高中數學的教案模版
教案按照教學過程的步驟編排,讓教師能夠清晰地了解整個教學流程,有利于教學的有序進行。下面是一些高中數學的教案模版免費閱讀下載,希望對大家寫高中數學的教案模版有用。
高中數學的教案模版篇1
一、教材分析
1、地位及作用
圓錐曲線是一個重要的幾何模型,有許多幾何性質,這些性質在日常生活、生產和科學技術中有著廣泛的應用。同時,圓錐曲線也是體現數形結合思想的重要素材。
推導橢圓的標準方程的方法對雙曲線、拋物線方程的推導具有直接的類比作用,為學習雙曲線、拋物線內容提供了基本模式和理論基礎。因此本節課具有承前啟后的作用,是本章的重點內容。
2、教學內容與教材處理
橢圓的標準方程共兩課時,第一課時所研究的是橢圓標準方程的建立及其簡單運用,涉及的數學方法有觀察、比較、歸納、猜想、推理驗證等,我將以課堂教學的組織者、引導者、合作者的身份,組織學生動手實驗、歸納猜想、推理驗證,引導學生逐個突破難點,自主完成問題,使學生通過各種數學活動,掌握各種數學基本技能,初步學會從數學角度去觀察事物和思考問題,產生學習數學的愿望和興趣。
3、教學目標
根據教學大綱和學生已有的認知基礎,我將本節課的教學目標確定如下:
1、知識目標
①建立直角坐標系,根據橢圓的定義建立橢圓的標準方程;
②能根據已知條件求橢圓的標準方程;
③進一步感受曲線方程的概念,了解建立曲線方程的基本方法,體會數形結合的數學思想。
2、能力目標
①讓學生感知數學知識與實際生活的密切聯系,培養解決實際問題的能力;
②培養學生的觀察能力、歸納能力、探索發現能力;
③提高運用坐標法解決幾何問題的能力及運算能力。
3、情感目標
①親身經歷橢圓標準方程的獲得過程,感受數學美的熏陶;
②通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹;
③養成實事求是的科學態度和契而不舍的鉆研精神,形成學習數學知識的積極態度。
4、重點難點
基于以上分析,我將本課的教學重點、難點確定為:
①重點:感受建立曲線方程的基本過程,掌握橢圓的標準方程及其推導方法;
②難點:橢圓的標準方程的推導。
二、教法設計
在教法上,主要采用探究性教學法和啟發式教學法。以啟發、引導為主,采用設疑的形式,逐步讓學生進行探究性的學習。探究性學習就是充分利用了青少年學生富有創造性和好奇心,敢想敢為,對新事物具有濃厚的興趣的特點。讓學生根據教學目標的要求和題目中的已知條件,自覺主動地創造性地去分析問題、討論問題、解決問題。
三、學法設計
通過創設情境,充分調動學生已有的學習經驗,讓學生經歷“觀察——猜想——證明——應用”的過程,發現新的知識,把學生的潛意識狀態的好奇心變為自覺求知的創新意識。又通過實際操作,使剛產生的數學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質。
四、學情分析
1、能力分析
①學生已初步掌握用坐標法研究直線和圓的方程;
②對含有兩個根式方程的化簡能力薄弱。
2、認知分析
①學生已初步熟悉求曲線方程的基本步驟;
②學生已經掌握直線和圓的方程及圓錐曲線的概念,對曲線的方程的概念有一定的了解;
③學生已經初步掌握研究直線和圓的基本方法。
3、情感分析
學生具有積極的學習態度,強烈的探究欲望,能主動參與研究。
五、教學程序
從建構主義的角度來看,數學學習是指學生自己建構數學知識的活動,在數學活動過程中,學生與教材及教師產生交互作用,形成了數學知識、技能和能力,發展了情感態度和思維品質。基于這一理論,我把這一節課的教學程序分成六個步驟來進行,下面我向各位作詳細說明:
高中數學的教案模版篇2
教學目標:
1、橢圓是圓錐曲線的一種,是高中數學教學中的重點和難點,所以這部分內容中的知識點學生必須達到理解、應用的水平;
2、利用投影、計算機模擬動點的運動,增強直觀性,激勵學生的學習動機,培養學生的數學想象和抽象思維能力。
教學重點:對橢圓定義的理解,其中a>c容易出錯。
教學難點:方程的推導過程。
教學過程(www.fwsir.com):
(1)復習
提問:動點軌跡的一般求法?
(通過回憶性質的提問,明示這節課所要學的內 容與原來所學知識之間的內在聯系。并為后面橢圓的標準方程的推導作好準備。)
(2)引入
舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽運行的軌道等等;
計算機:動態演示行星運行的軌道。
(進一步使學生明確學習橢圓的重要性和必要性,借計算機形成生動的直觀,使學生印象加深,以便更好地掌握橢圓的形狀。)
(3)教學實施
投影:橢圓的定義:
平面內與兩個定點F1、F2的距離的和等于常數(大于F1F2)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做焦距(一般用2c表示)
常數一般用2表示。(講解定義時要注意條件:)
計算機:動態模擬動點軌跡的形成過程。
提問:如何求軌跡的方程?
