教育巴巴 > 高中教案 > 數學教案 >

高中數學集合教案范文

時間: 新華 數學教案

教案編寫需要依據不同的學科和教學內容,選取合適的教學方法和手段,明確教學目標和教學計劃,以確保教學質量。高中數學集合教案范文怎么寫,這里給大家分享高中數學集合教案范文,供大家參考。

高中數學集合教案范文篇1

教學目標

1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.

(1) 能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象.

(2) 能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題.

2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力.

3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性.

教學建議

教材分析

(1) 對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.

(2) 本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點.

(3) 本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開.而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點.

教法建議

(1) 對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.

(2) 在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.

高中數學集合教案范文篇2

教學目標:

1、使學生通過觀察、操作、實驗等活動,找出簡單事物的排列組合規律。

2、培養學生初步的觀察、分析和推理能力以及有順序地、全面地思考問題的意識。

3、使學生感受數學在現實生活中的廣泛應用,嘗試用數學的方法來解決實際生活中的問題。使學生在數學活動中養成與人合作的良好習慣。

教學過程:

一、創設增境,激發興趣。

師:今天我們要去"數學廣角樂園"游玩,你們想去嗎?

二、操作探究,學習新知。

<一>組合問題

l、看一看,說一說

師:那我們先在家里挑選穿上漂亮的衣服吧。(課件出示主題圖)

師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)

2、想一想,擺一擺

(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?

①學生小組討論交流,老師參與小組討論。

②學生匯報

(2)引導操作:小組同學互相合作,把你們設計的穿法有序的貼在展示板上。(要求:小組長拿出學具衣服圖片、展示板)

①學生小組合作操作擺,教師巡視參與小組活動。

②學生展示作品,介紹搭配方案。

③生生互相評價。

(3)師引導觀察:

第一種方案(按上裝搭配下裝)有幾種穿法?(4種)

第二種方案(按下裝搭配上裝)有幾種穿法?(4種)

師小結:不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。

<二>排列問題

師:數學廣角樂園到了,不過進門之前我們必須找到開門密碼。(課件出示課件密碼門)

密碼是由1、2、3組成的兩位數.

(1)小組討論擺出不同的兩位數,并記下結果。

(2)學生匯報交流(老師根據學生的回答,點擊課件展示密碼)

(3)生生相互評價。方法一:每次拿出兩張數字卡片能擺出不同的兩位數;

方法二:固定十位上的數字,交換個位數字得到不同的兩位數;

方法三:固定個位上的數字,交換十位數字得到不同的兩位數.

師小結:三種方法雖然不同,但都能正確并有序地擺出6個不同的兩位數,同學們可以用自己喜歡的方法.

三、課堂實踐,鞏固新知。

1、乒乓球賽場次安排。

師:我們先去活動樂園看看,這兒正好有乒乓球比賽呢.(課件出示情境圖)

(l)老師提出要求:每兩個運動員之間打一場球賽,一共要比幾場?

(2)學生獨立思考.

(3)指名學生匯報.規

2、路線選擇。(課件展示游玩景點圖)

師:我們去公園看看吧。途中要經過游戲樂園。

(l)師引導觀察:從活動樂園到游戲樂園有幾條路線?哪幾條?(甲,乙兩條)從游戲樂園去公園有幾條路線?哪幾條?(A,B,C三條)(根據學生的回答課件展示)

從活動樂園到時公園到底有幾種不同的走法?

(2)學生獨立思索后小組交流。

(3)全班同學互相交流。

3、照像活動。

師:我們來到公園,這兒的景色真不錯,大家照幾張像吧.

師提出要求:攝影師要求三名同學站成一排照像,每小組根據每次合影人數(雙人照或三人照)設計排列方案,由組長作好活動記錄。

(1)小組活動,老師參與小組活動。

(2)各小組展示記錄方案。

(3)師生共同評價。

4、欣賞照片.

師:在同學們照像的同時,小麗一家三口人也正在照像呢,看看她們是怎樣照的.(課件展示照片集欣賞)

四、總結

今天的游玩到此結束,同學們互相握手告別好嗎?如果小組里的四個同學每兩人握一次手,一共要握幾次手?

