)則學(xué)習(xí)和問題解決策略,即“案例—公式—應(yīng)用”,簡(jiǎn)稱“例—規(guī)”法。
案例為淺層次要求,使學(xué)生有概括印象。
公式為中層次要求,由淺入深,重難點(diǎn)集中推導(dǎo)講解,便于突破。
應(yīng)用為綜合要求,多角度、多情境中消化鞏固所學(xué),反饋驗(yàn)證本節(jié)教學(xué)目標(biāo)的落實(shí)。
其中,案例是基礎(chǔ),是學(xué)生感知教材;公式為關(guān)鍵,是學(xué)生理解教材;練習(xí)為應(yīng)用,是學(xué)生鞏固知識(shí),舉一反三。
在這三步教學(xué)中,以啟發(fā)性強(qiáng)的小設(shè)問層層推導(dǎo),輔之以學(xué)生的分組小討論并充分運(yùn)用直觀完整的板書、棋盤教具和計(jì)算機(jī)課件等教輔用具、手段,改變教師講、學(xué)生聽的填鴨式教學(xué)模式,充分體現(xiàn)學(xué)生是主體,教師教學(xué)服務(wù)于學(xué)生的思路,而且學(xué)生通過“案例—公式—應(yīng)用”,由淺入深,由感性到理性,由直觀到抽象,加深了學(xué)生理解鞏固與應(yīng)用,有利于培養(yǎng)學(xué)生思維能力,落實(shí)好教學(xué)任務(wù)。
在提倡教育改革的今天,對(duì)學(xué)生進(jìn)行思維技能培養(yǎng)已成了我們非常重要的一項(xiàng)教學(xué)任務(wù)。研究性學(xué)習(xí)已在全國(guó)范圍內(nèi)展開,等比數(shù)列就是一個(gè)進(jìn)行研究性學(xué)習(xí)的好題材。在我們學(xué)校可以按照Intel未來教育計(jì)劃培訓(xùn)的模式,學(xué)完本節(jié)課后,教師可以給學(xué)生布置一個(gè)研究分期付款的課題,讓學(xué)生利用網(wǎng)絡(luò)資源,多方查找資料,并通過完成多媒體演示文稿和網(wǎng)頁(yè)制作來共同解決這一問題。這樣不僅培養(yǎng)了學(xué)生主動(dòng)探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識(shí)和團(tuán)結(jié)協(xié)作的精神。
高中數(shù)學(xué)教案怎么寫篇8
20__年__月,我在江蘇連云港新海高中上了一節(jié)《橢圓的幾何性質(zhì)》公開課。這節(jié)課從準(zhǔn)備,到與組內(nèi)老師探討、交流,并修改、上課,直至最后聆聽各位老師和專家的指導(dǎo),都讓我受益非淺。
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書《數(shù)學(xué)》選修1―1第二章第二節(jié)的內(nèi)容,它是在學(xué)完橢圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,通過研究橢圓的標(biāo)準(zhǔn)方程來探究橢圓的簡(jiǎn)單幾何性質(zhì)。利用曲線方程研究曲線的性質(zhì),是解析幾何的主要任務(wù)。通過本節(jié)課的學(xué)習(xí),既讓學(xué)生了解了橢圓的幾何性質(zhì),又讓學(xué)生初步體會(huì)了利用曲線方程來研究其性質(zhì)的過程,同時(shí)也為下一步學(xué)習(xí)雙曲線和拋
