高中數(shù)學(xué)萬(wàn)能教案
教案是指教學(xué)活動(dòng)的計(jì)劃和組織安排,包括教學(xué)目標(biāo)、教學(xué)內(nèi)容、教學(xué)方法、教學(xué)資源、評(píng)價(jià)方式等方面的設(shè)計(jì)。下面是一些高中數(shù)學(xué)萬(wàn)能教案免費(fèi)閱讀下載,希望對(duì)大家寫(xiě)高中數(shù)學(xué)萬(wàn)能教案有用。
高中數(shù)學(xué)萬(wàn)能教案篇1
教學(xué)目標(biāo):
1、使學(xué)生通過(guò)觀察、操作、實(shí)驗(yàn)等活動(dòng),找出簡(jiǎn)單事物的排列組合規(guī)律。
2、培養(yǎng)學(xué)生初步的觀察、分析和推理能力以及有順序地、全面地思考問(wèn)題的意識(shí)。
3、使學(xué)生感受數(shù)學(xué)在現(xiàn)實(shí)生活中的廣泛應(yīng)用,嘗試用數(shù)學(xué)的方法來(lái)解決實(shí)際生活中的問(wèn)題。使學(xué)生在數(shù)學(xué)活動(dòng)中養(yǎng)成與人合作的良好習(xí)慣。
教學(xué)過(guò)程:
一、創(chuàng)設(shè)增境,激發(fā)興趣。
師:今天我們要去"數(shù)學(xué)廣角樂(lè)園"游玩,你們想去嗎?
二、操作探究,學(xué)習(xí)新知。
<一>組合問(wèn)題
l、看一看,說(shuō)一說(shuō)
師:那我們先在家里挑選穿上漂亮的衣服吧。(課件出示主題圖)
師引導(dǎo)思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學(xué)生說(shuō)一說(shuō))
2、想一想,擺一擺
(l)引導(dǎo)討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復(fù)呢?
①學(xué)生小組討論交流,老師參與小組討論。
②學(xué)生匯報(bào)
(2)引導(dǎo)操作:小組同學(xué)互相合作,把你們?cè)O(shè)計(jì)的穿法有序的貼在展示板上。(要求:小組長(zhǎng)拿出學(xué)具衣服圖片、展示板)
①學(xué)生小組合作操作擺,教師巡視參與小組活動(dòng)。
②學(xué)生展示作品,介紹搭配方案。
③生生互相評(píng)價(jià)。
(3)師引導(dǎo)觀察:
第一種方案(按上裝搭配下裝)有幾種穿法?(4種)
第二種方案(按下裝搭配上裝)有幾種穿法?(4種)
師小結(jié):不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復(fù)、不遺漏的把所有的方法找出來(lái)。在今后的學(xué)習(xí)和生活中,我們還會(huì)遇到許多這樣的問(wèn)題,我們都可以運(yùn)用有序的思考方法來(lái)解決它們。
<二>排列問(wèn)題
師:數(shù)學(xué)廣角樂(lè)園到了,不過(guò)進(jìn)門(mén)之前我們必須找到開(kāi)門(mén)密碼。(課件出示課件密碼門(mén))
密碼是由1、2、3組成的兩位數(shù).
(1)小組討論擺出不同的兩位數(shù),并記下結(jié)果。
(2)學(xué)生匯報(bào)交流(老師根據(jù)學(xué)生的回答,點(diǎn)擊課件展示密碼)
(3)生生相互評(píng)價(jià)。方法一:每次拿出兩張數(shù)字卡片能擺出不同的兩位數(shù);
方法二:固定十位上的數(shù)字,交換個(gè)位數(shù)字得到不同的兩位數(shù);
方法三:固定個(gè)位上的數(shù)字,交換十位數(shù)字得到不同的兩位數(shù).
師小結(jié):三種方法雖然不同,但都能正確并有序地?cái)[出6個(gè)不同的兩位數(shù),同學(xué)們可以用自己喜歡的方法.
三、課堂實(shí)踐,鞏固新知。
1、乒乓球賽場(chǎng)次安排。
師:我們先去活動(dòng)樂(lè)園看看,這兒正好有乒乓球比賽呢.(課件出示情境圖)
(l)老師提出要求:每?jī)蓚€(gè)運(yùn)動(dòng)員之間打一場(chǎng)球賽,一共要比幾場(chǎng)?
(2)學(xué)生獨(dú)立思考.
(3)指名學(xué)生匯報(bào).規(guī)
2、路線選擇。(課件展示游玩景點(diǎn)圖)
師:我們?nèi)ス珗@看看吧。途中要經(jīng)過(guò)游戲樂(lè)園。
(l)師引導(dǎo)觀察:從活動(dòng)樂(lè)園到游戲樂(lè)園有幾條路線?哪幾條?(甲,乙兩條)從游戲樂(lè)園去公園有幾條路線?哪幾條?(A,B,C三條)(根據(jù)學(xué)生的回答課件展示)
從活動(dòng)樂(lè)園到時(shí)公園到底有幾種不同的走法?
(2)學(xué)生獨(dú)立思索后小組交流。
(3)全班同學(xué)互相交流。
3、照像活動(dòng)。
師:我們來(lái)到公園,這兒的景色真不錯(cuò),大家照幾張像吧.
師提出要求:攝影師要求三名同學(xué)站成一排照像,每小組根據(jù)每次合影人數(shù)(雙人照或三人照)設(shè)計(jì)排列方案,由組長(zhǎng)作好活動(dòng)記錄。
(1)小組活動(dòng),老師參與小組活動(dòng)。
(2)各小組展示記錄方案。
(3)師生共同評(píng)價(jià)。
4、欣賞照片.
師:在同學(xué)們照像的同時(shí),小麗一家三口人也正在照像呢,看看她們是怎樣照的.(課件展示照片集欣賞)
四、總結(jié)
今天的游玩到此結(jié)束,同學(xué)們互相握手告別好嗎?如果小組里的四個(gè)同學(xué)每?jī)扇宋找淮问郑还惨諑状问郑?/p>
高中數(shù)學(xué)萬(wàn)能教案篇2
一、教學(xué)目標(biāo)
知識(shí)與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過(guò)程與方法:
會(huì)建立直角坐標(biāo)系討論任意角,能判斷象限角,會(huì)書(shū)寫(xiě)終邊相同角的集合;掌握區(qū)間角的集合的書(shū)寫(xiě)。
情感態(tài)度與價(jià)值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識(shí)。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
任意角概念的理解;區(qū)間角的集合的書(shū)寫(xiě)。
教學(xué)難點(diǎn):
終邊相同角的集合的表示;區(qū)間角的集合的書(shū)寫(xiě)。
三、教學(xué)過(guò)程
(一)導(dǎo)入新課
1、回顧角的定義
①角的第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
(二)教學(xué)新課
1、角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所形成的圖形。
②角的名稱:
注意:
⑴在不引起混淆的情況下,“角α”或“∠α”可以簡(jiǎn)化成“α”;
⑵零角的終邊與始邊重合,如果α是零角α=0°;
⑶角的概念經(jīng)過(guò)推廣后,已包括正角、負(fù)角和零角。
⑤練習(xí):請(qǐng)說(shuō)出角α、β、γ各是多少度?