高中數學集合教案范文篇3

一、教學目標

【知識與技能】

進一步掌握直線方程的各種形式,會根據條件求直線的方程。

【過程與方法】

在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。

【情感、態度與價值觀】

在學習活動中獲得成功的體驗,增強學習數學的興趣與信心。

二、教學重難點

【重點】根據條件求直線的方程。

【難點】根據條件求直線的方程。

三、教學過程

(一)課堂導入

直接點明最近學習了直線方程的多種形式,這節課將練習求直線的方程。

(二)回顧舊知

帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。

為了加深學生的運用和理解,繼續引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。

預設學生有多種解題方法,如AB、AC所在直線方程用兩點式求解,BC所在直線方程用點斜式求解。

學生板演后教師講解,點明不足,提示學生,計算結束后要記得將所求得方程整理為直線方程的一般式。

師生總結解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。

(四)小結作業

小結:學生暢談收獲。

作業:完成課后相應練習題,根據已知條件求直線的方程。

高中數學集合教案范文篇4

教學目標

知識與技能目標:

本節的中心任務是研究導數的幾何意義及其應用,概念的形成分為三個層次:

(1) 通過復習舊知“求導數的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數的幾何意義可以依據導數概念的形成尋求解決問題的途徑。

(2) 從圓中割線和切線的變化聯系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

(3) 依據割線與切線的變化聯系,數形結合探究函數導數的幾何意義教案在導數的幾何意義教案處的導數導數的幾何意義教案的幾何意義,使學生認識到導數導數的幾何意義教案就是函數導數的幾何意義教案的圖象在導數的幾何意義教案處的切線的斜率。即:

導數的幾何意義教案=曲線在導數的幾何意義教案處切線的斜率k

在此基礎上,通過例題和練習使學生學會利用導數的幾何意義解釋實際生活問題,加深對導數內涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數學思想方法。

過程與方法目標:

(1) 學生通過觀察感知、動手探究,培養學生的動手和感知發現的能力。

(2) 學生通過對圓的切線和割線聯系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質的本質,有助于數學思維能力的提高。

(3) 結合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發現新知、應用新知。

情感、態度、價值觀:

(1) 通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數學中轉化思想的意義和價值;

(2) 在教學中向他們提供充分的從事數學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發學生的學習潛能,促進他們真正理解和掌握基本的數學知識技能、數學思想方法,獲得廣泛的數學活動經驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態度方面得到良好的發展。

教學重點與難點

重點:理解和掌握切線的新定義、導數的幾何意義及應用于解決實際問題,體會數形結合、以直代曲的思想方法。

難點:發現、理解及應用導數的幾何意義。

教學過程

一、復習提問

1.導數的定義是什么?求導數的三個步驟是什么?求函數y=x2在x=2處的導數.

定義:函數在導數的幾何意義教案處的導數導數的幾何意義教案就是函數在該點處的瞬時變化率。

求導數的步驟:

第一步:求平均變化率導數的幾何意義教案;

第二步:求瞬時變化率導數的幾何意義教案.

(即導數的幾何意義教案,平均變化率趨近于的確定常數就是該點導數)

2.觀察函數導數的幾何意義教案的圖象,平均變化率導數的幾何意義教案 在圖形中表示什么?

生:平均變化率表示的是割線PQ的斜率.導數的幾何意義教案

師:這就是平均變化率(導數的幾何意義教案)的幾何意義,

3.瞬時變化率(導數的幾何意義教案)在圖中又表示什么呢?

如圖2-1,設曲線C是函數y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.

導數的幾何意義教案

追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數的幾何意義教案,切線PT的傾斜角為導數的幾何意義教案,易知割線PQ的斜率為導數的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數的幾何意義教案,即導數的幾何意義教案。

由導數的定義知導數的幾何意義教案 導數的幾何意義教案。

導數的幾何意義教案

由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數f'(x0).今天我們就來探究導數的幾何意義。

C類學生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數的幾何意義.

二、新課

1、導數的幾何意義:

函數y=f(x)在點x0處的導數f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.

即:導數的幾何意義教案

口答練習:

(1)如果函數y=f(x)在已知點x0處的導數分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數圖像在對應點的切線的傾斜角,并說明切線各有什么特征。

(C層學生做)

(2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數在各點的導數.(A、B層學生做)

導數的幾何意義教案

2、如何用導數研究函數的增減?

小結:附近:瞬時,增減:變化率,即研究函數在該點處的瞬時變化率,也就是導數。導數的正負即對應函數的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數的正負,就可以判斷函數的增減性,體會導數是研究函數增減、變化快慢的有效工具。

同時,結合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。

例1 函數導數的幾何意義教案上有一點導數的幾何意義教案,求該點處的導數導數的幾何意義教案,并由此解釋函數的增減情況。

導數的幾何意義教案

函數在定義域上任意點處的瞬時變化率都是3,函數在定義域內單調遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)

3、利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程.