(引導學生推導橢圓的標準方程)
板書:橢圓的標準方程的推導過程。(略)
(推導中注意:1)結合已畫出的圖形建立坐標系,容易為學生所接受;2)在推導過程中,要抓住“怎樣消去方程中的根式”這一關鍵問題,演算雖較繁,也能迎刃而解;3)其中焦點為F1(,0)、F2(c,0),;4)如果焦點在軸上,焦點為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)
投影:橢圓的標準方程:
()
()
投影:例1平面內兩個定點的距離是8,寫出到這兩個定點的距離的和是10的點的軌跡方程
(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)
形成性練習:課本P74:2,3
(4)小結 本節課學習了橢圓的定義及標準方程,應注意以下幾點:
①橢圓的定義中,
②橢圓的標準方程中,焦點的位置看,的分母大小來確定
③、、的幾何意義
(5)作業
P80:2,4(1)(3)
高中數學的教案模版篇3
教學目標
1。 理解的定義,初步掌握的圖象,性質及其簡單應用。
2。 通過的圖象和性質的學習,培養學生觀察,分析,歸納的能力,進一步體會數形結合的思想方法。
3。 通過對的研究,使學生能把握函數研究的基本方法,激發學生的學習興趣。
教學重點和難點
重點是理解的定義,把握圖象和性質。
難點是認識底數對函數值影響的認識。
教學用具
投影儀
教學方法
啟發討論研究式
教學過程
一。 引入新課
我們前面學習了指數運算,在此基礎上,今天我們要來研究一類新的常見函數———————。
1。6。(板書)
這類函數之所以重點介紹的原因就是它是實際生活中的一種需要。比如我們看下面的問題:
問題1:某種細胞_時,由1個_成2個,2個_成4個,……一個這樣的細胞_ 次后,得到的細胞_的個數 與 之間,構成一個函數關系,能寫出 與 之間的函數關系式嗎?
由學生回答: 與 之間的關系式,可以表示為 。
問題2:有一根1米長的繩子,第一次剪去繩長一半,第二次再剪去剩余繩子的一半,……剪了 次后繩子剩余的長度為 米,試寫出 與 之間的函數關系。
由學生回答: 。
在以上兩個實例中我們可以看到這兩個函數與我們前面研究的函數有所區別,從形式上冪的形式,且自變量 均在指數的位置上,那么就把形如這樣的函數稱為。
一。 的概念(板書)
1。定義:形如 的函數稱為。(板書)
教師在給出定義之后再對定義作幾點說明。
2。幾點說明 (板書)
(1) 關于對 的規定:
教師首先提出問題:為什么要規定底數大于0且不等于1呢?(若學生感到有困難,可將問題分解為若 會有什么問題?如 ,此時 , 等在實數范圍內相應的函數值不存在。
若 對于 都無意義,若 則 無論 取何值,它總是1,對它沒有研究的必要。為了避免上述各種情況的發生,所以規定 且 。
(2)關于的定義域 (板書)
教師引導學生回顧指數范圍,發現指數可以取有理數。此時教師可指出,其實當指數為無理數時, 也是一個確定的實數,對于無理指數冪,學過的有理指數冪的性質和運算法則它都適用,所以將指數范圍擴充為實數范圍,所以的定義域為 。擴充的另一個原因是因為使她它更具代表更有應用價值。
(3)關于是否是的判斷(板書)
剛才分別認識了中底數,指數的要求,下面我們從整體的角度來認識一下,根據定義我們知道什么樣的函數是,請看下面函數是否是。
(1) , (2) , (3)
(4) , (5) 。
學生回答并說明理由,教師根據情況作點評,指出只有(1)和(3)是,其中(3) 可以寫成 ,也是指數圖象。
最后提醒學生的定義是形式定義,就必須在形式上一摸一樣才行,然后把問題引向深入,有了定義域和初步研究的函數的性質,此時研究的關鍵在于畫出它的圖象,再細致歸納性質。
3。歸納性質
作圖的用什么方法。用列表描點發現,教師準備明確性質,再由學生回答。
函數
1。定義域 :
2。值域:
3。奇偶性 :既不是奇函數也不是偶函數
4。截距:在 軸上沒有,在 軸上為1。
對于性質1和2可以兩條合在一起說,并追問起什么作用。(確定圖象存在的大致位置)對第3條還應會證明。對于單調性,我建議找一些特殊點。,先看一看,再下定論。對最后一條也是指導函數圖象畫圖的依據。(圖象位于 軸上方,且與 軸不相交。)
在此基礎上,教師可指導學生列表,描點了。取點時還要提醒學生由于不具備對稱性,故 的值應有正有負,且由于單調性不清,所取點的個數不能太少。
此處教師可利用計算機列表描點,給出十組數據,而學生自己列表描點,至少六組數據。連點成線時,一定提醒學生圖象的變化趨勢(當 越小,圖象越靠近 軸, 越大,圖象上升的越快),并連出光滑曲線。
二。圖象與性質(板書)
1。圖象的畫法:性質指導下的列表描點法。
2。草圖:
當畫完第一個圖象之后,可問學生是否需要再畫第二個?它是否具有代表性?(教師可提示底數的條件是且 ,取值可分為兩段)讓學生明白需再畫第二個,不妨取 為例。
