教育巴巴 > 高中教案 > 數學教案 >

高中數學教案模板表格

時間: 新華 數學教案

教案編寫需要依據不同的學科和教學內容,選取合適的教學方法和手段,明確教學目標和教學計劃,以確保教學質量。高中數學教案模板表格怎么才能寫好?這里分享一些高中數學教案模板表格,方便大家學習。

高中數學教案模板表格篇1

1.如圖,已知直線L:的右焦點F,且交橢圓C于A、B兩點,點A、B在直線上的射影依次為點D、E。

(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;

(2)(理)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由。

(文)若為x軸上一點,求證:

2.如圖所示,已知圓定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足,點N的軌跡為曲線E。

(1)求曲線E的方程;

(2)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足的取值范圍。

3.設橢圓C:的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q,且

⑴求橢圓C的離心率;

⑵若過A、Q、F三點的圓恰好與直線

l:相切,求橢圓C的方程.

4.設橢圓的離心率為e=

(1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.

(2)求b為何值時,過圓x2+y2=t2上一點M(2,)處的切線交橢圓于Q1、Q2兩點,而且OQ1OQ2.

5.已知曲線上任意一點P到兩個定點F1(-,0)和F2(,0)的距離之和為4.

(1)求曲線的方程;

(2)設過(0,-2)的直線與曲線交于C、D兩點,且為坐標原點),求直線的方程.

6.已知橢圓的左焦點為F,左、右頂點分別為A、C,上頂點為B.過F、B、C作⊙P,其中圓心P的坐標為(m,n).

(Ⅰ)當m+n0時,求橢圓離心率的范圍;

(Ⅱ)直線AB與⊙P能否相切?證明你的結論.

7.有如下結論:圓上一點處的切線方程為,類比也有結論:橢圓處的切線方程為,過橢圓C:的右準線l上任意一點M引橢圓C的兩條切線,切點為A、B.

(1)求證:直線AB恒過一定點;(2)當點M在的縱坐標為1時,求△ABM的面積

8.已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;

(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.

9.橢圓的對稱中心在坐標原點,一個頂點為,右焦點與點的距離為。

(1)求橢圓的方程;

(2)是否存在斜率的直線:,使直線與橢圓相交于不同的兩點滿足,若存在,求直線的傾斜角;若不存在,說明理由。

10.橢圓方程為的一個頂點為,離心率。

(1)求橢圓的方程;

(2)直線:與橢圓相交于不同的兩點滿足,求。

11.已知橢圓的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作,其中圓心P的坐標為.

(1)若橢圓的離心率,求的方程;

(2)若的圓心在直線上,求橢圓的方程.

12.已知直線與曲線交于不同的兩點,為坐標原點.

(Ⅰ)若,求證:曲線是一個圓;

(Ⅱ)若,當且時,求曲線的離心率的取值范圍.

13.設橢圓的左、右焦點分別為、,A是橢圓C上的一點,且,坐標原點O到直線的距離為.

(1)求橢圓C的方程;

(2)設Q是橢圓C上的一點,過Q的直線l交x軸于點,較y軸于點M,若,求直線l的方程.

14.已知拋物線的頂點在原點,焦點在y軸的負半軸上,過其上一點的切線方程為為常數).

(I)求拋物線方程;

(II)斜率為的直線PA與拋物線的另一交點為A,斜率為的直線PB與拋物線的另一交點為B(A、B兩點不同),且滿足,求證線段PM的中點在y軸上;

(III)在(II)的條件下,當時,若P的坐標為(1,-1),求PAB為鈍角時點A的縱坐標的取值范圍.

15.已知動點A、B分別在x軸、y軸上,且滿足AB=2,點P在線段AB上,且

設點P的軌跡方程為c。

(1)求點P的軌跡方程C;

(2)若t=2,點M、N是C上關于原點對稱的兩個動點(M、N不在坐標軸上),點Q

坐標為求△QMN的面積S的最大值。

16.設上的兩點,

已知,,若且橢圓的離心率短軸長為2,為坐標原點.

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;

(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由

17.如圖,F是橢圓(a0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為.點C在x軸上,BCBF,B,C,F三點確定的圓M恰好與直線l1:相切.

(Ⅰ)求橢圓的方程:

(Ⅱ)過點A的直線l2與圓M交于PQ兩點,且,求直線l2的方程.

18.如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,且.

(1)求橢圓的標準方程;

(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

19.如圖,已知橢圓的中心在原點,焦點在軸上,離心率為,且經過點.直線交橢圓于兩不同的點.

20.設,點在軸上,點在軸上,且

(1)當點在軸上運動時,求點的軌跡的方程;

(2)設是曲線上的點,且成等差數列,當的垂直平分線與軸交于點時,求點坐標.

21.已知點是平面上一動點,且滿足

(1)求點的軌跡對應的方程;

(2)已知點在曲線上,過點作曲線的兩條弦和,且,判斷:直線是否過定點?試證明你的結論.

22.已知橢圓的中心在坐標原點,焦點在坐標軸上,且經過、、三點.

(1)求橢圓的方程:

(2)若點D為橢圓上不同于、的任意一點,,當內切圓的面積最大時。求內切圓圓心的坐標;

(3)若直線與橢圓交于、兩點,證明直線與直線的交點在直線上.