例2 求曲線y=x2在點M(2,4)處的切線方程.

解:導數的幾何意義教案

∴y'|x=2=2×2=4.

∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

由上例可歸納出求切線方程的兩個步驟:

(1)先求出函數y=f(x)在點x0處的導數f'(x0).

(2)根據直線方程的點斜式,得切線方程為 y-y0=f'(x0)(x-x0).

提問:若在點(x0,f(x0))處切線PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數不存在,不能用上面方法求切線方程。根據切線定義可直接得切線方程導數的幾何意義教案)

(先由C類學生來回答,再由A,B補充.)

例3 已知曲線導數的幾何意義教案上一點導數的幾何意義教案,求:(1)過P點的切線的斜率;

(2)過P點的切線的方程。

解:(1)導數的幾何意義教案,

導數的幾何意義教案

y'|x=2=22=4. ∴ 在點P處的切線的斜率等于4.

(2)在點P處的切線方程為導數的幾何意義教案 即 12x-3y-16=0.

練習:求拋物線y=x2+2在點M(2,6)處的切線方程.

(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

B類學生做題,A類學生糾錯。

三、小結

1.導數的幾何意義.(C組學生回答)

2.利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.

(B組學生回答)

四、布置作業

1. 求拋物線導數的幾何意義教案在點(1,1)處的切線方程。

2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.

3. 求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角

4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;

(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)

教學反思:

本節內容是在學習了“變化率問題、導數的概念”等知識的基礎上,研究導數的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數的幾何意義及“以直代曲”的思想。

本節課主要圍繞著“利用函數圖象直觀理解導數的幾何意義”和“利用導數 的幾何意義解釋實際問題”兩個教學重心展開。 先回憶導數的實際意義、數值意義,由數到形,自然引出從圖形的角度研究導數的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數形結合的角度思考,獲得導數的幾何意義——“導數是曲線上某點處切線的斜率”。

完成本節課第一階段的內容學習后,教師點明,利用導數的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數與切線斜率的關系,并感受導數應用的廣泛性。 本節課注重以學生為主體,每一個知識、每一個發現,總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業看來,效果較好。

高中數學集合教案范文篇5

說教材:

1、地位、作用和特點:

《》是高中數學課本第冊(修)的第章“”的第節內容,高中數學課本說課稿。

本節是在學習了之后編排的。通過本節課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。

教學目標:

根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

(1)知識目標:A、B、C

(2)能力目標:A、B、C

(3)德育目標:A、B

教學的重點和難點:

(1)教學重點:

(2)教學難點:

二、說教法:

基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:

導入新課新課教學

反饋發展

三、說學法:

學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。

1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

本節教師通過列舉具體事例來進行分析,歸納出,并依

據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。

2、讓學生親自經歷運用科學方法探索的過程。主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過

演示,創設探索規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。

四、教學過程:

(一)、課題引入:

教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數學科學史上的有關情況。)激發學生的探究欲望,引導學生提出接下去要研究的問題。

(二)、新課教學:

1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

(三)、實施反饋:

1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。

2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。

五、板書設計:

在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

六、說課綜述:

以上是我對《》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。

高中數學集合教案范文篇6

教學目標:

1、進一步熟練掌握比較法證明不等式;

2、了解作商比較法證明不等式;

3、提高學生解題時應變能力.

教學重點:

比較法的應用

教學難點:

常見解題技巧

教學方法啟發引導式

教學活動

(一)導入新課

(教師活動)教師打出字幕(復習提問),請三位同學回答問題,教師點評.

(學生活動)思考問題,回答.

[字幕]

1、比較法證明不等式的步驟是怎樣的?

2、比較法證明不等式的步驟中,依據、手段、目的各是什么?

3、用比較法證明不等式的步驟中,最關鍵的是哪一步?學了哪些常用的變形方法?對式子的變形還有其它方法嗎?

[點評]用比較法證明不等式步驟中,關鍵是對差式的變形.在我們所學的知識中,對式子變形的常用方法除了配方、通分,還有因式分解.這節課我們將繼續學習比較法證明不等式,積累對差式變形的常用方法和比較法思想的應用.(板書課題)

設計意圖:復習鞏固已學知識,銜接新知識,引入本節課學習的內容.