此時畫它的圖象的方法應讓學生來選擇,應讓學生意識到列表描點不是的方法,而圖象變換的方法更為簡單。即 = 與 圖象之間關于 軸對稱,而此時 的圖象已經有了,具備了變換的條件。讓學生自己做對稱,教師借助計算機畫圖,在同一坐標系下得到 的圖象。
最后問學生是否需要再畫。(可能有兩種可能性,若學生認為無需再畫,則追問其原因并要求其說出性質,若認為還需畫,則教師可利用計算機再畫出如 的圖象一起比較,再找共性)
由于圖象是形的特征,所以先從幾何角度看它們有什么特征。教師可列一個表,如下:
以上內容學生說不齊的,教師可適當提出觀察角度讓學生去描述,然后再讓學生將幾何的特征,翻譯為函數的性質,即從代數角度的描述,將表中另一部分填滿。
填好后,讓學生仿照此例再列一個 的表,將相應的內容填好。為進一步整理性質,教師可提出從另一個角度來分類,整理函數的性質。
3。性質。
(1)無論 為何值, 都有定義域為 ,值域為 ,都過點 。
(2) 時, 在定義域內為增函數, 時, 為減函數。
(3) 時, , 時, 。
總結之后,特別提醒學生記住函數的圖象,有了圖,從圖中就可以能讀出性質。
三。簡單應用 (板書)
1。利用單調性比大小。 (板書)
一類函數研究完它的概念,圖象和性質后,最重要的是利用它解決一些簡單的問題。首先我們來看下面的問題。
例1。 比較下列各組數的大小
(1) 與 ; (2) 與 ;
(3) 與1 。(板書)
首先讓學生觀察兩個數的特點,有什么相同?由學生指出它們底數相同,指數不同。再追問根據這個特點,用什么方法來比較它們的大小呢?讓學生聯想,提出構造函數的方法,即把這兩個數看作某個函數的函數值,利用它的單調性比較大小。然后以第(1)題為例,給出解答過程。
解: 在 上是增函數,且< 。(板書)
教師最后再強調過程必須寫清三句話:
(1) 構造函數并指明函數的單調區間及相應的單調性。
(2) 自變量的大小比較。
(3) 函數值的大小比較。
后兩個題的過程略。要求學生仿照第(1)題敘述過程。
例2。比較下列各組數的大小
(1) 與 ; (2) 與 ;
(3) 與 。(板書)
先讓學生觀察例2中各組數與例1中的區別,再思考解決的方法。引導學生發現對(1)來說 可以寫成 ,這樣就可以轉化成同底的問題,再用例1的方法解決,對(2)來說 可以寫成 ,也可轉化成同底的,而(3)前面的方法就不適用了,考慮新的轉化方法,由學生思考解決。(教師可提示學生的函數值與1有關,可以用1來起橋梁作用)
最后由學生說出 >1,<1,>。
解決后由教師小結比較大小的方法
(1) 構造函數的方法: 數的特征是同底不同指(包括可轉化為同底的)
(2) 搭橋比較法: 用特殊的數1或0。
三。鞏固練習
練習:比較下列各組數的大小(板書)
(1) 與 (2) 與 ;
(3) 與 ; (4) 與 。解答過程略
四。小結
1。的概念
2。的圖象和性質
3。簡單應用
五 。板書設計
高中數學的教案模版篇4
高二數學《橢圓的幾何性質1》教學反思
近期,我開設了一節公開課《橢圓的幾何性質1》。在新課程背景下,如何有效利用課堂教學時間,如何盡可能地提高學生的學習興趣,提高學生在課堂上45分鐘的學習效率,是一個很重要的課題。要教好高中數學,首先要對新課標和新教材有整體的把握和認識,這樣才能將知識系統化,注意知識前后的聯系,形成知識框架;其次要了解學生的現狀和認知結構,了解學生此階段的知識水平,以便因材施教;再次要處理好課堂教學中教師的教和學生的學的關系。課堂教學是實施高中新課程教學的主陣地,也是對學生進行思想品德教育和素質教育的主渠道。課堂教學不但要加強雙基而且要提高智力,發展學生的智力,而且要發展學生的創造力;不但要讓學生學會,而且要讓學生會學,特別是自學。尤其是在課堂上,不但要發展學生的智力因素,而且要提高學生在課堂45分鐘的學習效率,在有限的時間里,出色地完成教學任務。
一、要有明確的教學目標
教學目標分為三大領域,即認知領域、情感領域和動作技能領域。因此,在備課時要圍繞這些目標選擇教學的策略、方法和媒體,把內容進行必要的重組。備課時要依據教材,但又不拘泥于教材,靈活運用教材。在數學教學中,要通過師生的共同努力,使學生在知識、能力、技能、心理、思想品德等方面達到預定的目標,以提高學生的綜合素質。
二、要能突出重點、化解難點
每一堂課都要有教學重點,而整堂的教學都是圍繞著教學重點來逐步展開的。為了讓學生明確本堂課的重點、難點,教師在上課開始時,可以在黑板的一角將這些內容簡短地寫出來,以便引起學生的重視。講授重點內容,是整堂課的教學高潮。教師要通過聲音、手勢、板書等的變化或應用模型、投影儀等直觀教具,刺激學生的大腦,使學生能夠興奮起來,對所學內容在大腦中刻下強烈的印象,激發學生的學習興趣,提高學生對新知識的接受能力。尤其是在選擇例題時,例題最好是呈階梯式展現,我在準備例2時,就設置了三個小題,從易到難,便于學生理解接受。