2、象限角的概念:
①定義:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學(xué)萬(wàn)能教案篇3
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實(shí)際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對(duì)數(shù)列的知識(shí)進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對(duì)比的依據(jù)。
2、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)
a在知識(shí)上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運(yùn)用。
b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會(huì)函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來(lái)研究數(shù)列,培養(yǎng)學(xué)生的知識(shí)、方法遷移能力;通過(guò)階梯性練習(xí),提高學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
c在情感上:通過(guò)對(duì)等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點(diǎn)和難點(diǎn)
根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點(diǎn)為:
①等差數(shù)列的概念。
②等差數(shù)列的通項(xiàng)公式的推導(dǎo)過(guò)程及應(yīng)用。
由于學(xué)生第一次接觸不完全歸納法,對(duì)此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項(xiàng)公式是這節(jié)課的一個(gè)難點(diǎn)。同時(shí),學(xué)生對(duì)“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實(shí)際問(wèn)題是本節(jié)課的另一個(gè)難點(diǎn)。
二、學(xué)情分析對(duì)于三中的高一學(xué)生,知識(shí)經(jīng)驗(yàn)已較為豐富,他們的智力發(fā)展已到了形式運(yùn)演階段,具備了教強(qiáng)的抽象思維能力和演繹推理能力,所以我在授課時(shí)注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點(diǎn),從而促進(jìn)思維能力的進(jìn)一步發(fā)展。
二、教法分析
針對(duì)高中生這一思維特點(diǎn)和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過(guò)問(wèn)題激發(fā)學(xué)生求知欲,使學(xué)生主動(dòng)參與數(shù)學(xué)實(shí)踐活動(dòng),以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問(wèn)題。
三、學(xué)法指導(dǎo)在引導(dǎo)分析時(shí),留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時(shí)鼓勵(lì)學(xué)生大膽質(zhì)疑,圍繞中心各抒己見(jiàn),把思路方法和需要解決的問(wèn)題弄清。
四、教學(xué)程序
本節(jié)課的教學(xué)過(guò)程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個(gè)教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.從函數(shù)觀點(diǎn)看,數(shù)列可看作是定義域?yàn)開(kāi)_________對(duì)應(yīng)的一列函數(shù)值,從而數(shù)列的通項(xiàng)公式也就是相應(yīng)函數(shù)的______ 。(N﹡;解析式)
通過(guò)練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問(wèn)題作準(zhǔn)備。
2. 小明目前會(huì)100個(gè)單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺(jué)地每天忘掉2個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①
3. 小芳只會(huì)5個(gè)單詞,他決定從今天起每天背記10個(gè)單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②
通過(guò)練習(xí)2和3 引出兩個(gè)具體的等差數(shù)列,初步認(rèn)識(shí)等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識(shí)創(chuàng)設(shè)問(wèn)題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個(gè)數(shù)列特點(diǎn),引出等差數(shù)列的概念,對(duì)問(wèn)題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。
(二) 新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個(gè)數(shù)列,從第二項(xiàng)開(kāi)始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列, 這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來(lái)表示。強(qiáng)調(diào):
① “從第二項(xiàng)起”滿足條件;
②公差d一定是由后項(xiàng)減前項(xiàng)所得;
③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù)(強(qiáng)調(diào)“同一個(gè)常數(shù)” );
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言,歸納出數(shù)學(xué)表達(dá)式:
an+1-an=d (n≥1)
同時(shí)為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一個(gè)數(shù)列公差<0, 第二個(gè)數(shù)列公差>0,第三個(gè)數(shù)列公差=0
由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0
高中數(shù)學(xué)萬(wàn)能教案篇4
1.如圖,已知直線L:的右焦點(diǎn)F,且交橢圓C于A、B兩點(diǎn),點(diǎn)A、B在直線上的射影依次為點(diǎn)D、E。
(1)若拋物線的焦點(diǎn)為橢圓C的上頂點(diǎn),求橢圓C的方程;
(2)(理)連接AE、BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出N點(diǎn)的坐標(biāo),并給予證明;否則說(shuō)明理由。
(文)若為x軸上一點(diǎn),求證:
2.如圖所示,已知圓定點(diǎn)A(1,0),M為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足,點(diǎn)N的軌跡為曲線E。
(1)求曲線E的方程;
(2)若過(guò)定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足的取值范圍。
3.設(shè)橢圓C:的左焦點(diǎn)為F,上頂點(diǎn)為A,過(guò)點(diǎn)A作垂直于AF的直線交橢圓C于另外一點(diǎn)P,交x軸正半軸于點(diǎn)Q,且
⑴求橢圓C的離心率;
⑵若過(guò)A、Q、F三點(diǎn)的圓恰好與直線
l:相切,求橢圓C的方程.
4.設(shè)橢圓的離心率為e=
(1)橢圓的左、右焦點(diǎn)分別為F1、F2、A是橢圓上的一點(diǎn),且點(diǎn)A到此兩焦點(diǎn)的距離之和為4,求橢圓的方程.
(2)求b為何值時(shí),過(guò)圓x2+y2=t2上一點(diǎn)M(2,)處的切線交橢圓于Q1、Q2兩點(diǎn),而且OQ1OQ2.
5.已知曲線上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(guò)(0,-2)的直線與曲線交于C、D兩點(diǎn),且為坐標(biāo)原點(diǎn)),求直線的方程.
6.已知橢圓的左焦點(diǎn)為F,左、右頂點(diǎn)分別為A、C,上頂點(diǎn)為B.過(guò)F、B、C作⊙P,其中圓心P的坐標(biāo)為(m,n).
(Ⅰ)當(dāng)m+n0時(shí),求橢圓離心率的范圍;
(Ⅱ)直線AB與⊙P能否相切?證明你的結(jié)論.
7.有如下結(jié)論:圓上一點(diǎn)處的切線方程為,類比也有結(jié)論:橢圓處的切線方程為,過(guò)橢圓C:的右準(zhǔn)線l上任意一點(diǎn)M引橢圓C的兩條切線,切點(diǎn)為A、B.
(1)求證:直線AB恒過(guò)一定點(diǎn);(2)當(dāng)點(diǎn)M在的縱坐標(biāo)為1時(shí),求△ABM的面積
8.已知點(diǎn)P(4,4),圓C:與橢圓E:有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;
(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.
9.橢圓的對(duì)稱中心在坐標(biāo)原點(diǎn),一個(gè)頂點(diǎn)為,右焦點(diǎn)與點(diǎn)的距離為。
(1)求橢圓的方程;
(2)是否存在斜率的直線:,使直線與橢圓相交于不同的兩點(diǎn)滿足,若存在,求直線的傾斜角;若不存在,說(shuō)明理由。
10.橢圓方程為的一個(gè)頂點(diǎn)為,離心率。
(1)求橢圓的方程;
(2)直線:與橢圓相交于不同的兩點(diǎn)滿足,求。
11.已知橢圓的左焦點(diǎn)為F,左右頂點(diǎn)分別為A,C上頂點(diǎn)為B,過(guò)F,B,C三點(diǎn)作,其中圓心P的坐標(biāo)為.
(1)若橢圓的離心率,求的方程;
(2)若的圓心在直線上,求橢圓的方程.
12.已知直線與曲線交于不同的兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若,求證:曲線是一個(gè)圓;
(Ⅱ)若,當(dāng)且時(shí),求曲線的離心率的取值范圍.
13.設(shè)橢圓的左、右焦點(diǎn)分別為、,A是橢圓C上的一點(diǎn),且,坐標(biāo)原點(diǎn)O到直線的距離為.
(1)求橢圓C的方程;
(2)設(shè)Q是橢圓C上的一點(diǎn),過(guò)Q的直線l交x軸于點(diǎn),較y軸于點(diǎn)M,若,求直線l的方程.
14.已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸的負(fù)半軸上,過(guò)其上一點(diǎn)的切線方程為為常數(shù)).
(I)求拋物線方程;
(II)斜率為的直線PA與拋物線的另一交點(diǎn)為A,斜率為的直線PB與拋物線的另一交點(diǎn)為B(A、B兩點(diǎn)不同),且滿足,求證線段PM的中點(diǎn)在y軸上;
(III)在(II)的條件下,當(dāng)時(shí),若P的坐標(biāo)為(1,-1),求PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)的取值范圍.
15.已知?jiǎng)狱c(diǎn)A、B分別在x軸、y軸上,且滿足AB=2,點(diǎn)P在線段AB上,且
設(shè)點(diǎn)P的軌跡方程為c。
(1)求點(diǎn)P的軌跡方程C;
(2)若t=2,點(diǎn)M、N是C上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)動(dòng)點(diǎn)(M、N不在坐標(biāo)軸上),點(diǎn)Q
坐標(biāo)為求△QMN的面積S的最大值。
16.設(shè)上的兩點(diǎn),
已知,,若且橢圓的離心率短軸長(zhǎng)為2,為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線AB過(guò)橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB的斜率k的值;
(Ⅲ)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由
17.如圖,F(xiàn)是橢圓(a0)的一個(gè)焦點(diǎn),A,B是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率為.點(diǎn)C在x軸上,BCBF,B,C,F(xiàn)三點(diǎn)確定的圓M恰好與直線l1:相切.
(Ⅰ)求橢圓的方程:
(Ⅱ)過(guò)點(diǎn)A的直線l2與圓M交于PQ兩點(diǎn),且,求直線l2的方程.