(二)新課講授

【嘗試探索,建立新知】

(教師活動)提出問題,引導學生研究解決問題,并點評.

(學生活動)嘗試解決問題.

[問題]

1、化簡

2、比較與()的大小.

(學生解答問題)

[點評]

①問題1,我們采用了因式分解的方法進行簡化.

②通過學習比較法證明不等式,我們不難發現,比較法的思想方法還可用來比較兩個式子的大小.

設計意圖:啟發學生研究問題,建立新知,形成新的知識體系.

【例題示范,學會應用】

(教師活動)教師打出字幕(例題),引導、啟發學生研究問題,井點評解題過程.

(學生活動)分析,研究問題.

[字幕]例題3已知a,b是正數,且,求證

[分析]依題目特點,作差后重新組項,采用因式分解來變形.

證明:(見課本)

[點評]因式分解也是對差式變形的一種常用方法.此例將差式變形為幾個因式的積的形式,在確定符號中,表達過程較復雜,如何書寫證明過程,例3給出了一個好的示范.

[點評]解這道題在判斷符號時用了分類討論,分類討論是重要的數學思想方法.要理解為什么分類,怎樣分類.分類時要不重不漏.

[字幕]例5甲、乙兩人同時同地沿同一條路線走到同一地點.甲有一半時間以速度m行走,另一半時間以速度n行走;有一半路程乙以速度m行走,另一半路程以速度n行走,如果,問甲、乙兩人誰先到達指定地點.

[分析]設從出發地點至指定地點的路程為,甲、乙兩人走完這段路程用的時間分別為,要回答題目中的問題,只要比較、的大小就可以了.

解:(見課本)

[點評]此題是一個實際問題,學習了如何利用比較法證明不等式的思想方法解決有關實際問題.要培養自己學數學,用數學的良好品質.

設計意圖:鞏固比較法證明不等式的方法,掌握因式分解的變形方法和分類討論確定符號的方法.培養學生應用知識解決實際問題的能力.

【課堂練習】

(教師活動)教師打出字幕練習,要求學生獨立思考,完成練習;請甲、乙兩位學生板演;巡視學生的解題情況,對正確的給予肯定,對偏差及時糾正;點評練習中存在的問題.

(學生活動)在筆記本上完成練習,甲、乙兩位同學板演.

[字幕]練習:

1、設,比較與的大小.

2、已知,求證

設計意圖:掌握比較法證明不等式及思想方法的應用.靈活掌握因式分解法對差式的變形和分類討論確定符號.反饋信息,調節課堂教學.

【分析歸納、小結解法】

(教師活動)分析歸納例題的解題過程,小結對差式變形、確定符號的常用方法和利用不等式解決實際問題的解題步驟.

(學生活動)與教師一道小結,并記錄在筆記本上.

1、比較法不僅是證明不等式的一種基本、重要的方法,也是比較兩個式子大小的一種重要方法.

2、對差式變形的常用方法有:配方法,通分法,因式分解法等.

3、會用分類討論的方法確定差式的符號.

4、利用不等式解決實際問題的解題步驟:

①類比列方程解應用題的步驟.

②分析題意,設未知數,找出數量關系(函數關系,相等關系或不等關系),

③列出函數關系、等式或不等式,

④求解,作答.

設計意圖:培養學生分析歸納問題的能力,掌握用比較法證明不等式的知識體系.

(三)小結

(教師活動)教師小結本節課所學的知識及數學思想與方法.

(學生活動)與教師一道小結,并記錄筆記.

本節課學習了對差式變形的一種常用方法因式分解法;對符號確定的分類討論法;應用比較法的思想解決實際問題.

通過學習比較法證明不等式,要明確比較法證明不等式的理論依據,理解轉化,使問題簡化是比較法證明不等式中所蘊含的重要數學思想,掌握求差后對差式變形以及判斷符號的重要方法,并在以后的學習中繼續積累方法,培養用數學知識解決實際問題的`能力.

設計意圖:培養學生對所學的知識進行概括歸納的能力,鞏固所學的知識,領會化歸、類比、分類討論的重要數學思想方法.

(四)布置作業

1、課本作業:P177、8。

2、思考題:已知,求證

3、研究性題:對于同樣的距離,船在流水中來回行駛一次的時間和船在靜水中來回行駛一次的時間是否相等?(假設船在流水中的速度和部在靜水中的速度保持不變)

設計意圖:思考題讓學生了解商值比較法,掌握分類討論的思想.研究性題是使學生理論聯系實際,用數學解決實際問題,提高應用數學的能力.