三、要善于應用現代化教學手段
在新課標和新教材的背景下,教師掌握現代化的多媒體教學手段顯得尤為重要和迫切。現代化教學手段的顯著特點:
一是能有效地增大每一堂課的課容量;
二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;
三是直觀性強,容易激發起學生的學習興趣,有利于提高學生的學習主動性;
四是有利于對整堂課所學內容進行回顧和小結。
在課堂教學結束時,教師引導學生總結本堂課的內容,學習的重點和難點。同時通過投影儀,同步地將內容在瞬間躍然“幕”上,使學生進一步理解和掌握本堂課的內容。在課堂教學中,對于板演量大的內容,如解析幾何中的一些幾何圖形、一些簡單但數量較多的小問答題、文字量較多應用題,復習課中章節內容的總結、選擇題的訓練等等都可以借助于投影儀來完成。
四、根據具體內容,選擇恰當的教學方法
每一堂課都有規定的教學任務和目標要求。所謂“教學有法,但無定法”,教師要能隨著教學內容的變化,教學對象的變化,教學設備的變化,靈活應用教學方法。這節課是高三的復習課,我采取了讓學生自己回憶講述橢圓的幾何性質,教師補充的方法,改變了傳統的教師講,學生聽的模式,調動了學生的積極性。在例題的解決過程中,我也盡量讓學生多動手,多動腦,激發學生的思維。此外,我們還可以結合課堂內容,靈活采用談話、讀書指導、作業、練習等多種教學方法。在一堂課上,有時要同時使用多種教學方法。“教無定法,貴要得法”。只要能激發學生的學習興趣,提高學生的學習積極性,有助于學生思維能力的培養,有利于所學知識的.掌握和運用,都是好的教學方法。
五、關愛學生,及時鼓勵
高中新課程的宗旨是著眼于學生的發展。對學生在課堂上的表現,要及時加以總結,適當給予鼓勵,并處理好課堂的偶發事件,及時調整課堂教學。在教學過程中,教師要隨時了解學的對所講內容的掌握情況。如在講完一個概念后,讓學生復述;講完一個例題后,將解答擦掉,請中等水平學生上臺板演。有時,對于基礎差的學生,可以對他們多提問,讓他們有較多的鍛煉機會,同時教師根據學生的表現,及時進行鼓勵,培養他們的自信心,讓他們能熱愛數學,學習數學。
六、切實重視基礎知識、基本技能和基本方法
眾所周知,近年來數學試題的新穎性、靈活性越來越強,不少師生把主要精力放在難度較大的綜合題上,認為只有通過解決難題才能培養能力,因而相對地忽視了基礎知識、基本技能、基本方法的教學。教學中急急忙忙把公式、定理推證拿出來,或草草講一道例題就通過大量的題目來訓練學生。
其實定理、公式推證的過程就蘊含著重要的解題方法和規律,教師沒有充分暴露思維過程,沒有發掘其內在的規律,就讓學生去做題,試圖通過讓學生大量地做題去“悟”出某些道理。結果是多數學生“悟”不出方法、規律,理解浮淺,記憶不牢,只會機械地模仿,思維水平較低,有時甚至生搬硬套;照葫蘆畫瓢,將簡單問題復雜化。如果教師在教學中過于粗疏或學生在學習中對基本知識不求甚解,都會導致在考試中判斷錯誤。
不少學生說:現在的試題量過大,他們往往無法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低。可見,在切實重視基礎知識的落實中同時應重視基本技能和基本方法的培養。
七、滲透教學思想方法,培養綜合運用能力
常用的數學思想方法有:轉化的思想,類比歸納與類比聯想的思想,分類討論的思想,數形結合的思想以及配方法、換元法、待定系數法、反證法等。這些基本思想和方法分散地滲透在中學數學教材的條章節之中。在平時的教學中,教師要在傳授基礎知識的同時,有意識地、恰當在講解與滲透基本數學思想和方法,幫助學生掌握科學的方法,從而達到傳授知識,培養能力的目的,只有這樣。學生才能靈活運用和綜合運用所學的知識。
總之,在新課程背景下的數學課堂教學中,要提高學生在課堂45分鐘的學習效率,要提高教學質量,我們就應該多思考、多準備,充分做到用教材、備學生、備教法,提高自身的教學機智,發揮自身的主導作用。
高中數學的教案模版篇5
教學準備
教學目標
掌握三角函數模型應用基本步驟:
(1)根據圖象建立解析式;
(2)根據解析式作出圖象;
(3)將實際問題抽象為與三角函數有關的簡單函數模型·
教學重難點
·利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型·
教學過程
一、練習講解:《習案》作業十三的第3、4題
3、一根為Lcm的線,一端固定,另一端懸掛一個小球,組成一個單擺,小球擺動時,離開平衡位置的位移s(單位:cm)與時間t(單位:s)的函數關系是
(1)求小球擺動的周期和頻率;(2)已知g=24500px/s2,要使小球擺動的周期恰好是1秒,線的長度l應當是多少?