23.過直角坐標平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點。

(1)用表示A,B之間的距離;

(2)證明:的大小是與無關的定值,

并求出這個值。

24.設分別是橢圓C:的左右焦點

(1)設橢圓C上的點到兩點距離之和等于4,寫出橢圓C的方程和焦點坐標

(2)設K是(1)中所得橢圓上的動點,求線段的中點B的軌跡方程

(3)設點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,當直線PM,PN的斜率都存在,并記為試探究的值是否與點P及直線L有關,并證明你的結論。

25.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.

(I)求橢圓的方程;

(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;

(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.

26.如圖所示,已知橢圓:,、為

其左、右焦點,為右頂點,為左準線,過的直線:與橢圓相交于、

兩點,且有:(為橢圓的半焦距)

(1)求橢圓的離心率的最小值;

(2)若,求實數的取值范圍;

(3)若,,

求證:、兩點的縱坐標之積為定值;

27.已知橢圓的左焦點為,左右頂點分別為,上頂點為,過三點作圓,其中圓心的坐標為

(1)當時,橢圓的離心率的取值范圍

(2)直線能否和圓相切?證明你的結論

28.已知點A(-1,0),B(1,-1)和拋物線.,O為坐標原點,過點A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點Q,如圖.

(I)證明:為定值;

(II)若△POM的面積為,求向量與的夾角;

(Ⅲ)證明直線PQ恒過一個定點.

29.已知橢圓C:上動點到定點,其中的距離的最小值為1.

(1)請確定M點的坐標

(2)試問是否存在經過M點的直線,使與橢圓C的兩個交點A、B滿足條件(O為原點),若存在,求出的方程,若不存在請說是理由。

30.已知橢圓,直線與橢圓相交于兩點.

(Ⅰ)若線段中點的橫坐標是,求直線的方程;

(Ⅱ)在軸上是否存在點,使的值與無關?若存在,求出的值;若不存在,請說明理由.

31.直線AB過拋物線的焦點F,并與其相交于A、B兩點。Q是線段AB的中點,M是拋物線的準線與y軸的交點.O是坐標原點.

(I)求的取值范圍;

(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:∥;

(Ⅲ)若P是不為1的正整數,當,△ABN的面積的取值范圍為時,求該拋物線的方程.

32.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.

(Ⅰ)當時,求橢圓的方程及其右準線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關系,并說明理由;

(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.

33.已知點和動點滿足:,且存在正常數,使得。

(1)求動點P的軌跡C的方程。

(2)設直線與曲線C相交于兩點E,F,且與y軸的交點為D。若求的值。

34.已知橢圓的右準線與軸相交于點,右焦點到上頂點的距離為,點是線段上的一個動點.

(I)求橢圓的方程;

(Ⅱ)是否存在過點且與軸不垂直的直線與橢圓交于、兩點,使得,并說明理由.

35.已知橢圓C:(.

(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;

(2)在(1)的條件下,設過定點的直線與橢圓C交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率k的取值范圍;

(3)如圖,過原點任意作兩條互相垂直的直線與橢圓()相交于四點,設原點到四邊形一邊的距離為,試求時滿足的條件.

36.已知若過定點、以()為法向量的直線與過點以為法向量的直線相交于動點.

(1)求直線和的方程;

(2)求直線和的斜率之積的值,并證明必存在兩個定點使得恒為定值;

(3)在(2)的條件下,若是上的兩個動點,且,試問當取最小值時,向量與是否平行,并說明理由。

37.已知點,點(其中),直線、都是圓的切線.

(Ⅰ)若面積等于6,求過點的拋物線的方程;

(Ⅱ)若點在軸右邊,求面積的最小值.

38.我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。

(1)設F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關系。

(2)設F1、F2是橢圓的兩個焦點,點F1、F2到直線

(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。

(3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。

(4)將(3)中得出的結論類比到其它曲線,請同學們給出自己研究的有關結論(不必證明)。

39.已知點為拋物線的焦點,點是準線上的動點,直線交拋物線于兩點,若點的縱坐標為,點為準線與軸的交點.

(Ⅰ)求直線的方程;(Ⅱ)求的面積范圍;

(Ⅲ)設,,求證為定值.

40.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.

(I)求橢圓的方程;

(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;

(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.

41.已知以向量為方向向量的直線過點,拋物線:的頂點關于直線的對稱點在該拋物線的準線上.

(1)求拋物線的方程;

(2)設、是拋物線上的兩個動點,過作平行于軸的直線,直線與直線交于點,若(為坐標原點,、異于點),試求點的軌跡方程。

42.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.

(Ⅰ)當時,求橢圓的方程及其右準線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,

與拋物線交于、,如果以線段為直徑作圓,

試判斷點與圓的位置關系,并說明理由;

(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.

43.設橢圓的`一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.

(Ⅲ)若AB是橢圓C經過原點O的弦,MNAB,求證:為定值.

44.設是拋物線的焦點,過點M(-1,0)且以為方向向量的直線順次交拋物線于兩點。

(Ⅰ)當時,若與的夾角為,求拋物線的方程;

(Ⅱ)若點滿足,證明為定值,并求此時△的面積

45.已知點,點在軸上,點在軸的正半軸上,點在直線上,且滿足.

(Ⅰ)當點在軸上移動時,求點的軌跡的方程;

(Ⅱ)設、為軌跡上兩點,且0,,求實數,

使,且.

46.已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。

(1)已知橢圓的離心率;

(2)若的最大值為49,求橢圓C的方程.

高中數學教案模板表格篇2

教學目標:

1.了解復數的幾何意義,會用復平面內的點和向量來表示復數;了解復數代數形式的加、減運算的幾何意義.