18.如圖,橢圓長(zhǎng)軸端點(diǎn)為,為橢圓中心,為橢圓的右焦點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)記橢圓的上頂點(diǎn)為,直線交橢圓于兩點(diǎn),問(wèn):是否存在直線,使點(diǎn)恰為的垂心?若存在,求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.
19.如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過(guò)點(diǎn).直線交橢圓于兩不同的點(diǎn).
20.設(shè),點(diǎn)在軸上,點(diǎn)在軸上,且
(1)當(dāng)點(diǎn)在軸上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(2)設(shè)是曲線上的點(diǎn),且成等差數(shù)列,當(dāng)?shù)拇怪逼椒志€與軸交于點(diǎn)時(shí),求點(diǎn)坐標(biāo).
21.已知點(diǎn)是平面上一動(dòng)點(diǎn),且滿足
(1)求點(diǎn)的軌跡對(duì)應(yīng)的方程;
(2)已知點(diǎn)在曲線上,過(guò)點(diǎn)作曲線的兩條弦和,且,判斷:直線是否過(guò)定點(diǎn)?試證明你的結(jié)論.
22.已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,且經(jīng)過(guò)、、三點(diǎn).
(1)求橢圓的方程:
(2)若點(diǎn)D為橢圓上不同于、的任意一點(diǎn),,當(dāng)內(nèi)切圓的面積最大時(shí)。求內(nèi)切圓圓心的坐標(biāo);
(3)若直線與橢圓交于、兩點(diǎn),證明直線與直線的交點(diǎn)在直線上.
23.過(guò)直角坐標(biāo)平面中的拋物線的焦點(diǎn)作一條傾斜角為的直線與拋物線相交于A,B兩點(diǎn)。
(1)用表示A,B之間的距離;
(2)證明:的大小是與無(wú)關(guān)的定值,
并求出這個(gè)值。
24.設(shè)分別是橢圓C:的左右焦點(diǎn)
(1)設(shè)橢圓C上的點(diǎn)到兩點(diǎn)距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo)
(2)設(shè)K是(1)中所得橢圓上的動(dòng)點(diǎn),求線段的中點(diǎn)B的軌跡方程
(3)設(shè)點(diǎn)P是橢圓C上的任意一點(diǎn),過(guò)原點(diǎn)的直線L與橢圓相交于M,N兩點(diǎn),當(dāng)直線PM,PN的斜率都存在,并記為試探究的值是否與點(diǎn)P及直線L有關(guān),并證明你的結(jié)論。
25.已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(III)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足求的取值范圍.
26.如圖所示,已知橢圓:,、為
其左、右焦點(diǎn),為右頂點(diǎn),為左準(zhǔn)線,過(guò)的直線:與橢圓相交于、
兩點(diǎn),且有:(為橢圓的半焦距)
(1)求橢圓的離心率的最小值;
(2)若,求實(shí)數(shù)的取值范圍;
(3)若,,
求證:、兩點(diǎn)的縱坐標(biāo)之積為定值;
27.已知橢圓的左焦點(diǎn)為,左右頂點(diǎn)分別為,上頂點(diǎn)為,過(guò)三點(diǎn)作圓,其中圓心的坐標(biāo)為
(1)當(dāng)時(shí),橢圓的離心率的取值范圍
(2)直線能否和圓相切?證明你的結(jié)論
28.已知點(diǎn)A(-1,0),B(1,-1)和拋物線.,O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)A的動(dòng)直線l交拋物線C于M、P,直線MB交拋物線C于另一點(diǎn)Q,如圖.
(I)證明:為定值;
(II)若△POM的面積為,求向量與的夾角;
(Ⅲ)證明直線PQ恒過(guò)一個(gè)定點(diǎn).
29.已知橢圓C:上動(dòng)點(diǎn)到定點(diǎn),其中的距離的最小值為1.
(1)請(qǐng)確定M點(diǎn)的坐標(biāo)
(2)試問(wèn)是否存在經(jīng)過(guò)M點(diǎn)的直線,使與橢圓C的兩個(gè)交點(diǎn)A、B滿足條件(O為原點(diǎn)),若存在,求出的方程,若不存在請(qǐng)說(shuō)是理由。
30.已知橢圓,直線與橢圓相交于兩點(diǎn).
(Ⅰ)若線段中點(diǎn)的橫坐標(biāo)是,求直線的方程;
(Ⅱ)在軸上是否存在點(diǎn),使的值與無(wú)關(guān)?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
31.直線AB過(guò)拋物線的焦點(diǎn)F,并與其相交于A、B兩點(diǎn)。Q是線段AB的中點(diǎn),M是拋物線的準(zhǔn)線與y軸的交點(diǎn).O是坐標(biāo)原點(diǎn).
(I)求的取值范圍;
(Ⅱ)過(guò)A、B兩點(diǎn)分剮作此撒物線的切線,兩切線相交于N點(diǎn).求證:∥;
(Ⅲ)若P是不為1的正整數(shù),當(dāng),△ABN的面積的取值范圍為時(shí),求該拋物線的方程.
32.如圖,設(shè)拋物線()的準(zhǔn)線與軸交于,焦點(diǎn)為;以、為焦點(diǎn),離心率的橢圓與拋物線在軸上方的一個(gè)交點(diǎn)為.
(Ⅰ)當(dāng)時(shí),求橢圓的方程及其右準(zhǔn)線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線經(jīng)過(guò)橢圓的右焦點(diǎn),與拋物線交于、,如果以線段為直徑作圓,試判斷點(diǎn)與圓的位置關(guān)系,并說(shuō)明理由;
(Ⅲ)是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.
33.已知點(diǎn)和動(dòng)點(diǎn)滿足:,且存在正常數(shù),使得。
(1)求動(dòng)點(diǎn)P的軌跡C的方程。
(2)設(shè)直線與曲線C相交于兩點(diǎn)E,F(xiàn),且與y軸的交點(diǎn)為D。若求的值。
34.已知橢圓的右準(zhǔn)線與軸相交于點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn).
(I)求橢圓的方程;
(Ⅱ)是否存在過(guò)點(diǎn)且與軸不垂直的直線與橢圓交于、兩點(diǎn),使得,并說(shuō)明理由.
35.已知橢圓C:(.
(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)的直線與橢圓C交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率k的取值范圍;
(3)如圖,過(guò)原點(diǎn)任意作兩條互相垂直的直線與橢圓()相交于四點(diǎn),設(shè)原點(diǎn)到四邊形一邊的距離為,試求時(shí)滿足的條件.
36.已知若過(guò)定點(diǎn)、以()為法向量的直線與過(guò)點(diǎn)以為法向量的直線相交于動(dòng)點(diǎn).
(1)求直線和的方程;
(2)求直線和的斜率之積的值,并證明必存在兩個(gè)定點(diǎn)使得恒為定值;
(3)在(2)的條件下,若是上的兩個(gè)動(dòng)點(diǎn),且,試問(wèn)當(dāng)取最小值時(shí),向量與是否平行,并說(shuō)明理由。
37.已知點(diǎn),點(diǎn)(其中),直線、都是圓的切線.
(Ⅰ)若面積等于6,求過(guò)點(diǎn)的拋物線的方程;
(Ⅱ)若點(diǎn)在軸右邊,求面積的最小值.
38.我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題。
(1)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關(guān)系。
(2)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線
(m、n不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。
(3)試寫(xiě)出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。
(4)將(3)中得出的結(jié)論類比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。
39.已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)是準(zhǔn)線上的動(dòng)點(diǎn),直線交拋物線于兩點(diǎn),若點(diǎn)的縱坐標(biāo)為,點(diǎn)為準(zhǔn)線與軸的交點(diǎn).
(Ⅰ)求直線的方程;(Ⅱ)求的面積范圍;
(Ⅲ)設(shè),,求證為定值.
40.已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(III)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足求的取值范圍.
41.已知以向量為方向向量的直線過(guò)點(diǎn),拋物線:的頂點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)在該拋物線的準(zhǔn)線上.
(1)求拋物線的方程;
(2)設(shè)、是拋物線上的兩個(gè)動(dòng)點(diǎn),過(guò)作平行于軸的直線,直線與直線交于點(diǎn),若(為坐標(biāo)原點(diǎn),、異于點(diǎn)),試求點(diǎn)的軌跡方程。
42.如圖,設(shè)拋物線()的準(zhǔn)線與軸交于,焦點(diǎn)為;以、為焦點(diǎn),離心率的橢圓與拋物線在軸上方的一個(gè)交點(diǎn)為.