(五)課后點評

1、教學評價、反饋調節措施的構想:本節課采用啟發引導,講練結合的授課方式,發揮教師主導作用,體現學生主體地位,通過啟發誘導學生深入思考問題,解決問題,反饋學習信息,調節教學活動.

2、教學措施的設計:由于對差式變形,確定符號是掌握比較法證明不等式的關鍵,本節課在上節課的基礎上繼續學習差式變形的方法和符號的確定,例3和例4分別使學生掌握因式分解變形和分類討論確定符號,例5使學生對所學的知識會應用.例題設計目的在于突出重點,突破難點,學會應用

高中數學集合教案范文篇7

1.樹立新型的數學教學觀念,明確數學的實用意義

高中數學是人類對社會認識的重要方面,也是一門極具實用性的基礎性學科。教師在進行數學教學的過程中,要將數學知識背后蘊含的文化背景與文化知識傳達給學生,讓學生從基礎的數學知識中掌握真正的數學思維,學會運用數學技巧解決生活中的實際問題,要讓學生明確數學所蘊含的社會意義,以更好地培養數學理念,使學生更好地運用數學,對數學產生真正的興趣。

2.提升教師的教學素質,轉變教師角色定位

在新課程標準下,教師在數學教學中的角色由控制者轉變為引導者。因此,教師必須要學會提升自身的素質,轉變教學觀念,通過良好的師風師德引導學生積極投入到學習過程中。學校要定期進行培訓,加強學校之間的交流,通過互相學習、合作提升教師的素質,促進教師角色的轉變。教師要在教學的過程中重視對學生個性的激發以及學生創新精神的鼓勵,教師要引導學生主動發表自身對學習問題的看法,要讓學生成為真正的主人,促進學生多元思維的發展。

3.合理運用信息技術,培養學生的科學思維

高中數學教學過程中,信息技術的應用必不可少,但是也不能過分強調信息技術的作用。教師在教學過程中,要充分把握數學知識的特點,要將抽象的數學概念、知識框架等內容通過多媒體技術轉化為形象具體的畫面以利于學生的理解和吸收,但是對于那些需要進行基礎性訓練、推理論證的問題,要讓學生親手進行實踐分析。教師可以利用科學性的計算器或者技術教育平臺,推廣計算機技術在數學領域的運用,要充分重視學生的地域性特征,在學生對計算機技術已經形成基本認識的基礎上進行新課標內容的講解和分析,防止出現盲目追求進度,忽視學生基礎等問題的發生。

高中數學集合教案范文篇8

自我介紹:;我姓鞠,今后我將和大家一起學習高中數學課程,手機;討論數學:;相信大家對于高中學習都充滿著好奇,和初中相比,高;我們不急于上新課,我想和大家聊一聊數學,一起來思;一、為什么要學習數學?;數學是科學的大門和鑰匙;馬克思說:一種科學只有在成功地運用數學時,才算達;著名數學家華羅庚在《人民日報》精彩描述:數學在“;大家知道海王星是怎高中數學開學第一課

自我介紹:

我姓鞠,今后我將和大家一起學習高中數學課程,手機:????,QQ:????。告訴我的通訊方式是希望能拓寬與大家交流的平臺。希望能與大家在課堂中相識,在生活中相知,不僅能成為你們知識的傳授者,方法的指引者,更希望成為你們情感上的依賴者,成為朋友。

討論數學:

相信大家對于高中學習都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節課

我們不急于上新課,我想和大家聊一聊數學,一起來思考為什么要學習數學及如何學好數學這兩個問題。

一、為什么要學習數學?

數學是科學的大門和鑰匙。

馬克思說:一種科學只有在成功地運用數學時,才算達到完善的地步。

著名數學家華羅庚在《人民日報》精彩描述:數學在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁”等方面無處不有重要貢獻。

大家知道海王星是怎么發現的,冥王星又是怎么被請出十大行星行列的???