2.通過建立復平面上的點與復數的一一對應關系,自主探索復數加減法的幾何意義.

教學重點:

復數的幾何意義,復數加減法的幾何意義.

教學難點:

復數加減法的幾何意義.

教學過程:

一、問題情境

我們知道,實數與數軸上的點是一一對應的,實數可以用數軸上的點來表示.那么,復數是否也能用點來表示呢?

二、學生活動

問題1任何一個復數a+bi都可以由一個有序實數對(a,b)惟一確定,而有序實數對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數呢?

問題2平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數能用平面向量表示嗎?

問題3任何一個實數都有絕對值,它表示數軸上與這個實數對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的,我們可以給出復數的模(絕對值)的概念嗎?它又有什么幾何意義呢?

問題4復數可以用復平面的向量來表示,那么,復數的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數差的模有什么幾何意義?

三、建構數學

1.復數的幾何意義:在平面直角坐標系中,以復數a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數a+bi,這就是復數的幾何意義.

2.復平面:建立了直角坐標系來表示復數的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數.

3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數z=a+bi,這也是復數的幾何意義.

4.復數加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數差的模就是復平面內與這兩個復數對應的兩點間的距離.同時,復數加減法的法則與平面向量加減法的坐標形式也是完全一致的。

高中數學教案模板表格篇3

教學目標:

(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

(2)理解直線與二元一次方程的關系及其證明

(3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

教學重點、難點:直線方程的一般式.直線與二元一次方程(、不同時為0)的對應關系及其證明.

教學用具:計算機

教學方法:啟發引導法,討論法

教學過程:

下面給出教學實施過程設計的簡要思路:

教學設計思路:

(一)引入的設計

前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節主體內容教學的設計

這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

學生或獨立研究,或合作研究,教師巡視指導.

經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評價,確定最優方案(其它待課下研究)如下:

按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.

當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.

當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?

學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

綜合兩種情況,我們得出如下結論:

在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程.

至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”.

同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

學生們不難得出:二者可以概括為統一的形式.

這樣上邊的結論可以表述如下:

在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.

啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?

不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

師生共同討論,評價不同思路,達成共識:

回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即

(1)當時,方程可化為

這是表示斜率為、在軸上的截距為的直線.

(2)當時,由于、不同時為0,必有,方程可化為

這表示一條與軸垂直的直線.

因此,得到結論:

在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.

為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的.

【動畫演示】

演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.

至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

(三)練習鞏固、總結提高、板書和作業等環節的設計

高中數學教案模板表格篇4

一、單元教學內容

(1)算法的基本概念

(2)算法的基本結構:順序、條件、循環結構

(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句

二、單元教學內容分析

算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力。

三、單元教學課時安排:

1、算法的基本概念3課時

2、程序框圖與算法的基本結構5課時

3、算法的基本語句2課時

四、單元教學目標分析

1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。

3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

五、單元教學重點與難點分析

1、重點

(1)理解算法的含義

(2)掌握算法的基本結構

(3)會用算法語句解決簡單的實際問題

2、難點

(1)程序框圖

(2)變量與賦值

(3)循環結構

(4)算法設計

六、單元總體教學方法

本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

七、單元展開方式與特點

1、展開方式

自然語言→程序框圖→算法語句

2、特點

(1)螺旋上升分層遞進

(2)整合滲透前呼后應

(3)三線合一橫向貫通

(4)彈性處理多樣選擇

八、單元教學過程分析

1、算法基本概念教學過程分析

對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

2、算法的流程圖教學過程分析

對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。

3、基本算法語句教學過程分析

經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

九、單元評價設想

1、重視對學生數學學習過程的評價

關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。

2、正確評價學生的數學基礎知識和基本技能

關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

高中數學教案模板表格篇5

【學習導航】

(一)兩角和與差公式

(二)倍角公式

2cos2α=1+cos2α 2sin2α=1-cos2α

注意:倍角公式揭示了具有倍數關系的兩個角的三角函數的運算規律,可實現函數式的降冪的變化。

注: (1)兩角和與差的三角函數公式能夠解答的三類基本題型:求值題,化簡題,證明題。

(2)對公式會“正用”,“逆用”,“變形使用”;

(3)掌握“角的演變”規律,

(4)將公式和其它知識銜接起來使用。

重點難點

重點:幾組三角恒等式的應用

難點:靈活應用和、差、倍角等公式進行三角式化簡、求值、證明恒等式

【精典范例】

例1 已知

求證:

例2 已知 求 的取值范圍

分析 難以直接用 的式子來表達,因此設 ,并找出 應滿足的等式,從而求出 的取值范圍.

例3 求函數 的值域.

例4 已知且 、 、 均為鈍角,求角 的值.

分析 僅由 ,不能確定角 的值,還必須找出角 的范圍,才能判斷 的值. 由單位圓中的余弦線可以看出,若 使 的角為 或 若 則 或

【選修延伸】

例5 已知

求 的值.

例6 已知 ,

求 的值.

例7 已知

求 的值.

例8 求值:(1) (2)

【追蹤訓練】

1. 等于 ( )

A. B. C. D.

2.已知 ,且,則 的值等于 ( )

A. B. C. D.

3.求值: = .

4.求證:(1)

高中數學教案模板表格篇6

教學目標:

1、橢圓是圓錐曲線的一種,是高中數學教學中的重點和難點,所以這部分內容中的知識點學生必須達到理解、應用的水平;

2、利用投影、計算機模擬動點的運動,增強直觀性,激勵學生的學習動機,培養學生的數學想象和抽象思維能力。

教學重點:對橢圓定義的理解,其中a>c容易出錯。

教學難點:方程的推導過程。

教學過程(www.fwsir.com):

(1)復習

提問:動點軌跡的一般求法?