物線的性質(zhì)做好了鋪墊。本節(jié)課是圍繞著探究橢圓的簡(jiǎn)單幾何性質(zhì)進(jìn)行的。因此,依教材的地位與作用及教學(xué)目標(biāo),將之確定為本節(jié)課的重點(diǎn);又因?yàn)閷W(xué)生第一次系統(tǒng)地按照橢圓方程來研究橢圓的簡(jiǎn)單幾何性質(zhì),學(xué)生感到困難,且如何定義離心率,學(xué)生感到棘手,所以我將之確定為本節(jié)課的難點(diǎn)。
然而,課后的反思過程中我發(fā)現(xiàn)了幾個(gè)問題:第一,在講解“頂點(diǎn)”定義時(shí),單純定義為橢圓與坐標(biāo)軸的交點(diǎn),沒把握住頂點(diǎn)的重要特征,即“頂點(diǎn)是橢圓與其對(duì)稱軸的交點(diǎn)”,如果把握住這一點(diǎn),在講解時(shí)就應(yīng)先講“對(duì)稱性”,再講“頂點(diǎn)”;二是本節(jié)課對(duì)幾何性質(zhì)的導(dǎo)入,是由學(xué)生回顧上節(jié)所講特征三角形的三邊與的大小關(guān)系開始的,而多數(shù)人對(duì)特征三角形的記憶是很模糊的,上節(jié)課在這個(gè)知識(shí)點(diǎn)上學(xué)生吸收的并不好,如果把它放在本節(jié)課“頂點(diǎn)”之后再講解,會(huì)顯得更自然一些;三是“對(duì)稱性”的講解過于單薄,學(xué)生既然很快就觀察出了這個(gè)性質(zhì),何不趁熱打鐵,再?gòu)拇鷶?shù)的角度證明一下呢?過于避重就輕的做法不利于對(duì)學(xué)生數(shù)學(xué)思維能力的培養(yǎng)。以上的幾點(diǎn)不足都提醒我今后要在研究教材上下更多的功夫。
還有在講解完“對(duì)稱性”、準(zhǔn)備講“離心率”之前,我穿插了一道“畫橢圓的簡(jiǎn)圖”的題目。并提圓相似嗎?橢圓呢?引起了同學(xué)們注意。這道題起到了較好的承上啟下的作用:既鞏固了剛學(xué)的性質(zhì),又引發(fā)了一個(gè)問題:橢圓的“扁”的程度與哪些要素有關(guān)。大多數(shù)學(xué)生通過所畫的兩個(gè)橢圓長(zhǎng)軸相同、短軸不同,從而“扁”的程度不同,很自然地回答這與有關(guān),圓的形狀是完全相同的,而橢圓的形狀是否完全相同?如何刻畫橢圓的“圓扁”度呢?
學(xué)生自主探究(預(yù)設(shè):可以創(chuàng)造錯(cuò)誤認(rèn)識(shí),a越大越扁?b越大越圓?聯(lián)想橢圓定義當(dāng)2a定時(shí),焦點(diǎn)逐漸靠近頂點(diǎn),橢圓會(huì)怎么樣?焦點(diǎn)逐漸靠近中心,又會(huì)怎么樣?)
切入事先準(zhǔn)備好的幾何畫板展示,固定長(zhǎng)軸,移動(dòng)交點(diǎn),看變化。教師通過多媒體展示橢圓隨著離心率逐漸接近0越圓而越接近1而越扁的動(dòng)畫
過程。e越大,橢圓越扁,越小越圓。講清楚e是一個(gè)比值圓扁度用什么刻畫?為什么不b用。a此外,在以下幾個(gè)方面我還需要進(jìn)一步改進(jìn):一是課堂的節(jié)奏還要稍微慢一點(diǎn),比如對(duì)焦點(diǎn)在軸時(shí)橢圓的幾個(gè)性質(zhì)的給出,都是師提問生齊答,在這個(gè)過程中不少反應(yīng)慢一點(diǎn)的同學(xué)沒有足夠的時(shí)間去思考,被忽略掉了,而如果把這個(gè)環(huán)節(jié)換成小組合作學(xué)習(xí)、討論交流的方式來進(jìn)行,放手把主動(dòng)權(quán)交給學(xué)生,效果可能會(huì)更好,也更符合新課改的理念。二是教學(xué)語(yǔ)言還需要不斷錘煉,因?yàn)閿?shù)學(xué)老師的語(yǔ)言是否準(zhǔn)確、精煉,會(huì)對(duì)學(xué)生的邏輯思維產(chǎn)生潛移默化的影響,要力圖用清晰優(yōu)美的語(yǔ)言藝術(shù)去感染學(xué)生。