(Ⅰ)當(dāng)時(shí),求橢圓的方程及其右準(zhǔn)線的方程;
(Ⅱ)在(Ⅰ)的條件下,直線經(jīng)過(guò)橢圓的右焦點(diǎn),
與拋物線交于、,如果以線段為直徑作圓,
試判斷點(diǎn)與圓的位置關(guān)系,并說(shuō)明理由;
(Ⅲ)是否存在實(shí)數(shù),使得的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.
43.設(shè)橢圓的`一個(gè)頂點(diǎn)與拋物線的焦點(diǎn)重合,分別是橢圓的左、右焦點(diǎn),且離心率且過(guò)橢圓右焦點(diǎn)的直線與橢圓C交于兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)是否存在直線,使得.若存在,求出直線的方程;若不存在,說(shuō)明理由.
(Ⅲ)若AB是橢圓C經(jīng)過(guò)原點(diǎn)O的弦,MNAB,求證:為定值.
44.設(shè)是拋物線的焦點(diǎn),過(guò)點(diǎn)M(-1,0)且以為方向向量的直線順次交拋物線于兩點(diǎn)。
(Ⅰ)當(dāng)時(shí),若與的夾角為,求拋物線的方程;
(Ⅱ)若點(diǎn)滿足,證明為定值,并求此時(shí)△的面積
45.已知點(diǎn),點(diǎn)在軸上,點(diǎn)在軸的正半軸上,點(diǎn)在直線上,且滿足.
(Ⅰ)當(dāng)點(diǎn)在軸上移動(dòng)時(shí),求點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)、為軌跡上兩點(diǎn),且0,,求實(shí)數(shù),
使,且.
46.已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。
(1)已知橢圓的離心率;
(2)若的最大值為49,求橢圓C的方程.
高中數(shù)學(xué)萬(wàn)能教案篇5
教學(xué)目標(biāo)
1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問(wèn)題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問(wèn)題解決問(wèn)題的能力。
2、過(guò)程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問(wèn)題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問(wèn)題的解決)的過(guò)程呈現(xiàn)。啟動(dòng)觀察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過(guò)運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂(lè)趣。
3、情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
教學(xué)重難點(diǎn)
1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱一正、二定、三相等);
2、利用基本不等式求解實(shí)際問(wèn)題中的.最大值和最小值。
教學(xué)過(guò)程
一、創(chuàng)設(shè)情景,提出問(wèn)題;
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。
[問(wèn)]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?
本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式
在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
三、理解升華:
1、文字語(yǔ)言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識(shí)理解基本不等式
已知a,b是正數(shù),A是a,b的等差中項(xiàng),G是a,b的正的等比中項(xiàng),A與G有無(wú)確定的大小關(guān)系?
兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。
3、符號(hào)語(yǔ)言敘述:
4、探究基本不等式證明方法:
[問(wèn)]如何證明基本不等式?
(意圖在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。)
方法一:作差比較或由
展開(kāi)證明。
方法二:分析法(完成課本填空)
設(shè)計(jì)依據(jù):課本是學(xué)生了解世界的窗口和工具,所以,課本必須成為學(xué)生賴以學(xué)會(huì)學(xué)習(xí)的文本.在教學(xué)中要讓學(xué)生學(xué)會(huì)認(rèn)真看書(shū)、用心思考,養(yǎng)成講講議議、
動(dòng)手動(dòng)筆、仔細(xì)觀察、用心體會(huì)的好習(xí)慣,真正學(xué)會(huì)讀“數(shù)學(xué)書(shū)”。
點(diǎn)評(píng):證明方法叫做分析法,實(shí)際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法.
5、探究基本不等式的幾何意義:
借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生
幾何解釋實(shí)質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。
四、探究歸納
下列命題中正確的是
結(jié)論:
若兩正數(shù)的乘積為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的和有最小值;
若兩正數(shù)的和為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的乘積有最大值。
簡(jiǎn)記為:“一正、二定、三相等”。
五、領(lǐng)悟練習(xí):
公式應(yīng)用之二:(最優(yōu)化問(wèn)題)
設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中
(1)在學(xué)農(nóng)期間,生態(tài)園中有一塊面積為100m2的矩形茶地,為了保護(hù)茶葉的健康生長(zhǎng),學(xué)校決定用籬笆圍起來(lái),問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用籬笆最短。最短的籬笆是多少?
(2)現(xiàn)在學(xué)校倉(cāng)庫(kù)有一段長(zhǎng)為36m的籬笆,要圍成一個(gè)矩形菜園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大。最大面積是多少?
六、反思總結(jié),整合新知:
通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要
請(qǐng)教?
設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.
老師根據(jù)情況完善如下:
兩種思想:數(shù)形結(jié)合思想、歸納類比思想。
三個(gè)注意:基本不等式求函數(shù)的最大(小)值是注意:“一正二定三相等”
高中數(shù)學(xué)萬(wàn)能教案篇6
教學(xué)目標(biāo)
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個(gè)角度認(rèn)識(shí)單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡(jiǎn)化一些函數(shù)圖象的繪制過(guò)程.
2.通過(guò)函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過(guò)函數(shù)奇偶性概念的形成過(guò)程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過(guò)對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂(lè)于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識(shí)結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點(diǎn)難點(diǎn)分析
(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與認(rèn)識(shí).教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過(guò),但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語(yǔ)言去刻畫(huà)它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來(lái)說(shuō)是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒(méi)有意識(shí)到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點(diǎn).
三、教法建議
(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性認(rèn)識(shí)出發(fā),通過(guò)問(wèn)題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問(wèn)題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來(lái)解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語(yǔ)言表示出來(lái).在這個(gè)過(guò)程中對(duì)一些關(guān)鍵的詞語(yǔ)(某個(gè)區(qū)間,任意,都有)的理解與必要性的認(rèn)識(shí)就可以融入其中,將概念的形成與認(rèn)識(shí)結(jié)合起來(lái).
(2)函數(shù)單調(diào)性證明的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開(kāi)始,逐漸讓在數(shù)軸上動(dòng)起來(lái),觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫(xiě)出來(lái).經(jīng)歷了這樣的過(guò)程,再得到等式時(shí),就比較容易體會(huì)它代表的是無(wú)數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問(wèn)題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說(shuō)明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高中數(shù)學(xué)萬(wàn)能教案篇7
一、教學(xué)目標(biāo)設(shè)計(jì)
通過(guò)實(shí)例理解充分條件、必要條件的意義。
能夠在簡(jiǎn)單的問(wèn)題情境中判斷條件的充分性、必要性。
二、教學(xué)重點(diǎn)及難點(diǎn)
充分條件、必要條件的判斷;
充分條件、必要條件的判斷方法。
三、教學(xué)流程設(shè)計(jì)
四、教學(xué)過(guò)程設(shè)計(jì)
一、概念引入
早在戰(zhàn)國(guó)時(shí)期,《墨經(jīng)》中就有這樣一段話有之則必然,無(wú)之則未必不然,是為大故無(wú)之則必不然,有之則未必然,是為小故。
今天,在日常生活中,常聽(tīng)人說(shuō):這充分說(shuō)明,沒(méi)有這個(gè)必要等,在數(shù)學(xué)中,也講充分和必要,這節(jié)課,我們就來(lái)學(xué)習(xí)教材第一章第五節(jié)充分條件與必要條件。
二、概念形成
1、 首先請(qǐng)同學(xué)們判斷下列命題的真假
(1)若兩三角形全等,則兩三角形的面積相等。
(2)若三角形有兩個(gè)內(nèi)角相等,則這個(gè)三角形是等腰三角形。
(3)若某個(gè)整數(shù)能夠被4整除,則這個(gè)整數(shù)必是偶數(shù)。
(4) 若ab=0,則a=0。
解答:命題(2)、(3)、(4)為真。命題(4)為假;
2、請(qǐng)同學(xué)用推斷符號(hào)寫(xiě)出上述命題。
解答:(1)兩三角形全等 兩三角形的面積相等。
(2) 三角形有兩個(gè)內(nèi)角相等 三角形是等腰三角形。
(3) 某個(gè)整數(shù)能夠被4整除則這個(gè)整數(shù)必是偶數(shù);
(4)ab=0 a=0。
3、充分條件與必要條件
繼續(xù)結(jié)合上述實(shí)例說(shuō)明什么是充分條件、什么是必要條件。
若某個(gè)整數(shù)能夠被4整除則這個(gè)整數(shù)必是偶數(shù)中,我們稱某個(gè)整數(shù)能夠被4整除是這個(gè)整數(shù)必是偶數(shù)的充分條件,可以解釋為:只要某個(gè)整數(shù)能夠被4整除成立,這個(gè)整數(shù)必是偶數(shù)就一定成立;而稱這個(gè)整數(shù)必是偶數(shù)是某個(gè)整數(shù)能夠被4整除的必要條件,可以解釋成如果某個(gè)整數(shù)能夠被4整除 成立,就必須要這個(gè)整數(shù)必是偶數(shù)成立
充分條件:一般地,用、分別表示兩件事,如果這件事成立,可以推出這件事也成立,即,那么叫做的充分條件。[說(shuō)明]:①可以解釋為:為了使成立,具備條件就足夠了。②可進(jìn)一步解釋為:有它即行,無(wú)它也未必不行。③結(jié)合實(shí)例解釋為: x = 0 是 xy = 0 的充分條件,xy = 0不一定要 x = 0。)
必要條件:如果,那么叫做的必要條件。
[說(shuō)明]:①可以解釋為若,則叫做的必要條件,是的充分條件。②無(wú)它不行,有它也不一定行③結(jié)合實(shí)例解釋為:如 xy = 0是 x = 0的必要條件,若xy0,則一定有 x若xy = 0也不一定有 x = 0。
回答上述問(wèn)題(1)、(2)中的條件關(guān)系。
(1)中:兩三角形全等是兩三角形的面積相等的充分條件;兩三角形的面積相等是兩三角形全等的必要條件。
(2)中:三角形有兩個(gè)內(nèi)角相等是三角形是等腰三角形的充分條件;三角形是等腰三角形是三角形有兩個(gè)內(nèi)角相等的必要條件。
4、拓廣引申
把命題:若某個(gè)整數(shù)能夠被4整除,則這個(gè)整數(shù)必是偶數(shù)中的條件與結(jié)論分別記作與,那么,原命題與逆命題的真假同與之間有什么關(guān)系呢?