(通過回憶性質的提問,明示這節課所要學的內 容與原來所學知識之間的內在聯系。并為后面橢圓的標準方程的推導作好準備。)

(2)引入

舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽運行的軌道等等;

計算機:動態演示行星運行的軌道。

(進一步使學生明確學習橢圓的重要性和必要性,借計算機形成生動的直觀,使學生印象加深,以便更好地掌握橢圓的形狀。)

(3)教學實施

投影:橢圓的定義:

平面內與兩個定點F1、F2的距離的和等于常數(大于F1F2)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做焦距(一般用2c表示)

常數一般用2表示。(講解定義時要注意條件:)

計算機:動態模擬動點軌跡的形成過程。

提問:如何求軌跡的方程?

(引導學生推導橢圓的標準方程)

板書:橢圓的標準方程的推導過程。(略)

(推導中注意:1)結合已畫出的圖形建立坐標系,容易為學生所接受;2)在推導過程中,要抓住“怎樣消去方程中的根式”這一關鍵問題,演算雖較繁,也能迎刃而解;3)其中焦點為F1(,0)、F2(c,0),;4)如果焦點在軸上,焦點為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)

投影:橢圓的標準方程:

()

()    

投影:例1平面內兩個定點的距離是8,寫出到這兩個定點的距離的和是10的點的軌跡方程

(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)

形成性練習:課本P74:2,3

(4)小結    本節課學習了橢圓的定義及標準方程,應注意以下幾點:

①橢圓的定義中,

②橢圓的標準方程中,焦點的位置看,的分母大小來確定

③、、的幾何意義

(5)作業

P80:2,4(1)(3)

高中數學教案模板表格篇7

【高考要求】:三角函數的有關概念(B).

【教學目標】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進行弧度與角度的互化.

理解任意角三角函數(正弦、余弦、正切)的定義;初步了解有向線段的概念,會利用單位圓中的三角函數線表示任意角的正弦、余弦、正切.

【教學重難點】:終邊相同的角的意義和任意角三角函數(正弦、余弦、正切)的定義.

【知識復習與自學質疑】

一、問題.

1、角的概念是什么?角按旋轉方向分為哪幾類?

2、在平面直角坐標系內角分為哪幾類?與終邊相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實數有什么樣的關系?

4、弧度制下圓的弧長公式和扇形的面積公式是什么?

5、任意角的三角函數的定義是什么?在各象限的符號怎么確定?

6、你能在單位圓中畫出正弦、余弦和正切線嗎?

7、同角三角函數有哪些基本關系式?

二、練習.

1.給出下列命題:

(1)小于的角是銳角;(2)若是第一象限的角,則必為第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;

(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;

(6)角2與角的終邊不可能相同;

(7)若角與角有相同的終邊,則角(的終邊必在軸的非負半軸上。其中正確的命題的序號是

2.設P點是角終邊上一點,且滿足則的值是

3.一個扇形弧AOB的面積是1,它的周長為4,則該扇形的中心角=弦AB長=

4.若則角的終邊在象限。

5.在直角坐標系中,若角與角的終邊互為反向延長線,則角與角之間的關系是

6.若是第三象限的角,則-,的終邊落在何處?

【交流展示、互動探究與精講點撥】

例1.如圖,分別是角的終邊.

(1)求終邊落在陰影部分(含邊界)的所有角的集合;

(2)求終邊落在陰影部分、且在上所有角的集合;

(3)求始邊在OM位置,終邊在ON位置的所有角的集合.

例2.(1)已知角的終邊在直線上,求的值;

(2)已知角的終邊上有一點A,求的值。

例3.若,則在第象限.

例4.若一扇形的周長為20,則當扇形的圓心角等于多少弧度時,這個扇形的面積最大?最大面積是多少?

【矯正反饋】

1、若銳角的終邊上一點的坐標為,則角的弧度數為.

2、若,又是第二,第三象限角,則的取值范圍是.

3、一個半徑為的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數是弧度或角度,該扇形的面積是.

4、已知點P在第三象限,則角終邊在第象限.

5、設角的終邊過點P,則的值為.

6、已知角的終邊上一點P且,求和的值.

【遷移應用】

1、經過3小時35分鐘,分針轉過的角的弧度是.時針轉過的角的弧度數是.

2、若點P在第一象限,則在內的取值范圍是.

3、若點P從(1,0)出發,沿單位圓逆時針方向運動弧長到達Q點,則Q點坐標為.

4、如果為小于360的正角,且角的7倍數的角的終邊與這個角的終邊重合,求角的值.

高中數學教案模板表格篇8

一、教學內容分析

本節內容是學生在學習了乘法原理、排列、排列數公式和加法原理以后的知識,學生已經掌握了排列問題,并且對順序與排列的關系已經有了一個比較清晰的認識.因此關鍵是排列與組合的區別在于問題是否與順序有關.與順序有關的是排列問題,與順序無關是組合問題,順序對排列、組合問題的求解特別重要.排列與組合的區別,從定義上來說是簡單的,但在具體求解過程中學生往往感到困惑,分不清到底與順序有無關系,指導學生根據生活經驗和問題的內涵領悟其中體現出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.