其實在我們的周圍有很多事情都是可以用數學可以來解決的,無非很多人都沒有用數學的眼光來看待。

當然,我們學習的數學只是數學學科體系中很基礎,很小的一部分。現在課本上學的未必能直接應用于生活,主要是為以后學習更高層次的理科打好基礎,同時,也為了掌握一些數學的思考方法以及分析問題解決問題的思維方式。哲學家培根說過:“讀詩使人靈秀,讀歷史使人明智,學邏輯使人周密,學哲學使人善辯,學數學使人聰明?”,也有人形象地稱數學是思維的體操。下面我們通過具體的例子來體驗一下某些數學思想方法和思維方式。

故事一:據說國際象棋是古印度的一位宰相發明的。國王很欣賞他的這項發明,問他的宰相要什么賞賜。聰明的宰相說,“我所要的從一粒谷子(沒錯,是1粒,不是1兩或1斤)開始。在這個有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數加倍,??如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。”國王覺得宰相要的實在不多,就叫人按宰相的要求賞賜。但后來發現即使把全國所有的谷子抬來也遠遠不夠。

數學游戲:兩人相繼輪流往長方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應該先放還是后放才有必勝的把握。

數學思想:退到最簡單、最特殊的地方。

故事二:聰明的渡邊:20世紀40年代末,手寫工具突破性進展圓珠筆問世,它以價廉、方便、書寫流利在社會上廣泛流傳,但寫到20萬字時就會因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質量入手,從改進油墨性能入手進行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎金50萬元。當時山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時就不用這一現象中受到啟發,很好地解決了這一問題,你認為他會怎么做呢?

渡邊的成功之處就在于思維角度新,從問題的側面輕巧取勝。也正體現了數學學習中經常用到的發散式思維。在數學學習中,既要有集中式思維又要有發散式思維。集中式思維是一種常用思維渠道,即為對問題的歸納,聯系思維方式,表現為對解題方法的模仿和繼承;而發散式思維即對問題開拓、創新,表現為對問題舉一反三,觸類旁通。在解決具體問題中,我們應該將兩種思維方式相結合。

學數學有利于培養人的思維品質:結構意識、整體意識、抽象意識、化歸意識、優化意識、反思意識,盡管數學在培養學生的這些思維品質方面和其他學科存在著交集,但數學在其中的地位是無法被代替的。總之,學習數學可以使人思考問題更合乎邏輯,更有條理,更嚴密精確,更深入簡潔,更善于創造??

二、如何學好高中數學

與初中數學相比,高中數學更注重提高數學思維能力,要求同學們在學習數學和運用數學解決問題時,不斷地經歷直觀感知、觀察發現、歸納類比、空間想象、抽象概括、符號表示、運算求解、數據處理、演繹證明、反思與建構等思維過程。高一數學一開始便在必修1中觸及集合語言、函數模型,在必修2中涉及空間立體圖形、坐標法、文字符號圖形語言的轉換,相對初中數學而言,抽象程度高,邏輯推理強,知識難度大,同學們會感到難學,認為數學神秘莫測,有些章節如聽天書,從而可能會產生畏懼感。我認為學好高中數學要注意以下幾點:

第一:培養數學興趣

只有愛好某項事業或專業才能對它產生興趣,才能激發學習、工作和自覺性與積極性;很難說哪個人天生愛好數學,愛好都是在生活和學習中逐漸產生的。如果你認為數學枯燥、乏味,那么你不可能真正學好數學,只有在學習中,逐漸發現數學的簡單美、對稱美以及數學高度的嚴謹與和諧,才能在學習過程中喜歡這門學科,才能產生興趣。愛因斯坦說:興趣是最好的老師;在諸多非智力因素中,興趣處于一種特殊的地位,她可以激發一定的情感,喚起某種動機,培養人的意志,也可以改變人的態度。

第二:要改變一個觀念。

有人會說自己的基礎不好。那我問下什么是基礎?今天所學的知識就是明天的基礎。明天學習的知識就是后天的基礎。所以要學好每一天的內容,那么你打的基礎就是最扎實的了。所以現在你們是在同一個起跑線上的,無所謂基礎好不好。今后的學習中,我會照顧大多數同學的數學基礎。

第三:養成良好的學習習慣

㈠課前預習。怎樣預習呢?就是自己在上課之前把內容先看一邊,把自己不懂的地方做個記號或者打個問號,以至于上課的時候重點聽,這樣才能夠很快提高自己的水平。但是預習不是很隨便的把課本看一邊,預習有個目標,那就是通過預習可以把書本后面的練習題可以自己獨立的完成。一中的同學預習就已經有好幾個層次了,先是課本,再是精編,再是高考題典,上課對于他們來說是第一輪高考復習。

㈡上課認真聽講。上課的時候準備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數學課做筆記的。不過有一點,有些知識點比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應的空白地方。還有如果你覺得某個例題比較新或者比較重要,也可以把它記在書本的相應位置上,這樣以后復習起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習。