關(guān)系可分為四類:
(1)充分不必要條件,即,而
(2)必要不充分條件,即,而
(3)既充分又必要條件,即,又有
(4)既不充分也不必要條件,即,又有。
三、典型例題(概念運(yùn)用)
例1:(1)已知四邊形ABCD是凸四邊形,那么AC=BD是四邊形ABCD是矩形的什么條件?為什么?(課本例題p22例4)
(2) 是 的什么條件。
(3)a+b是1,b什么條件。
解:(1)AC=BD是四邊形ABCD是矩形的必要不充分條件。
(2)充分不必要條件。
(3)必要不充分條件。
[說(shuō)明]①如果把命題條件與結(jié)論分別記作與,則既要對(duì)進(jìn)行判斷,又要對(duì)進(jìn)行判斷。②要否定條件的充分性、必要性,則只需舉一反例即可。
例2:判斷下列電路圖中p與q的充要關(guān)系。其中p:開(kāi)關(guān)閉合;q:
燈亮。(補(bǔ)充例題)
[說(shuō)明]①圖中含有兩個(gè)開(kāi)關(guān)時(shí),p表示其中一個(gè)閉合,另一個(gè)情況不確定。②加強(qiáng)學(xué)科之間的橫向溝通,通過(guò)圖示,深化概念認(rèn)識(shí)。
例3、探討下列生活中名言名句的充要關(guān)系。(補(bǔ)充例題)
(1)頭發(fā)長(zhǎng),見(jiàn)識(shí)短。 (2)驕兵必?cái) ?/p>
(3)有志者事竟成。 (4)春回大地,萬(wàn)物復(fù)蘇。
(5)不入虎穴、焉得虎子 (6)四肢發(fā)達(dá),頭腦簡(jiǎn)單
[說(shuō)明]通過(guò)本例,充分調(diào)動(dòng)學(xué)生生活經(jīng)驗(yàn),使得抽象概念形象化。從而激發(fā)學(xué)生學(xué)習(xí)熱情。
四、鞏固練習(xí)
1、課本P/22練習(xí)1。5(1)
2:填表(補(bǔ)充)
p q p是q的
什么條件 q是p的
什么條件
兩個(gè)角相等 兩個(gè)角是對(duì)頂角
內(nèi)錯(cuò)角相等 兩直線平行
四邊形對(duì)角線相等 四邊形是平行邊形
a=b ac=bc
[說(shuō)明]通過(guò)練習(xí),及時(shí)鞏固所學(xué)新知,反饋教學(xué)效果。
五、課堂小結(jié)
1、本節(jié)課主要研究的內(nèi)容:
推斷符號(hào),
充分條件的意義 命題充分性、必要性的判斷。
必要條件的意義
2、 充分條件、必要條件判別步驟:
① 認(rèn)清條件和結(jié)論。
② 考察p q和q p的真假。
3、充分條件、必要條件判別技巧:
① 可先簡(jiǎn)化命題。
② 否定一個(gè)命題只要舉出一個(gè)反例即可。
③ 將命題轉(zhuǎn)化為等價(jià)的逆否命題后再判斷。
六、課后作業(yè)
書(shū)面作業(yè):課本P/24習(xí)題1。51,2,3。
五、教學(xué)設(shè)計(jì)說(shuō)明
1、充分條件、必要條件以及下節(jié)課中充要條件與集合的概念一樣涉及到數(shù)學(xué)的各個(gè)分支,用推出關(guān)系的形式給出它的定義,對(duì)高一學(xué)生只要求知道它的意義,并能判斷簡(jiǎn)單的充分條件與必要條件。
2、由于充要條件與命題的真假、命題的條件與結(jié)論的相互關(guān)系緊密相關(guān),為此,教學(xué)時(shí)可以從判斷命題的真假入手,來(lái)分析命題的條件對(duì)于結(jié)論來(lái)說(shuō),是否充分,從而引入充分條件的概念,進(jìn)而引入必要條件的概念。
3、教材中對(duì)充分條件、必要條件的定義沒(méi)有作過(guò)多的解釋說(shuō)明,為了讓學(xué)生能理解定義的合理性,在教學(xué)過(guò)程中,教師可以從一些熟悉的命題的條件與結(jié)論之間的關(guān)系來(lái)認(rèn)識(shí)充分條件的概念,從互為逆否命題的等價(jià)性來(lái)引出必要條件的概念。
4、由于這節(jié)課概念性、理論性較強(qiáng),一般的教學(xué)使學(xué)生感到枯燥乏味,為此,激發(fā)學(xué)生的學(xué)習(xí)興趣是關(guān)鍵。教學(xué)中始終要注意以學(xué)生為主,結(jié)合相關(guān)學(xué)科及學(xué)生生活經(jīng)驗(yàn)讓學(xué)生在自我思考、相互交流中去給概念下定義,去體會(huì)概念的本質(zhì)屬性。
高中數(shù)學(xué)萬(wàn)能教案篇8
今天我說(shuō)課的課題是《平面向量的概念》,這是江蘇省職業(yè)學(xué)校文化課教材《基礎(chǔ)模塊·下冊(cè)》第七章平面向量中的第一節(jié)的內(nèi)容,我將嘗試運(yùn)用新課改的理念、中職學(xué)生的認(rèn)知特點(diǎn)指導(dǎo)本節(jié)課的教學(xué),新課標(biāo)指出,學(xué)生是教學(xué)的主體,教師的教要本著從學(xué)生的認(rèn)知規(guī)律出發(fā),以學(xué)生活動(dòng)為主線,在原有知識(shí)的基礎(chǔ)上,建構(gòu)新的知識(shí)體系。下面我將以此為基礎(chǔ)從教材分析、學(xué)情分析、教法學(xué)法、教學(xué)過(guò)程、教學(xué)評(píng)價(jià)等五個(gè)環(huán)節(jié),向各位專家談?wù)勎覍?duì)本節(jié)課教材的理解和教學(xué)設(shè)計(jì)。
一、教材分析:
1、教材的地位和作用
向量是高中階段學(xué)習(xí)的一個(gè)新的矢量,向量概念是《平面向量》的最基本內(nèi)容,它的學(xué)習(xí)直接影響到我們對(duì)向量的進(jìn)一步研究和學(xué)習(xí),如向量間關(guān)系、向量的加法、減法以及數(shù)乘等運(yùn)算,還有向量的坐標(biāo)運(yùn)算等,因此為后面的學(xué)習(xí)奠定了基礎(chǔ)。
結(jié)合本節(jié)課的特點(diǎn)及學(xué)生的實(shí)際情況我制定了如下的教學(xué)目標(biāo)及教學(xué)重難點(diǎn):
2、教學(xué)目標(biāo)
(1)知識(shí)與技能目標(biāo)
1)識(shí)記平面向量的定義,會(huì)用有向線段和字母表示向量,能辨別數(shù)量與向量;
2)識(shí)記向量模的定義,會(huì)用字母和線段表示向量的模。
3)知道零向量、單位向量的概念。
(2)過(guò)程與方法目標(biāo)
學(xué)生通過(guò)對(duì)向量的學(xué)習(xí),能體會(huì)出向量來(lái)自于客觀現(xiàn)實(shí),提高觀察、分析、抽象和概括等方面的能力,感悟數(shù)形結(jié)合的思想。
(3)情感態(tài)度與價(jià)值觀目標(biāo)
通過(guò)構(gòu)建和諧的課堂教學(xué)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生勇于提出問(wèn)題,同時(shí)培養(yǎng)學(xué)生團(tuán)隊(duì)合作的精神及積極向上的學(xué)習(xí)態(tài)度。
3、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):向量的定義,向量的幾何表示和符號(hào)表示,以及零向量和單位向量
教學(xué)難點(diǎn):向量的幾何表示的理解,對(duì)零向量和單位向量的理解
二、學(xué)情分析
(1)能力分析:對(duì)于我校的學(xué)生,基礎(chǔ)知識(shí)較薄弱,雖然他們的智力發(fā)展已到了形成運(yùn)演階段,但并不具備較強(qiáng)的抽象思維能力、概括能力及數(shù)形結(jié)合的思想。
(2)認(rèn)知分析:之前,學(xué)生有了物理中的矢量概念,這為學(xué)習(xí)向量作了最好的鋪墊。
(3)情感分析:部分學(xué)生具有積極的學(xué)習(xí)態(tài)度,強(qiáng)烈的探究欲望,能主動(dòng)參與研究。
三、教法學(xué)法
教法:?jiǎn)l(fā)教學(xué)法,引探教學(xué)法,問(wèn)題驅(qū)動(dòng)法,并借助多媒體來(lái)輔助教學(xué)
學(xué)法:在學(xué)法上,采用的是探究,發(fā)現(xiàn),歸納,練習(xí)。從問(wèn)題出發(fā),引導(dǎo)學(xué)生分析問(wèn)題,讓學(xué)生經(jīng)歷觀察分析、概括、歸納、類比等發(fā)現(xiàn)和探索過(guò)程。
四、教學(xué)過(guò)程
課前:
為了打造高效課堂,以生為本我選擇生本式的教學(xué)方式,以穿針引線的方式設(shè)計(jì)了前置性作業(yè)。其中包括一些向量的基本概念,并提出:
1、你學(xué)過(guò)的其他學(xué)科中有沒(méi)有可以稱為向量的?
2、向量的特點(diǎn)是什么?有幾種描述向量的表示方法?
3、零向量的特點(diǎn)是什么?
【設(shè)計(jì)意圖】目的是通過(guò)課前的預(yù)習(xí)明確自己需要在本節(jié)課中解決的問(wèn)題,帶著問(wèn)題聽(tīng)課,我會(huì)在上課前就學(xué)生的完成情況明確主要的教學(xué)側(cè)重點(diǎn),真正打造高效課堂。