二、教學目標設計

1.理解組合的意義,掌握組合數的計算公式;

2.能正確認識組合與排列的聯系與區別

3.通過練習與訓練體驗并初步掌握組合數的計算公式

三、教學重點及難點

組合概念的理解和組合數公式;組合與排列的區別.

四、教學用具準備

多媒體設備

五、教學流程設計



六、教學過程設計

一、 復習引入

1.復習

我們在前幾節中學習了排列、排列數以及排列數公式

定 義

特 點

相同排列

公 式



排 列























 以上由學生口答.

2.引入

那么請問:平面上有7個點,問以這7點中任何兩個為端點,構成有向線段有幾條?

這是一個排列問題 

若改為:構成的線段有幾條?則為 ,

其實亦可用另一種方法解決,這就是組合.

二、學習新課

探究性質

1. 組合定義: P16

一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合.

【說明】:⑴不同元素; ⑵“只取不排”——無序性;

⑶相同組合:元素相同.

2.組合數定義:

從個不同元素中取出個元素的所有組合的個數,叫做從個不同元素中取出個元素的組合數.用符號表示.

如:引入中的例子可表示為 

== 這是為什么呢?

因為 構成有向線段的問題可分成2步來完成:

第一步,先從7個點中選2個點出來,共有種選法;

第二步,將選出的2個點做一個排列,有種次序;

根據乘法原理,共有·= 所以

·判斷何為排列、組合問題: 利用書本P16~P17例題請學生判斷

·這個公式叫組合數公式

3.組合數公式:

如= =

用計算器求  、  、  、 

可發現= =

由此猜想: 

用實際例子說明:比如要從50人中挑選4個出來參加迎春長跑的選擇方案有,就相當于挑46個人不參加長跑的選擇方案一樣.“取法”與“剩法”是“一 一對應”的.

證明:∵

又 ,∴

當m=n時,

此性質作用:當時,計算可變為計算,能夠使運算簡化.

4. 組合數性質:

1、

2、=  

可解釋為:從這n 1個不同元素中取出m個元素的組合數是,這些組合可以分為兩類:一類含有元素,一類不含有.含有的組合是從這n個元素中取出m (1個元素與組成的,共有個;不含有的組合是從這n個元素中取出m個元素組成的,共有個.根據加法原理,可以得到組合數的另一個性質.在這里,主要體現從特殊到一般的歸納思想,“含與不含其元素”的分類思想.

證明:





得證.

【說明】1( 公式特征:下標相同而上標差1的兩個組合數之和,等于下標比原下標多1而上標與高的相同的一個組合數.

2( 此性質的作用:恒等變形,簡化運算.在今后學習“二項式定理”時,我們會看到它的主要應用.

2.例題分析

例1、(1),求x

(2)

(3)

略解:(1) 





(2) 

(3)



例2、應用題:

有15本不同的書,其中6本是數學書,問:

分給甲4本,且都不是數學書;

略解:(1)

3.問題拓展

例3.題設同例2:

(2)平均分給3人;

(3)若平均分為3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

略解:(2) (3)

(4) (5)

三、課堂小結

指導學生根據生活經驗和問題的內涵領悟其中體現出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.

能列舉出某種方法時,讓學生通過交換元素位置的辦法加以鑒別.

學生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時,可引導學生找出兩定義的關系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對元素進行排隊,即第一步僅從組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題.

排列、組合問題大都來源于同學們生活和學習中所熟悉的情景,解題思路通常是依據具體做事的過程,用數學的原理和語言加以表述.也可以說解排列、組合題就是從生活經驗、知識經驗、具體情景的出發,正確領會問題的實質,抽象出“按部就班”的處理問題的過程.據觀察,有些同學之所以學習中感到抽象,不知如何思考,并不是因為數學知識跟不上,而是因為平時做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規的做法).要解決這個問題,需要師生一道在分析問題時要根據實際情況,怎么做事就怎么分析,若能借助適當的工具,模擬做事的過程,則更能說明問題.久而久之,學生的邏輯思維能力將會大大提高.

四、作業布置

(略)

七、教學設計說明

在學習過程中,從排列問題引入,隨即自然地過渡到組合問題.由此讓學生對于排列與組合兩者的異同有深刻理解,并能自如地進行判斷.

本節課在教學技術上通過多媒體課件大大縮短了教師板書抄題的時間,讓學生能夠更加連貫的思考以及探索問題.

在例題的設計上從最基本的組合數公式的利用,到簡單的應用題,再到組合中較難的分組分配以及平均不平均分配問題的訓練,由淺入深,層層遞進,以積極發揮課堂教學的基礎型和研究型功能,培養學生的基礎性學力和發展性學力.

在課堂教學中教師遵循“以學生為主體”的思想,鼓勵學生善于觀察和發現;鼓勵學生積極思考和探究;鼓勵學生大膽猜想,努力營造一個民主和諧、平等交流的課堂氛圍,采取對話式教學,調動學生學習的積極性,激發學生學習的熱情,使學生開闊思維空間,讓學生積極參與教學活動,提高學生的數學思維能力.