㈢關于作業。絕對不允許有抄作業的情況發生。如果我發現有誰抄作業,那么既然他這樣喜歡抄,我就要你把當天的作業多抄幾遍給我。那有人會問,碰到不會做的題目怎么辦?有兩個辦法:一、向同學請教,請教做題目的思路,而不是整個過程和答案。同學之間也要相互幫助,如果你讓他抄襲你的作業這樣不是幫助他而是害他,這個道理大家應該明白吧。我非常提倡同學之間的相互討論問題的,這樣才能夠相互促進提高。二、向老師請教,要養成多想多問的習慣。

㈣準備一本筆記本,作為自己的問題集。把平時自己不懂的和不大理解的還有易錯的記錄下來,并且要及時的消化,不懂的地方問老師。這是一個很好的辦法,到考試的時候就可以有重點、有針對性的自己復習了。我高中的時候就是采用這樣的方法把數學成績提高。

好的開始是成功的一半,新的學期開始了,請大家調整好自己的思想,找到學習的原動力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習慣;播種一種習慣,收獲一種性格;播種一種性格,收獲一種命運。愿每位同學都有個好的開始。

高中數學集合教案范文篇9

各位評委老師:

大家好!

我說課的課題是等差數列的前n項和,本節內容選自江蘇教育出版社中職數學第二冊第11章第2節,下面我將從說教材、說教法學法、說教學過程、說板書設計以及說教學反思幾個方面對本節課加以說明。

一、下面先說說教材

1、教材的地位和作用

中職數學是中等職業學校各類專業學生必修的主要文化基礎課,學好這門課程對提高學生數學素養具有十分重要的意義。數列這一章是中職數學的重要內容之一。它不僅是函數知識的延伸,而且還有著非常廣泛的實際應用;同時數列還是培養學生數學思維能力的良好題材。

《等差數列的前n項和》是本章的第二節,它為后繼學習提供了知識基礎,對提高學生分析、猜想、概括、歸納的能力有著重要的作用。

《等差數列》作為《數列》這一章中兩個最重要的數列之一,具有承上啟下的作用,它的研究和解決集中體現了研究《數列》問題的思想和方法。學習《等差數列的前n項和》對提高學生分析、猜想、概括、歸納的能力有著重要的作用。

2、教學目標根據教學大綱的要求和教學內容的結構特征,并結合學生學習的實際情況,我將本節課的教學目標確定為以下三個方面

知識目標:掌握等差數列的前n項和公式

能力目標:

1、培養學生觀察、歸納、類比、聯想等發現規律的一般方法。

2、提高學生分析問題和解決問題的能力

情感目標:

1、培養學生主動探索的精神和良好的學習習慣

2、讓學生在問題中感受學習的樂趣;

3、教學重點和難點。根據本節課的內容以及學生已掌握的知識情況我將

教學重點確定為:等差數列的前n項和公式及應用

教學難點確定為:應用等差數列解決有關問題

二、說教法學法

教法教學有法但教無定法,教學方法要與學生學習的實際情況相結合。

中職學生的生源質量逐年下降,大部分中職生基礎薄弱、理解接受能力較差,大多數學生不愛學習,不會學習。學生認為數學難,枯燥理解不了。對數學學習提不起興趣,因此在教學中我注重激發學生學習的興趣。本節課通過具體的實例引入,采用了問題、類比、發現、歸納的探究式教學方法。引導學生積極主動的去學習。在課堂教學中強調以學生為主體,注重精講多練。同時也注重學生非智力因素的培養,增強學生的自信心和成就感。為學習營造寬松和諧的氛圍。另外在教學中使用多媒體教學手段等,提高教學質量和教學效果。

學法我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。倡導學生主動參與、樂于探究,培養學生發現問題、分析問題和解決問題的能力。根據學生的認知水平,我設計了①創設情境—引入問題②分析歸納—解決問題③例題研究—運用新知④分組訓練—鞏固新知⑤總結歸納—提高認識⑥課后作業-自主探究六個層次的學法,它們環環相扣,層層深入,從而順利完成教學目標。

接下來,我再具體談一談這堂課的教學過程。

三、說教學過程

(一)創設情境——引入問題教學設想

我經常在想:長期以來,我們的學生為什么對數學不感興趣,甚至害怕數學,其中一個重要因素就是數學離學生的生活實際太遠了。事實上,數學學習應該與學生的生活融合起來,從學生的`生活經驗和已有的知識背景出發,讓他們在生活中去發現數學、探究數學、認識并掌握數學。

由生活中的實例一招聘信息引入:A公司月薪2000元;B公司第一個月800元,以后逐月遞加200元。你愿意到哪家公司上班?為什么?在A、B公司一年各共領多少錢?五年呢?以此來激發學生的學習興趣。再給學生講數學家高斯的故事

1+2+3+…+100=

同學們,如果你是小高斯,你會怎么向老師解釋算法呢?