課上教學(xué)過(guò)程:
1、創(chuàng)設(shè)情境
數(shù)學(xué)的學(xué)習(xí)應(yīng)該是與學(xué)生的生活融合起來(lái),從學(xué)生的生活經(jīng)驗(yàn)和已有的知識(shí)背景出發(fā),讓他們?cè)谏钪邪l(fā)現(xiàn)數(shù)學(xué),探究數(shù)學(xué),認(rèn)識(shí)并掌握數(shù)學(xué),由生活的實(shí)例引入,在對(duì)比于物理學(xué)中的速度、位移等學(xué)生已有的知識(shí)給出本章研究的問(wèn)題平面向量
【設(shè)計(jì)意圖】形成對(duì)概念的初步認(rèn)識(shí),為進(jìn)一步抽象概括做準(zhǔn)備。
2、形成概念
結(jié)合物理學(xué)中對(duì)矢量的定義,給出向量的描述性概念。對(duì)于一個(gè)新學(xué)的量定義概念后,通常要用符號(hào)表示它。怎樣把我們所舉例子中的向量表示出來(lái)呢?
采取讓學(xué)生先嘗試向量的表示方法,自覺(jué)接受用帶有箭頭的線段(有向線段)來(lái)表示向量。明確為什么可以用有向線段表示向量,引導(dǎo)學(xué)生總結(jié)出向量的表示方法,強(qiáng)調(diào)印刷體與手寫(xiě)體的區(qū)別。結(jié)合板書(shū)的有向線段給出向量的模。
單位向量、零向量的概念
【即時(shí)訓(xùn)練】
為了使學(xué)生達(dá)到對(duì)知識(shí)的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計(jì)了一組即時(shí)訓(xùn)練題,通過(guò)學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來(lái)鞏固新知
3、知識(shí)應(yīng)用
本階段的教學(xué),我采用的是教材上的兩個(gè)例題,旨在鞏固學(xué)生對(duì)平面向量的觀念,提高學(xué)生的動(dòng)手實(shí)踐能力,掌握求模的基本方法,提升識(shí)圖能力。
4、學(xué)以致用
為了調(diào)動(dòng)學(xué)生的積極性,培養(yǎng)學(xué)生團(tuán)隊(duì)合作的精神,本環(huán)節(jié)我采用小組競(jìng)爭(zhēng)的方式開(kāi)展教學(xué),小組討論并選派代表回答,各組之間取長(zhǎng)補(bǔ)短,將課堂教學(xué)推向高潮,再次加強(qiáng)學(xué)生對(duì)向量概念的理解。
5、課堂小結(jié)
為了了解學(xué)生本節(jié)課的學(xué)習(xí)效果,并且將所學(xué)做個(gè)很好的總結(jié)。設(shè)置問(wèn)題:通過(guò)本節(jié)課的學(xué)習(xí)你有哪些收獲?(可以從各種角度入手)
【設(shè)計(jì)意圖】通過(guò)總結(jié)使學(xué)生明確本節(jié)的學(xué)習(xí)內(nèi)容,強(qiáng)化重點(diǎn),為今后的學(xué)習(xí)打下堅(jiān)定的基礎(chǔ)
6、布置作業(yè)
出選做題的目的是注意分層教學(xué)和因材施教,為學(xué)有余力的學(xué)生提供思考的空間。
以上幾個(gè)環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動(dòng),在教師的整體調(diào)控下,學(xué)生通過(guò)動(dòng)眼觀察,動(dòng)腦思考,層層遞進(jìn),親身經(jīng)歷了知識(shí)的形成和發(fā)展過(guò)程,以問(wèn)題為驅(qū)動(dòng),使學(xué)生對(duì)知識(shí)的理解逐步深入。而最后的實(shí)際應(yīng)用又將激發(fā)學(xué)生的學(xué)習(xí)興趣,帶領(lǐng)學(xué)生進(jìn)入對(duì)本節(jié)課更深一步的思考和研究之中,從而達(dá)到知識(shí)在課堂以外的延伸。
以上就是我對(duì)本節(jié)課的設(shè)計(jì)和說(shuō)明,請(qǐng)各位領(lǐng)導(dǎo),老師批評(píng)指正
高中數(shù)學(xué)萬(wàn)能教案篇9
一、說(shuō)教材
(1)說(shuō)教材的內(nèi)容和地位
本次說(shuō)課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時(shí))。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對(duì)集合的概念作了說(shuō)明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識(shí)安排在高中數(shù)學(xué)的最開(kāi)始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識(shí)與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語(yǔ)言的基礎(chǔ)。從知識(shí)結(jié)構(gòu)上來(lái)說(shuō)是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。
(2)說(shuō)教學(xué)目標(biāo)
根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):
1.知識(shí)與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。
2.過(guò)程與方法:通過(guò)情景設(shè)置提出問(wèn)題,揭示課題,培養(yǎng)學(xué)生主動(dòng)探究新知的習(xí)慣。并通過(guò)"自主、合作與探究"實(shí)現(xiàn)"一切以學(xué)生為中心"的理念。
3.情感態(tài)度與價(jià)值觀:感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡(jiǎn)潔美與和諧統(tǒng)一美。同時(shí)通過(guò)自主探究領(lǐng)略獲取新知識(shí)的喜悅。
(3)說(shuō)教學(xué)重點(diǎn)和難點(diǎn)
依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實(shí)際,我確定本課的教學(xué)重點(diǎn)為
教學(xué)重點(diǎn):集合的基本概念及元素特征。
教學(xué)難點(diǎn):掌握集合元素的三個(gè)特征,體會(huì)元素與集合的屬于關(guān)系。
二、說(shuō)教法和學(xué)法
接下來(lái)則是說(shuō)教法、學(xué)法
教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來(lái)相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點(diǎn),就本節(jié)課而言,我采用"生活實(shí)例與數(shù)學(xué)實(shí)例"相結(jié)合,"師生互動(dòng)與課堂布白"相輔助的方法。通過(guò)不同層次的練習(xí)體驗(yàn),憑借有趣、實(shí)用的教學(xué)手段,突出重點(diǎn),突破難點(diǎn)。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動(dòng),()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動(dòng)采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。
總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機(jī)制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。
三、說(shuō)教學(xué)過(guò)程
接著我來(lái)說(shuō)一下最重要的部分,本節(jié)課的教學(xué)過(guò)程:
這節(jié)課的流程主要分為六個(gè)環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評(píng)價(jià))、作業(yè)布置(反饋矯正)。上述六個(gè)環(huán)節(jié)由淺入深,層層遞進(jìn)。多層次、多角度地加深對(duì)概念的理解。提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。
第一環(huán)節(jié):創(chuàng)設(shè)問(wèn)題情境,引入目標(biāo)
課堂開(kāi)始我將提出兩個(gè)問(wèn)題:
問(wèn)題1:班級(jí)有20名男生,16名女生,問(wèn)班級(jí)一共多少人?