(1)選用一個函數來近似描述這個港口的水深與時間的函數關系,并給出整點時的`水深的近似數值
(精確到0·001)·
(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規定至少要有1·5米的安全間隙(船底與洋底的距離),該船何時能進入港口?在港口能呆多久?
(3)若某船的吃水深度為4米,安全間隙為1·5米,該船在2:00開始卸貨,吃水深度以每小時0·3
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發動螺旋槳。
練習:教材P65面3題
三、小結:1、三角函數模型應用基本步驟:
(1)根據圖象建立解析式;
(2)根據解析式作出圖象;
(3)將實際問題抽象為與三角函數有關的簡單函數模型·
2、利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型·
四、作業《習案》作業十四及十五。
高中數學的教案模版篇6
橢圓的簡單幾何性質教案
屆高三數學橢圓的簡單幾何性質
2.2橢圓的簡單幾何性質
教學目標:
(1)通過對橢圓標準方程的討論,理解并掌握橢圓的幾何性質;
(2)能夠根據橢圓的標準方程求焦點、頂點坐標、離心率并能根據其性質畫圖;
(3)培養學生分析問題、解決問題的能力,并為學習其它圓錐曲線作方法上的準備.
教學重點:橢圓的幾何性質.通過幾何性質求橢圓方程并畫圖
教學難點:橢圓離心率的概念的理解.
教學方法:講授法
課型:新授課
教學工具:多媒體設備
一、復習:
1.橢圓的定義,橢圓的焦點坐標,焦距.
2.橢圓的標準方程.
二、講授新課:
(一)通過提出問題、分析問題、解決問題激發學生的學習興趣,在掌握新知識的同時培養能力.
[在解析幾何里,是利用曲線的方程來研究曲線的幾何性質的,我們現在利用焦點在x軸上的橢圓的標準方程來研究其幾何性質.]
已知橢圓的標準方程為:
1.范圍
[我們要研究橢圓在直角坐標系中的范圍,就是研究橢圓在哪個區域里,只要討論方程中x,y的范圍就知道了.]
問題1方程中x、y的取值范圍是什么?
由橢圓的標準方程可知,橢圓上點的坐標(x,y)都適合不等式
≤1,≤1
即x2≤a2,y2≤b2
所以x≤a,y≤b
即-a≤x≤a,-b≤y≤b
這說明橢圓位于直線x=±a,y=±b所圍成的矩形里。
2.對稱性
復習關于x軸,y軸,原點對稱的點的坐標之間的關系:
點(x,y)關于x軸對稱的點的坐標為(x,-y);
點(x,y)關于y軸對稱的點的坐標為(-x,y);
點(x,y)關于原點對稱的點的坐標為(-x,-y);
問題2在橢圓的標準方程中①以-y代y②以-x代x③同時以-x代x、以-y代y,你有什么發現?
(1)在曲線的方程里,如果以-y代y方程不變,那么當點P(x,y)在曲線上時,它關于x的軸對稱點P’(x,-y)也在曲線上,所以曲線關于x軸對稱。
(2)如果以-x代x方程方程不變,那么說明曲線的對稱性怎樣呢?[曲線關于y軸對稱。]
(3)如果同時以-x代x、以-y代y,方程不變,這時曲線又關于什么對稱呢?[曲線關于原點對稱。]
歸納提問:從上面三種情況看出,橢圓具有怎樣的對稱性?
橢圓關于x軸,y軸和原點都是對稱的。
這時,橢圓的對稱軸是什么?[坐標軸]
橢圓的對稱中心是什么?[原點]
橢圓的對稱中心叫做橢圓的`中心。
3.頂點
[研究曲線的上的某些特殊點的位置,可以確定曲線的位置。要確定曲線在坐標系中的位置,常常需要求出曲線與x軸,y軸的交點坐標.]
問題3怎樣求曲線與x軸、y軸的交點?
在橢圓的標準方程里,
令x=0,得y=±b。這說明了B1(0,-b),B2(0,b)是橢圓與y軸的兩個交點。
令y=0,得x=±a。這說明了A1(-a,0),A2(a,0)是橢圓與x軸的兩個交點。
因為x軸,y軸是橢圓的對稱軸,所以橢圓和它的對稱軸有四個交點,這四個交點叫做橢圓的頂點。
線段A1A2,B1B2分別叫做橢圓的長軸和短軸。
它們的長A1A2=2a,B1B2=2b(a和b分別叫做橢圓的長半軸長和短半軸長)
觀察圖形,由橢圓的對稱性可知,橢圓短軸的端點到兩個焦點的距離相等,且等于長半軸長,即B1F1=B1F2=B2F1=B2F2=a
在Rt△OB2F2中,由勾股定理有
OF22=B2F22-OB22,即c2=a2-b2
這就是在前面一節里,我們令a2-c2=b2的幾何意義。
4.離心率
定義:橢圓的焦距與長軸長的比e=,叫做橢圓的離心率。
因為a>c>0,所以0<e<1.<p="">
問題4觀察圖形,說明當離心率e變化時,橢圓形狀是怎樣隨之變化的?