比較過去自己曾經(jīng)歷過的刻板、嚴(yán)肅的灌輸式教學(xué),現(xiàn)在更提倡多給學(xué)生一點(diǎn)愛,讓學(xué)生積極地參與到課堂活動(dòng)中來;同時(shí)老師要做有效課堂的引導(dǎo)者,不斷優(yōu)化教學(xué)策略,教學(xué)中要關(guān)注學(xué)生是否積極地參與到發(fā)現(xiàn)問題、分析問題、解決問題的探索過程中去,是否能夠達(dá)到掌握知識(shí),提高能力的目的是否收到了理想的教學(xué)效果。教學(xué)過程中要尊重學(xué)生的自我發(fā)現(xiàn),多角度的給學(xué)生以鼓勵(lì)和肯定。
我會(huì)以此為契機(jī),在平日的教學(xué)實(shí)踐中不斷思考和創(chuàng)新,不斷成長(zhǎng)和進(jìn)步!
高中數(shù)學(xué)教案怎么寫篇9
教學(xué)內(nèi)容:
簡(jiǎn)單的排列組合
教學(xué)目標(biāo):
1.使學(xué)生通過觀察、猜測(cè)、實(shí)驗(yàn)、驗(yàn)證等活動(dòng),找出簡(jiǎn)單事件的排列數(shù)或組合數(shù)。
2.培養(yǎng)學(xué)生有序地、全面地思考問題的意識(shí)和習(xí)慣。
教學(xué)過程:
1.借助操作活動(dòng)或?qū)W生易于理解的事例來幫助學(xué)生找出組合數(shù)。師生共同分析練習(xí)二十五第1題。讓學(xué)生小組討論,充分發(fā)表自己的意見。
2.利用直觀圖示幫助學(xué)生有序地、不重不漏地找出早餐搭配的組合數(shù)。
3、出示練習(xí)二十五第3題。
學(xué)生看題后,四人小組討論出有多少種求組合數(shù)的方法。
4、學(xué)生匯報(bào)。
(1)圖示表示法(兩種)。引導(dǎo)學(xué)生用畫簡(jiǎn)圖的方式來表示抽象的數(shù)學(xué)知識(shí)。
(2)其他的方法,例如聰聰或明明分別可以和每一個(gè)小朋友合影(分步時(shí),可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學(xué)時(shí)充分發(fā)揮學(xué)生的創(chuàng)造性。至于學(xué)生用哪種方法求出來,都沒關(guān)系。但要引導(dǎo)學(xué)生思考如何才能不重不漏,發(fā)展學(xué)生有序地思考問題的意識(shí)和能力。
(3)學(xué)生自己用圖示表示時(shí),可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標(biāo)上序號(hào)。實(shí)際這是發(fā)展學(xué)生用數(shù)學(xué)化的符號(hào)表示具體事件的能力的一個(gè)體現(xiàn)。
(4)如果學(xué)生用簡(jiǎn)圖的方式來表示有困難,也可以讓學(xué)生回憶一下二年級(jí)上冊(cè)的例子或借助學(xué)具卡片擺一擺。
2.“做一做”
(1)練習(xí)二十五第7題。
通過活動(dòng)的方式讓學(xué)生不重不漏地把所有取錢的情況寫出來。
(2)練習(xí)二十五第9題。
用兩種圖示法表示兩兩組合的方式(比較簡(jiǎn)單的兩種方式)。在教學(xué)中也要允許有的學(xué)生把所有的情況逐一羅列出來,只要他通過自己的方法探索出所有的組合數(shù),都是應(yīng)該鼓勵(lì)的。