問(wèn)題2:某次運(yùn)動(dòng)會(huì)上,班級(jí)有20人參加田賽,16人參加徑賽,問(wèn)一共多少人參加比賽?
這里我會(huì)讓學(xué)生以小組討論的.形式進(jìn)行討論問(wèn)題,事實(shí)上小組合作的形式是本節(jié)課主要形式。
待學(xué)生討論完畢以后我將作歸納總結(jié):?jiǎn)栴}2已無(wú)法用學(xué)過(guò)的知識(shí)加以解釋,這是與集合有關(guān)的問(wèn)題,因此需用集合的語(yǔ)言加以描述(同時(shí)我將板書(shū)標(biāo)題:集合)。
安排這一過(guò)程的意圖是為了從實(shí)際問(wèn)題引入,讓學(xué)生了解數(shù)學(xué)來(lái)源于實(shí)際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。
很自然地進(jìn)入到第二環(huán)節(jié):自主探究
讓學(xué)生閱讀教材,并思考下列問(wèn)題:
(1)有那些概念?
(2)有那些符號(hào)?
(3)集合中元素的特性是什么?
安排這一過(guò)程的意圖是給學(xué)生提供活動(dòng)空間,讓主體主動(dòng)建構(gòu)自己的知識(shí)結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。
讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析
小組合作探究(1)
讓學(xué)生觀察下列實(shí)例
(1)1~20以內(nèi)的所有質(zhì)數(shù);
(2)所有的正方形;
(3)到直線的距離等于定長(zhǎng)的所有的點(diǎn);
(4)方程的所有實(shí)數(shù)根;
通過(guò)以上實(shí)例,辨析概念:
(1)集合含義:一般地,某些指定的對(duì)象集在一起就成為一個(gè)集合,也簡(jiǎn)稱集。而集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素。
(2)表示方法:集合通常用大括號(hào){}或大寫(xiě)的拉丁字母A,B,C…表示,而元素用小寫(xiě)的拉丁字母a,b,c…表示。
小組合作探究(2)——集合元素的特征
問(wèn)題3:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征?
問(wèn)題4:某單位所有的"帥哥"能否構(gòu)成一個(gè)集合?由此說(shuō)明什么?
集合中的元素必須是確定的
問(wèn)題5:在一個(gè)給定的集合中能否有相同的元素?由此說(shuō)明什么?
集合中的元素是不重復(fù)出現(xiàn)的
問(wèn)題6:咱班的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒(méi)有變化?由此說(shuō)明什么?集合中的元素是沒(méi)有順序的
我如此設(shè)計(jì)的意圖是因?yàn)椋簡(jiǎn)栴}是數(shù)學(xué)的心臟,感受問(wèn)題是學(xué)習(xí)數(shù)學(xué)的根本動(dòng)力。
小組合作探究(3)——元素與集合的關(guān)系
問(wèn)題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?
問(wèn)題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?
a屬于集合A,記作a∈A
問(wèn)題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語(yǔ)言表達(dá)?
a不屬于集合A,記作aA
小組合作探究(4)——常用數(shù)集及其表示方法
問(wèn)題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實(shí)數(shù)集等一些常用數(shù)集,分別用什么符號(hào)表示?
自然數(shù)集(非負(fù)整數(shù)集):記作N
正整數(shù)集:
整數(shù)集:記作Z
有理數(shù)集:記作Q實(shí)數(shù)集:記作R
設(shè)計(jì)意圖:由于不同的人對(duì)同一問(wèn)題有不同的體驗(yàn)和理解。讓學(xué)生通過(guò)合作交流相互得到啟發(fā),從而不斷完善自己的知識(shí)結(jié)構(gòu)。
第四環(huán)節(jié):理論遷移變式訓(xùn)練
1.下列指定的對(duì)象,能構(gòu)成一個(gè)集合的是
①很小的數(shù)
②不超過(guò)30的非負(fù)實(shí)數(shù)
③直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)
④π的近似值
⑤所有無(wú)理數(shù)
A、②③④⑤B、①②③⑤C、②③⑤D、②③④
第五環(huán)節(jié):課堂小結(jié),自我評(píng)價(jià)
1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?
2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?
設(shè)計(jì)意圖:引導(dǎo)學(xué)生對(duì)所學(xué)知識(shí)、思想方法進(jìn)行小結(jié),形成知識(shí)系統(tǒng)。教師用激勵(lì)性的語(yǔ)言加一點(diǎn)評(píng),讓學(xué)生的思想敞亮的發(fā)揮出來(lái)。
第六環(huán)節(jié):作業(yè)布置,反饋矯正
1.必做題課本習(xí)題1.1—1、2、3.