[調用幾何畫板,演示離心率變化(分越接近1和越接近0兩種情況討論)對橢圓形狀的影響]
得出結論:(1)e越接近1時,則c越接近a,從而b越小,因此橢圓越扁;
(2)e越接近0時,則c越接近0,從而b越接近于a,這時橢圓就越接近于圓。
當且僅當a=b時,c=0,這時兩個焦點重合于橢圓的中心,圖形變成圓。
當e=1時,圖形變成了一條線段。[為什么?留給學生課后思考]
5.例題
例1求橢圓16x2+25y2=400的長軸和短軸的長、離心率、焦點和頂點的坐標,并用描點法畫出它的圖形.
[根據剛剛學過的橢圓的幾何性質知,橢圓長軸長2a,短軸長2b,該方程中的a=?b=?c=?因為題目給出的橢圓方程不是標準方程,所以必須先把它轉化為標準方程,再討論它的幾何性質]
解:把已知方程化為標準方程,這里a=5,b=4,所以c==3
因此,橢圓的長軸和短軸長分別是2a=10,2b=8
離心率e==
兩個焦點分別是F1(-3,0),F2(3,0),
四個頂點分別是A1(-5,0)A1(5,0)A1(0,-4)F1(0,4).
[提問:怎樣用描點法畫出橢圓的圖形呢?我們可以根據橢圓的對稱性,先畫出第一象限內的圖形。]
將已知方程變形為,根據
在0≤x≤5的范圍內算出幾個點的坐標(x,y)
x012345
y43.93.73.22.40
先描點畫出橢圓的一部分,再利用橢圓的對稱性畫出整個橢圓(如圖)
說明:本題在畫圖時,利用了橢圓的對稱性。利用圖形的幾何性質,可以簡化畫圖過程,保證圖形的準確性。
根據橢圓的幾何性質,用下面的方法可以快捷地畫出反映橢圓基本形狀和大小的草圖:
(1)以橢圓的長軸、短軸為鄰邊畫矩形;
(2)由矩形四邊的中點確定橢圓的四個頂點;
(3)用平滑的曲線將四個頂點連成一個橢圓。
[畫圖時要注意它們的對稱性及頂點附近的平滑性]
(四)練習
填空:已知橢圓的方程是9x2+25y2=225,
(1)將其化為標準方程是_________________.
(2)a=___,b=___,c=___.
(3)橢圓位于直線________和________所圍成的________區域里.
橢圓的長軸、短軸長分別是____和____,離心率e=_____,兩個焦點分別是_______、______,四個頂點分別是______、______、______、_______.
例2、求符合下列條件的橢圓的標準方程:
(1)經過點(-3,0)、(0,-2);
(2)長軸的長等于20,離心率等于0.6
例3點與定點的距離和它到直線的距離之比是常數,求點的軌跡.
(教師分析――示范書寫)
例4、如圖,一種電影放映燈泡的反射鏡面是旋轉橢圓面(橢圓繞其對稱軸旋轉一周形成的曲面)的一部分。過對稱軸的截口ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F1上,片門位于另一個焦點F2上,由橢圓一個焦點F1發出的光線,經過旋轉橢圓面反射后集中到另一個焦點F2。已知AC^F1F2,F1A=2.8cm,F1F2=4.5cm,求截口ABC所在橢圓的方程。
三、課堂練習:
①比較下列每組橢圓的形狀,哪一個更圓,哪一個更扁?
⑴與⑵與(學生口答,并說明原因)
②求適合下列條件的橢圓的標準方程.
⑴經過點
⑵長軸長是短軸長的倍,且經過點
⑶焦距是,離心率等于
(學生演板,教師點評)
焦點在x軸、y軸上的橢圓的幾何性質對比.
四、小結
(1)理解橢圓的簡單幾何性質,給出方程會求橢圓的焦點、頂點和離心率;
(2)了解離心率變化對橢圓形狀的影響;
(3)通過曲線的方程研究曲線的幾何性質并畫圖是解析幾何的基本方法.
五、布置作業
課本習題2.1的6、7、8題
課后思考:
1、橢圓上到焦點和中心距離最大和最小的點在什么地方?