高中數學教案模板表格篇9

一、教學目標:

1、知識與技能:

了解平面向量基本定理及其意義,理解平面里的任何一個向量都可以用兩個不共線的向量來表示;能夠在具體問題中適當地選取基底,使其他向量都能夠用基底來表示。

2、過程與方法:

讓學生經歷平面向量基本定理的探索與發現的形成過程,體會由特殊到一般和數形結合的數學思想,初步掌握應用平面向量基本定理分解向量的方法,培養學生分析問題與解決問題的能力。

3、情感、態度和價值觀

通過對平面向量基本定理的學習,激發學生的學習興趣,調動學習積極性,增強學生向量的應用意識,并培養學生合作交流的意識及積極探索勇于發現的學習品質、

二、教學重點:

平面向量基本定理、

三、教學難點:

平面向量基本定理的理解與應用、

四、教學方法:

探究發現、講練結合

五、授課類型:

新授課

六、教具:

電子白板、黑板和課件

七、教學過程:

(一)情境引課,板書課題

由導彈的發射情境,引出物理中矢量的分解,進而探究我們數學中的向量是不是也可以沿兩個不同方向的向量進行分解呢?

(二)復習鋪路,漸進新課

在共線向量定理的復習中,自然地、漸進地融入到平面向量基本定理的師生互動合作的探究與發現中去,感受著從特殊到一般、分類討論和數形結合的數學思想碰撞的火花,體驗著學習的快樂。

(三)歸納總結,形成定理

讓學生在發現學習的過程中歸納總結出平面向量基本定理,并給出基底的定義。

(四)反思定理,解讀要點

反思平面向量基本定理的實質即向量分解,思考基底的不共線、不惟一和非零性及實數對

的存在性和唯一性。

(五)跟蹤練習,反饋測試

及時跟蹤練習,反饋測試定理的理解程度。

(六)講練結合,鞏固理解

即講即練定理的應用,講練結合,進一步鞏固理解平面向量基本定理。

(七)夾角概念,順勢得出

不共線向量的不同方向的位置關系怎么表示,夾角概念順勢得出。然后數形結合,講清本質:夾角共起點。再結合例題鞏固加深。

(八)課堂小結,畫龍點睛

回顧本節的學習過程,小結學習要點及數學思想方法,老師的“教”與學生的“學”渾然一體,一氣呵成。

(九)作業布置,回味思考。

布置課后作業,檢驗教學效果。回味思考,更加理解定理的實質。

八、板書設計:

1、平面向量基本定理:如果是同一平面內的兩個不共線向量,那么對于這一平面內的任意向量,有且只有一對實數

2、基底:

(1)不共線向量

叫做表示這一平面內所有向量的一組基底;

(2)基底:不共線,不唯一,非零

(3)基底給定,分解形式唯一,實數對

存在且唯一;

(4)基底不同,分解形式不唯一,實數對

可同可異。

例1例2

3、夾角:

(1)兩向量共起點;

(2)夾角范圍:

例3

4、小結

5、作業

高中數學教案模板表格篇10

教學內容背景材料:

義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合

教學目標:

1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。

2、經歷探索簡單事物排列與組合規律的過程。

3、培養學生有順序地全面地思考問題的意識。

4、感受數學與生活的緊密聯系,激發學生學好數學的信心。

教學重點:經歷探索簡單事物排列與組合規律的過程

教學難點:初步理解簡單事物排列與組合的不同

教具準備:教學課件

學具準備:每生準備3張數字卡片,學具袋

教學過程:

一、創設問題情境:

師:森林學校的數學課上,猴博士出了這樣一道題(課件出示)用數字1、2能寫出幾個兩位數?問題剛說完小動物們都紛紛舉手說能寫成兩個數:12、21。接著猴博士又加上了一個數字3,問:“用數字1、2、3能寫出幾個兩位數呢?”小豬站起來說能寫成3個,小熊說5個,小狗說7個,到底能寫出幾個呢?用學生感興趣的童話故事引入,易于激發起學生探究的興趣,同時也向學生滲透助人為樂的品德教育。

1.自主合作探索新知

試一試

師:請同學們也試著寫一寫,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。

學生活動教師巡視。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)引導學生根據自己的實際情況選擇不同的方法探究新知,體現了不同的孩子用不同的方式學習數學這一新的教學理念,易于吸引不同層次的學生積極主動的參與到活動中來。

2.發現問題

學生匯報所寫個數,教師根據巡視的情況重點展示幾份,引導學生發現問題:有的重復寫了,有的漏寫了。

引導學生發現寫數過程中出現的問題,并就此展開討論、交流,遵循了學生的認知特點。學生在交流的過程中體驗到解決問題方法的多樣性,并根據自己的實際選擇不同的方法,尊重了學生的主體地位。在此過程中學生收獲的不僅是知識本身,更多的是能力、情感。

3.小組討論

師:每個同學寫出的個數不同,怎樣才能很快寫出所有的用數字1、2、3組成的兩位數,并做到不重復不遺漏呢?

學生以小組為單位交流討論。

4.小組匯報

匯報時可能會出現下面幾種情況:

1、無序的。

2、先寫出1在十位上的有12、13;再寫出2在十位上的有21、23;再寫出3在十位上的有31、32。

3、用數字1、2能寫出12、21;用數字2、3能寫出23、32;用數字1、3能寫出13、31。

4、引導學生及時評價每一種方法的優缺點,使其把適合自己的方法掌握起來。

5.小結

教師簡單小結學生所想方法引出練習內容。

6、拓展應用

數字2、3、4、5、出個兩位數?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△

請你試著擺出其他幾種排法。學習的目的是為了應用,讓學生自主的選擇方法進行練習,有利于培養學生的自主學習的能力。

二、組合

故事引入

師:下課了小狗、小熊、小豬做“找朋友”的游戲,好朋友見面之后要握握手,每兩只小動物握一次手,小狗、小熊、小豬一共握幾次手?怎樣握?用同一條故事主線貫穿整節課的始終,以問題串的形式展開全課,能讓學生始終保持濃厚的學習興趣,充分體驗到數學與生活的聯系。

探索新知

學生在充分獨立思考的基礎上展開小組交流,并3人一組親身實踐一下。

匯報思考的過程。

三、比較

師:剛才我們幫森林學校的小動物們解決了用數字1、2、3能寫幾個兩位數;3只小動物每兩個握一次手共握幾次手的問題,森林學校的小動物們直夸同學們聰明呢!通過解決這兩個問題你發現了什么?