2.選做題已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實(shí)數(shù)a的值。
設(shè)計(jì)意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗(yàn)。
四、板書(shū)設(shè)計(jì)
好的板書(shū)就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書(shū)應(yīng)設(shè)計(jì)得有條理性、概括性、指導(dǎo)性,所以我設(shè)計(jì)的板書(shū)如下:
集合
1.集合的概念
2.集合元素的特征
(學(xué)生板演)
3.常見(jiàn)集合的表示
4.范例研究
高中數(shù)學(xué)萬(wàn)能教案篇10
【考綱要求】
了解雙曲線的定義,幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單性質(zhì)。
【自學(xué)質(zhì)疑】
1.雙曲線 的 軸在 軸上, 軸在 軸上,實(shí)軸長(zhǎng)等于 ,虛軸長(zhǎng)等于 ,焦距等于 ,頂點(diǎn)坐標(biāo)是 ,焦點(diǎn)坐標(biāo)是 ,
漸近線方程是 ,離心率 ,若點(diǎn) 是雙曲線上的點(diǎn),則 , 。
2.又曲線 的左支上一點(diǎn)到左焦點(diǎn)的距離是7,則這點(diǎn)到雙曲線的右焦點(diǎn)的距離是
3.經(jīng)過(guò)兩點(diǎn) 的雙曲線的標(biāo)準(zhǔn)方程是 。
4.雙曲線的漸近線方程是 ,則該雙曲線的離心率等于 。
5.與雙曲線 有公共的漸近線,且經(jīng)過(guò)點(diǎn) 的雙曲線的方程為
【例題精講】
1.雙曲線的離心率等于 ,且與橢圓 有公共焦點(diǎn),求該雙曲線的方程。
2.已知橢圓具有性質(zhì):若 是橢圓 上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn) 是橢圓上任意一點(diǎn),當(dāng)直線 的斜率都存在,并記為 時(shí),那么 之積是與點(diǎn) 位置無(wú)關(guān)的定值,試對(duì)雙曲線 寫(xiě)出具有類似特性的性質(zhì),并加以證明。
3.設(shè)雙曲線 的半焦距為 ,直線 過(guò) 兩點(diǎn),已知原點(diǎn)到直線 的距離為 ,求雙曲線的離心率。
【矯正鞏固】
1.雙曲線 上一點(diǎn) 到一個(gè)焦點(diǎn)的距離為 ,則它到另一個(gè)焦點(diǎn)的距離為 。
2.與雙曲線 有共同的漸近線,且經(jīng)過(guò)點(diǎn) 的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是 。
3.若雙曲線 上一點(diǎn) 到它的右焦點(diǎn)的距離是 ,則點(diǎn) 到 軸的距離是
4.過(guò)雙曲線 的左焦點(diǎn) 的直線交雙曲線于 兩點(diǎn),若 。則這樣的直線一共有 條。
【遷移應(yīng)用】
1. 已知雙曲線 的焦點(diǎn)到漸近線的距離是其頂點(diǎn)到漸近線距離的2倍,則該雙曲線的離心率
2. 已知雙曲線 的焦點(diǎn)為 ,點(diǎn) 在雙曲線上,且 ,則點(diǎn) 到 軸的距離為 。
3. 雙曲線 的焦距為
4. 已知雙曲線 的一個(gè)頂點(diǎn)到它的一條漸近線的距離為 ,則
5. 設(shè) 是等腰三角形, ,則以 為焦點(diǎn)且過(guò)點(diǎn) 的雙曲線的離心率為 .
6. 已知圓 。以圓 與坐標(biāo)軸的交點(diǎn)分別作為雙曲線的一個(gè)焦點(diǎn)和頂點(diǎn),則適合上述條件的雙曲線的標(biāo)準(zhǔn)方程為
高中數(shù)學(xué)萬(wàn)能教案篇11
考試要求重難點(diǎn)擊命題展望
1.理解復(fù)數(shù)的基本概念、復(fù)數(shù)相等的充要條件.
2.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.
3.會(huì)進(jìn)行復(fù)數(shù)代數(shù)形式的四則運(yùn)算.了解復(fù)數(shù)的代數(shù)形式的加、減運(yùn)算及其運(yùn)算的幾何意義.
4.了解從自然數(shù)系到復(fù)數(shù)系的關(guān)系及擴(kuò)充的基本思想,體會(huì)理性思維在數(shù)系擴(kuò)充中的作用.本章重點(diǎn):1.復(fù)數(shù)的有關(guān)概念;2.復(fù)數(shù)代數(shù)形式的四則運(yùn)算.
本章難點(diǎn):運(yùn)用復(fù)數(shù)的有關(guān)概念解題.近幾年高考對(duì)復(fù)數(shù)的考查無(wú)論是試題的難度,還是試題在試卷中所占比例都是呈下降趨勢(shì),常以選擇題、填空題形式出現(xiàn),多為容易題.在復(fù)習(xí)過(guò)程中,應(yīng)將復(fù)數(shù)的概念及運(yùn)算放在首位.
知識(shí)網(wǎng)絡(luò)
15.1復(fù)數(shù)的概念及其運(yùn)算
典例精析
題型一復(fù)數(shù)的概念
【例1】(1)如果復(fù)數(shù)(m2+i)(1+mi)是實(shí)數(shù),則實(shí)數(shù)m=;
(2)在復(fù)平面內(nèi),復(fù)數(shù)1+ii對(duì)應(yīng)的點(diǎn)位于第象限;
(3)復(fù)數(shù)z=3i+1的共軛復(fù)數(shù)為z=.
【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是實(shí)數(shù)1+m3=0m=-1.
(2)因?yàn)?+ii=i(1+i)i2=1-i,所以在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(1,-1),位于第四象限.
(3)因?yàn)閦=1+3i,所以z=1-3i.
【點(diǎn)撥】運(yùn)算此類題目需注意復(fù)數(shù)的代數(shù)形式z=a+bi(a,bR),并注意復(fù)數(shù)分為實(shí)數(shù)、虛數(shù)、純虛數(shù),復(fù)數(shù)的幾何意義,共軛復(fù)數(shù)等概念.
【變式訓(xùn)練1】(1)如果z=1-ai1+ai為純虛數(shù),則實(shí)數(shù)a等于
A.0B.-1C.1D.-1或1
(2)在復(fù)平面內(nèi),復(fù)數(shù)z=1-ii(i是虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
【解析】(1)設(shè)z=xi,x0,則
xi=1-ai1+ai1+ax-(a+x)i=0或故選D.
(2)z=1-ii=(1-i)(-i)=-1-i,該復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第三象限.故選C.
題型二復(fù)數(shù)的相等
【例2】(1)已知復(fù)數(shù)z0=3+2i,復(fù)數(shù)z滿足zz0=3z+z0,則復(fù)數(shù)z=;
(2)已知m1+i=1-ni,其中m,n是實(shí)數(shù),i是虛數(shù)單位,則m+ni=;
(3)已知關(guān)于x的方程x2+(k+2i)x+2+ki=0有實(shí)根,則這個(gè)實(shí)根為,實(shí)數(shù)k的值為.
【解析】(1)設(shè)z=x+yi(x,yR),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2-2x)i=0,
則由復(fù)數(shù)相等的條件得
解得所以z=1-.
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
則由復(fù)數(shù)相等的條件得
所以m+ni=2+i.
(3)設(shè)x=x0是方程的實(shí)根,代入方程并整理得
由復(fù)數(shù)相等的充要條件得
解得或
所以方程的實(shí)根為x=2或x=-2,
相應(yīng)的k值為k=-22或k=22.
【點(diǎn)撥】復(fù)數(shù)相等須先化為z=a+bi(a,bR)的形式,再由相等得實(shí)部與實(shí)部相等、虛部與虛部相等.
【變式訓(xùn)練2】(1)設(shè)i是虛數(shù)單位,若1+2i1+i=a+bi(a,bR),則a+b的值是()
A.-12B.-2C.2D.12
(2)若(a-2i)i=b+i,其中a,bR,i為虛數(shù)單位,則a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b=2.
題型三復(fù)數(shù)的運(yùn)算
【例3】(1)若復(fù)數(shù)z=-12+32i,則1+z+z2+z3++z2008=;
(2)設(shè)復(fù)數(shù)z滿足z+z=2+i,那么z=.
【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.
所以zn具有周期性,在一個(gè)周期內(nèi)的和為0,且周期為3.
所以1+z+z2+z3++z2008
=1+z+(z2+z3+z4)++(z2006+z2007+z2008)
=1+z=12+32i.
(2)設(shè)z=x+yi(x,yR),則x+yi+x2+y2=2+i,
所以解得所以z=+i.
【點(diǎn)撥】解(1)時(shí)要注意x3=1(x-1)(x2+x+1)=0的三個(gè)根為1,,-,
其中=-12+32i,-=-12-32i,則
1++2=0,1+-+-2=0,3=1,-3=1,-=1,2=-,-2=.
解(2)時(shí)要注意zR,所以須令z=x+yi.
【變式訓(xùn)練3】(1)復(fù)數(shù)11+i+i2等于()
A.1+i2B.1-i2C.-12D.12
(2)(20__江西鷹潭)已知復(fù)數(shù)z=23-i1+23i+(21-i)2010,則復(fù)數(shù)z等于()
A.0B.2C.-2iD.2i
【解析】(1)D.計(jì)算容易有11+i+i2=12.
(2)A.
總結(jié)提高
復(fù)數(shù)的代數(shù)運(yùn)算是重點(diǎn),是每年必考內(nèi)容之一,復(fù)數(shù)代數(shù)形式的運(yùn)算:①加減法按合并同類項(xiàng)法則進(jìn)行;②乘法展開(kāi)、除法須分母實(shí)數(shù)化.因此,一些復(fù)數(shù)問(wèn)題只需設(shè)z=a+bi(a,bR)代入原式后,就可以將復(fù)數(shù)問(wèn)題化歸為實(shí)數(shù)問(wèn)題來(lái)解決.