2、點M(x,y)與定點F(c,0)的距離和它到定直線l:x=的距離的比是常數(a>c>0),求點M軌跡,并判斷曲線的形狀。
3、接本學案例3,問題2,若過焦點F2作直線與AB垂直且與該橢圓相交于M、N兩點,當△F1MN的面積為70時,求該橢圓的方程。
高中數學的教案模版篇7
如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的`公比,公比通常用字母q表示。
(1)等比數列的通項公式是:An=A1×q^(n-1)
若通項公式變形為an=a1/q-q^n(n∈N-),當q>0時,則可把an看作自變量n的函數,點(n,an)是曲線y=a1/q-q^x上的一群孤立的點。
(2)任意兩項am,an的關系為an=am·q^(n-m)
(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。
(5)等比求和:Sn=a1+a2+a3+.......+an
①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
②當q=1時,Sn=n×a1(q=1)
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數的等比數列各項取同底數數后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。
高中數學的教案模版篇8
教學內容背景材料:
義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合
教學目標:
1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。
2、經歷探索簡單事物排列與組合規律的過程。
3、培養學生有序地全面地思考問題的意識。
4、感受數學與生活的緊密聯系,培養學生學習數學的興趣和用數學方法解決問題的意識。
教學重點:
經歷探索簡單事物排列與組合規律的過程。
教學難點:
初步理解簡單事物排列與組合的不同。
教具準備:
乒乓球、衣服圖片、紙箱、每組三張數字卡片、吹塑紙數字卡片。
一、情境導入,展開教學
今天,王老師要帶大家去“數學廣角”里做游戲,可是,我把游戲要用的材料都放在這個密碼包里。你們想解開密碼取出游戲材料嗎?(想)我給大家提供解碼的3個信息。
1.好,接下來老師提供解碼的第一個信息:密碼是一個兩位數。(學生在兩位數里猜)(你們猜的對不對呢?請聽第二個解碼信息)
2.下面,提供解碼的第二個信息:密碼是由2和7組成的(學生說出27和72)。能說說看你是怎么想的嗎?
3.下面,提供解碼的第三個信息:剛才說了密碼可能是27也可能是72。其實這個密碼和老師的年齡有關。哪個才是真正的密碼是?(學生說出是27)到底是不是27呢?請看(教師出示密碼)。真的是27,恭喜大家解碼成功!
二、多種活動,體驗新知
1、感知排列
師:請小朋友先到“數字宮”做個排數字游戲,好嗎?這有兩張數字卡片(1、2)(老師從密碼包里拿出),你能擺出幾個兩位數?(用數字卡擺一擺)
生:我擺了兩個不同的數字12和21。(教師板書)
師:同學們想得真好。我又請來了一位好朋友數字3,現在有三個數字1、2、3,讓大家寫兩位數,你們不會了吧?(會)別吹牛!(真的會)好,下面大家分組合作,組長記錄。看看你們能夠寫出幾個不同的兩位數,注意不要重復,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。好,開始。
學生活動教師巡視并參與學生活動。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)哪組同學來給大家匯報一下。(教師板書結果。)有沒有需要補充的呀?
2、探討排列方法。
有的小組擺出4個不同的兩位數,有的小組擺出6個不同的兩位數,有什么好的方法能保證既不重復,也不漏掉數呢?還請大家分組討論。看一看哪組同學的方法最好!(小組討論,分組交流,學生總結方法。)哪組同學來給大家匯報一下你們的想法?
方法1:我擺出12,然后再顛倒就是21,再擺23,顛倒后就是32,再擺13,顛倒后就是31,一共可以擺出6個兩位數。
方法2:我先把數字1放在十位上,然后把數字2和3分別放在個位組成12和13;我再把數字2放在十位上,然后把數字1和3分別放在個位組成21和23;我再把數字3放在十位上,然后把數字1和2分別放在個位上組成31和32,一共擺出了6個兩位數。3、老師和學生共同評議方法:讓學生選擇自己喜歡的方法再擺一擺,學生試著總結。(如果學生說不出方法2,老師就直接告訴學生)
3、感知組合。
①師:你們真是一群善于動腦的好孩子。來,咱們握握手,祝賀祝賀!加油!123
②提出問題:從大家剛才握手,老師想出了一個數學問題:三個小朋友,每兩個人只能握一次手,一共要握幾次手呢?想一想!
生1:6次!
生2:4次!
師:到底是幾次呢?請小組長作裁判,小組內的三個同學,試一試,到底是幾次?
③學生匯報表演。小組長指揮說明。哪組同學愿意給大家表演一下?他們握手,咱們一起來數吧!教師引導學生一起數握手的次數。(注意握過小朋友一邊休息)
④師問:A和B握手了嗎?B和A握手了嗎?這算一次還是兩次呀?