生可能說用3個數字能寫出6個兩位數,3只小動物每兩人握一次手共握3次。

引導學生明確排列與順序有關而組合與順序無關。兩只小動物握一次手個?通過比較明確兩種問題的同與不同,便于建立起清晰的知識結構,進一步深化學生的認識。

四、拓展應用

1.小狗要參加學校的時裝表演,媽媽為它準備了4件衣服(課件出示2件上衣、2件褲子的圖片),請你幫小狗設計一下共有多少種穿法。如果需要的話可以用學具擺一擺。

交流想法。在兒童的生活經驗里積累了一些搭配衣服,購物花錢的知識經驗,所以學生樂于參與。

2.完成課本99頁的第2題

五、課堂總結

高中數學教案模板表格篇11

教學過程:

一、復習引入:

1.簡介數集的發展,復習最大公約數和最小公倍數,質數與和數;

2.教材中的章頭引言;

3.集合論的創始人——康托爾(德國數學家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)。

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關概念:由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。

定義:一般地,某些指定的對象集在一起就成為一個集合。

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數集及記法

(1)非負整數集(自然數集):全體非負整數的集合,記作N,N={0,1,2,…}

(2)正整數集:非負整數集內排除0的集,記作N__或N+,N__={1,2,3,…}

(3)整數集:全體整數的集合,記作Z,Z={0,±1,±2,…}

(4)有理數集:全體有理數的集合,記作Q,Q={整數與分數}

(5)實數集:全體實數的集合,記作R,R={數軸上所有點所對應的數}

注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0

(2)非負整數集內排除0的集,記作N__或N+

Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z__

3、元素對于集合的隸屬關系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA

4、集合中元素的特性

(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可

(2)互異性:集合中的元素沒有重復

(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開口方向,不能把a∈A顛倒過來寫。

高中數學教案模板表格篇12

高中數學數列知識點

數列的函數理解:

①數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集N_或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。③函數不一定有解析式,同樣數列也并非都有通項公式。

通項公式:數列的第N項an與項的序數n之間的關系可以用一個公式an=f(n)來表示,這個公式就叫做這個數列的通項公式(注:通項公式不)。

數列通項公式的特點:

(1)有些數列的通項公式可以有不同形式,即不。

(2)有些數列沒有通項公式(如:素數由小到大排成一列2,3,5,7,11,...)。

遞推公式:如果數列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數列的遞推公式。

數列遞推公式特點:

(1)有些數列的遞推公式可以有不同形式,即不。

(2)有些數列沒有遞推公式。

有遞推公式不一定有通項公式。

注:數列中的項必須是數,它可以是實數,也可以是復數。

等差數列通項公式

an=a1+(n-1)d

n=1時a1=S1

n≥2時an=Sn-Sn-1

an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

等差中項

由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

有關系:A=(a+b)÷2

前n項和

倒序相加法推導前n項和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

∴Sn=n(a1+an)÷2

等差數列的前n項和等于首末兩項的和與項數乘積的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差數列性質

一、任意兩項am,an的關系為:

an=am+(n-m)d

它可以看作等差數列廣義的通項公式。

二、從等差數列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq

四、對任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。

怎么樣提高數學成績

首先想要提升數學成績,成為數學學霸的前提是要對數學有良好的學習興趣。其次要學會課前預習,方便自己能夠更加深入的吃透課堂上的知識點。然后還要學會總結復習,總結自己課堂上的問題,復習課堂上的重要知識點,從而提高自己的數學成績。

提升數學成績還要擁有一個錯題本,和數學資料。認真對待自己的學習工具,多做練習題,找出自己的薄弱環節和自己常犯的題型,記在錯題本上,常練習,常鞏固。在自己的數學資料中摸索出適合自己的解題技巧,反復練習加以運用,一定會提升你的數學成績。

學會聽課,在課堂上勇于提問。數學最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數學課本,為自己打下一個好基礎,這樣才能更有效的提升你的數學成績。學會做課堂筆記,把每節課的重要知識點記下來,以便接下來的復習。

學好數學的方法技巧整理

預習的方法

上課之前一定要抽時間進行預習,有時預習比做作業更重要,因為通過預習我們可以初步掌握課程的大致內容,聽課就能夠把握好重點,針對性比較強,還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業也會更好更快,最終會形成良性循環。

聽懂課的習慣

注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最后的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉變為“會聽”。

不斷練習

不斷練習是指多做數學練習題。希望學好數學,多做練習是必不可少的。做練習的原因有以下三點:第一,熟練和鞏固學到的數學知識;二,引導同學靈活運用所學知識點以及獨立思考獨立做題的水平;第三,融會貫通。通過做題將所學的所有知識點結合起來,加深同學對數學體系化的理解。

高中數學教案模板表格篇13

說教材:

1、地位、作用和特點:

《》是高中數學課本第冊(修)的第章“”的第節內容,高中數學課本說課稿。

本節是在學習了之后編排的。通過本節課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。

教學目標:

根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

(1)知識目標:A、B、C

(2)能力目標:A、B、C

(3)德育目標:A、B

教學的重點和難點:

(1)教學重點:

(2)教學難點:

二、說教法:

基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:

導入新課新課教學

反饋發展

三、說學法:

學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。

1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

本節教師通過列舉具體事例來進行分析,歸納出,并依

據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。

2、讓學生親自經歷運用科學方法探索的過程。主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過

演示,創設探索規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。

四、教學過程:

(一)、課題引入:

教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數學科學史上的有關情況。)激發學生的探究欲望,引導學生提出接下去要研究的問題。

(二)、新課教學:

1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

(三)、實施反饋:

1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。

2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。

五、板書設計:

在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

六、說課綜述:

以上是我對《》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。

高中數學教案模板表格篇14

一、教學目標

【知識與技能】

進一步掌握直線方程的各種形式,會根據條件求直線的方程。

【過程與方法】

在分析問題、動手解題的過程中,提升邏輯思維、計算能力以及分析問題、解決問題的能力。

【情感、態度與價值觀】

在學習活動中獲得成功的體驗,增強學習數學的興趣與信心。

二、教學重難點

【重點】根據條件求直線的方程。

【難點】根據條件求直線的方程。

三、教學過程

(一)課堂導入

直接點明最近學習了直線方程的多種形式,這節課將練習求直線的方程。

(二)回顧舊知

帶領學生復習回顧直線斜率的求法,以及直線方程的點斜式、兩點式和一般式。

為了加深學生的運用和理解,繼續引導學生思考,是否有其他解題思路。預設大部分學生能夠想到用點斜式進行計算。教師肯定學生想法并組織學生動手計算,之后請學生上黑板板演。

預設學生有多種解題方法,如AB、AC所在直線方程用兩點式求解,BC所在直線方程用點斜式求解。

學生板演后教師講解,點明不足,提示學生,計算結束后要記得將所求得方程整理為直線方程的一般式。

師生總結解題思路:求直線所在方程時,若給出兩點坐標,在符合條件的情況下,可直接套用公式,也可利用點斜式進行求解,注意一題多解的情況。

(四)小結作業

小結:學生暢談收獲。

作業:完成課后相應練習題,根據已知條件求直線的方程。

高中數學教案模板表格篇15

一、說教材

1、從在教材中的地位與作用來看

《等比數列的前n項和》是數列這一章中的一個重要內容,它不僅在現實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數學素養。

2、從學生認知角度看

從學生的思維特點看,很容易把本節內容與等差數列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節公式的推導與等差數列前n項和公式的推導有著本質的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

3、學情分析

教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

4、重點、難點

教學重點:公式的推導、公式的特點和公式的運用。

教學難點:公式的推導方法和公式的靈活運用。

公式推導所使用的“錯位相減法”是高中數學數列求和方法中最常用的方法之一,它蘊含了重要的數學思想,所以既是重點也是難點。

二、說目標

知識與技能目標:

理解并掌握等比數列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

過程與方法目標:

通過對公式推導方法的探索與發現,向學生滲透特殊到一般、類比與轉化、分類討論等數學思想,培養學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

情感與態度價值觀:

通過對公式推導方法的探索與發現,優化學生的思維品質,滲透事物之間等價轉化和理論聯系實際的辯證唯物主義觀點。

三、說過程

學生是認知的主體,設計教學過程必須遵循學生的認知規律,盡可能地讓學生去經歷知識的形成與發展過程,結合本節課的特點,我設計了如下的教學過程:

1。創設情境,提出問題

在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。為什么呢?

設計意圖:設計這個情境目的是在引入課題的同時激發學生的興趣,調動學習的積極性。故事內容緊扣本節課的主題與重點。

此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥粒總數。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆。

2、師生互動,探究問題

在肯定他們的思路后,我接著問:1,2,22,…,263是什么數列?有何特征?應歸結為什么數學問題呢?

探討1:,記為(1)式,注意觀察每一項的特征,有何聯系?(學生會發現,后一項都是前一項的2倍)

探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發現?

設計意圖:留出時間讓學生充分地比較,等比數列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養學生的辯證思維能力的良好契機。

經過比較、研究,學生發現:(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

設計意圖:經過繁難的計算之苦后,突然發現上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數學的興趣和學好數學的信心。

3、類比聯想,解決問題

這時我再順勢引導學生將結論一般化,

這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

對不對?這里的q能不能等于1?等比數列中的公比能不能為1?q=1時是什么數列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

再次追問:結合等比數列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結構,另一方面使學生由簡單地模仿和接受,變為對知識的主動認識,從而進一步提高分析、類比和綜合的能力。這一環節非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

4、討論交流,延伸拓展

99500 主站蜘蛛池模板: 香格里拉县| 双辽市| 文安县| 澄迈县| 罗定市| 岢岚县| 邵阳县| 阳城县| 兖州市| 吉木萨尔县| 巫溪县| 涿州市| 获嘉县| 大英县| 沙雅县| 西丰县| 新昌县| 淮安市| 保德县| 定兴县| 车致| 山阳县| 慈利县| 平果县| 唐河县| 乌拉特中旗| 磴口县| 班戈县| 三明市| 江城| 原阳县| 澳门| 布拖县| 崇信县| 潜江市| 喀喇沁旗| 望谟县| 阿拉尔市| 土默特右旗| 辽宁省| 德惠市|