(二)分析歸納——解決問題教學設想

由高斯的解題過程:

S=1+2+3+…+100

S=100+99+98+…+1

2S=(100+1)×100

S=(100+1)100/2=5050

讓學生在在教師的啟發引導下,由被動地聽講變為主動參與,敢于發表自己獨特的見解,并學會傾聽、尊重他人的意見。教師引導學生概括總結出本課新的知識點。

1、等差數列前n項求和公式

類似m+n=s+tam+an=as+atm,n,s,t∈N+

等差求和

倒排相加

另有

即(2)——類似梯形面積公式便于記憶

進而讓學生解決課前提出的問題

一年在A公司12×2000

在B公司

800+900+1000+…1900

五年在A公司2000×12×5

在B公司

800+900+1000+…+6700

——讓學生利用剛學的知識解決當前的問題,讓學生明白學以致用。

(三)例題研究——運用新知教學設想

通過例題,使學生加深對知識的理解,從而達到掌握、運用知識的效果

例1、(1)求正奇數前100項之和;

(2)求第101個正奇數到第150個正奇數之和;

(3)等差數列的通項公式為an=100-3n,求其前65項之和;

(4)在等差數列{an}中,已知a1=3,,求S10

例2、某長跑運動員7天每天的訓練量(單位:m)分別是7500,8000,8500,9000,9500,10000,10500,他在7天內共跑了多少米?

例3、設等差數列{an}的公差d=,,前n項之和Sn=。求a1及n

課堂上讓學生用兩種公式解題,有利于提高思維的靈活性,通過板演調動學生的積極性,也掌握本節課的重點和難點。

(四)分組訓練—鞏固新知

教學設想,例題過后,我特地設計了一組檢測題,

1、等差數列求和公式Sn=

2、等差數列{an}中,(1)a1=2,d=-1則Sn=

3、2c+4c+6c+…+2nc=

4、一堆圓木,每層總比上一層多一根,頂層4根,最底層21根,這堆木料有多少根?

5、一只掛鐘,遇整點就敲響,鐘響的次數是該點的時間數,從1點到12點共響幾次?

通過游戲比賽的形式,活躍課堂氣氛,提高學生的學習興趣。來鞏固新知識。

(五)總結歸納——提高認識教學設想

讓學生通過所學內容的小結,對知識的發生發展有一個清晰的線索,把課堂所學知識構建起新的知識體系。同時養成良好的學習習慣。

(六)課后作業自主探究

教學設想

學生經過以上五個環節的學習,已經初步掌握了等差數列的前n項的求和,并解決了一些實際問題。

根據學生在課堂上知識掌握的情況有針對性布置課后作業。提高學生應用知識的能力。

四、說板書設計

我將這節課的板書設計為三列,一列為本節課的基本知識點,一列為例題,一列為講解。條理清晰,一目了然。

我認為板書設計在課堂教學中也很重要,好的板書就是一份微型教案,向學生展現了所學知識的框架,突出重點難點,清晰直觀地將授課內容傳遞給學生,便于學生理解掌握。

五、說教學反思

根據課堂教學情況,課后及時總結,不斷改進,精益求精,努力提高課堂教學效果。

結束:以上是我說課的內容,不當之處希望各位評委老師提出寶貴意見。

99810 主站蜘蛛池模板: 平泉县| 辽阳市| 锡林浩特市| 鹿邑县| 南江县| 湖口县| 绥江县| 滕州市| 临夏市| 东乌珠穆沁旗| 永德县| 隆化县| 永康市| 东阿县| 黄冈市| 乐山市| 黑水县| 青海省| 汉中市| 盐边县| 吉首市| 南城县| 天台县| 澳门| 依安县| 新郑市| 徐汇区| 香港| 凤山市| 荆门市| 大埔区| 江陵县| 福贡县| 项城市| 西藏| 海阳市| 宁明县| 什邡市| 沙田区| 巍山| 磴口县|