⑤小結:看來,兩個人相互握手,只能算一次,和順序無關。剛才排數,交換數的位置,就變成另一個數了,這和順序有關。
三、反饋練習,加深理解
下面大家看這是什么呀?(老師從密碼包里拿出一個乒乓球)(乒乓球)這個是我昨天專門買來的。定價5角。當時我的口袋里有1張5角的、2張2角,還有5個1角的硬幣。(師出示所述人民幣)大家想一想我有多少種方法付給老板錢呢?(老師引導學生有序的說出付錢的四種方法)
有了乒乓球,老師就可以教大家打乒乓球了。不過我要先考考大家。每兩個人進行一場比賽,三個人要比幾場?(指名答。)好的,大家真能干。下課老師就教你們的乒乓球好嗎?(好)。
今天是幾月幾日?(12月1日)哦!快到元旦了。小明準備在數學廣角舉辦的元旦晚會上露一手。來一個時裝表演。他準備了4件衣服(教師貼出2件上衣和2件褲子),請你幫他設計一下,有幾種穿法?誰來說一說?(指名答出四種穿法并演示)
大家感覺一下只有4種穿法,是不是有點少了呀?(是)小明也和大家想到一塊去了。于是他又用自己的零花錢買了一條黑褲子(貼出)。大家再想一想現在一共有多少種穿法了呀?(6種)除了剛才的4種,還有哪2種,誰來說一說?(生答完后,老師再引導學生有序地回憶6種穿法)同學們真聰明。我在這里代表小明向大家說一聲:謝謝了!(沒關系)。對了。到時候我們一定要去看小明的精彩表演!好不好?(好)
四、游戲活動,拓展應用
1、老師看大家學得這么開心,我們來做個抽獎游戲,想參加嗎?每個小朋友都有中獎的機會哦。
①教師出示4個號球:老師這這里有四個號球:2、5、7、8。
②什么樣的號碼能中獎呢?我給你們透露點信息:中獎號碼就是從這4個數中選出的兩個數組成的兩位數。猜猜,什么號碼可能中獎?這個號碼可能中獎。再猜?你這個號碼也可能中獎。看來,可能中獎的號碼有很多個。有什么好辦法肯定能中獎?(把你認為能中獎的號碼都寫出來吧)(把用這四個數能組成的所有兩位數都寫出來,教師巡視,有的孩子寫出來8個兩位數,她還在繼續寫,看來不止8個。你寫得越多你中獎的可能就越大)
③寫好了嗎?大家推舉一個人來摸獎吧。老師來當公證員行不行?學生先摸出一個球。中獎號碼的最前面一個數出來了,是2,那中獎號碼可能是?25、27、28。再摸一個球。中獎號碼是?
④你中獎了嗎?把你寫出的這個數圈出來。同桌互相看看,如果你同位中獎了,請你給他畫一面小紅旗。
⑤出示所有結果:孩子們,你剛才一共寫出了多少個兩位數?用2、5、7、8能組成的兩位數究竟有多少個呢?咱們用剛才先固定最前面一位數的辦法把這些數都排出來吧!老師寫,你們說,好嗎?
2、老師給今天這節課表現最好的三位同學一張合影,請同學們想一想,三個人站成一行,一共有多少種不同的排法?(指名答,教師總結)
這種排法剛才有沒有呀?我也糊涂了。怎樣才能搞清楚呢?對了,我們也可以用剛才先固定最前面一位數的方法來排一排。(教師引導學生有順序的排一排)這樣有順序的排一下,我們都清楚了。看來我們以后,不管在生活和學習中,做什么事情,想什么問題都要有順序的思考,這樣才能考慮全面。其實生活中有許多有趣的數學問題,不管有多難,只要大家肯動腦筋,就一定能解決。對不對?(對)
五、全課總結,升華情感
在數學廣角中還有許多地方等著大家去游玩,由于時間關系,今天我們大家就玩到這里。今天你這節課最高興的是什么事?
六、板書設計
排列組合
121232578
1221122331252728
213213525758
727578
828587
高中數學的教案模版篇9
教學目標:
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
(2)理解直線與二元一次方程的關系及其證明
(3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.
教學重點、難點:直線方程的一般式.直線與二元一次方程(、不同時為0)的對應關系及其證明.
教學用具:計算機
教學方法:啟發引導法,討論法
教學過程:
下面給出教學實施過程設計的簡要思路:
教學設計思路:
(一)引入的設計
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.
肯定學生回答,并糾正學生中不規范的表述.再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.
肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.
啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節主體內容教學的設計
這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學生或獨立研究,或合作研究,教師巡視指導.
經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.
當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.
當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.
綜合兩種情況,我們得出如下結論:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程.
至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”.
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統一的形式.
這樣上邊的結論可以表述如下:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.
啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?
師生共同討論,評價不同思路,達成共識:
回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即
(1)當時,方程可化為
這是表示斜率為、在軸上的截距為的直線.
(2)當時,由于、不同時為0,必有,方程可化為
這表示一條與軸垂直的直線.
因此,得到結論:
在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.
為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.
(三)練習鞏固、總結提高、板書和作業等環節的設計
略
高中數學的教案模版篇10
教學目標
知識目標等差數列定義等差數列通項公式
能力目標掌握等差數列定義等差數列通項公式
情感目標培養學生的觀察、推理、歸納能力
教學重難點
教學重點等差數列的概念的理解與掌握
等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用
教學過程
由__《紅高粱》主題曲“酒神曲”引入等差數列定義
問題:多媒體演示,觀察————發現?
一、等差數列定義:
一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。
例1:觀察下面數列是否是等差數列:…。
二、等差數列通項公式:
已知等差數列{an}的首項是a1,公差是d。
則由定義可得:
a2—a1=d
a3—a2=d
a4—a3=d
……
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。
分析:知道a1,d,求an。代入通項公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差數列10,8,6,4…的第20項。
分析:根據a1=10,d=—2,先求出通項公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
練習
1、判斷下列數列是否為等差數列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
2、等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在數列{an}中a1=1,an=an+1+4,則a10=。
提示:d=an+1—an=—4
教師繼續提出問題
已知數列{an}前n項和為……
作業
P116習題3。21,2