教育巴巴 > 高中教案 > 數學教案 >

高二數學教案反思

時間: 新華 數學教案

教案可以幫助教師及時了解學生的學習情況和學習成果,有針對性地調整教學策略,更好地促進學生的學習。高二數學教案反思怎樣寫才正確?接下來給大家整理高二數學教案反思,希望對大家有所幫助。

高二數學教案反思篇1

【學習目標】

1、進一步體會數形結合的思想,提高分析問題解決問題的能力;

2、能借助正余弦函數的誘導公式推導出正切函數的誘導公式;

3、掌握誘導公式在求值和化簡中的應用.

【學習重點】正切函數的誘導公式及應用

【學習難點】正切函數誘導公式的推導

【學習過程】

一、預習自學

1.觀察課本38頁圖1-46,當-414【導學案】正切函數的誘導公式<414【導學案】正切函數的誘導公式<414【導學案】正切函數的誘導公式時,角414【導學案】正切函數的誘導公式與角2414【導學案】正切函數的誘導公式的正切函數值有什么關系?

我們可以歸納出以下公式:

tan(2414【導學案】正切函數的誘導公式)=tan(-414【導學案】正切函數的誘導公式)=tan(2414【導學案】正切函數的誘導公式)=

tan(414【導學案】正切函數的誘導公式=tan(414【導學案】正切函數的誘導公式=

2.我們可以利用誘導公式,將任意角的三角函數問題轉化為銳角三角函數的問題,參考下面的框圖,想想每次變換應該運用哪些公式。

414【導學案】正切函數的誘導公式

給上述箭頭上填上相應的文字

二、合作探究

探究1試運用414【導學案】正切函數的誘導公式,414【導學案】正切函數的誘導公式的正、余弦函數的誘導公式推證公式tan(414【導學案】正切函數的誘導公式和tan414【導學案】正切函數的誘導公式.

探究2若tan414【導學案】正切函數的誘導公式,借助三角函數定義求角414【導學案】正切函數的誘導公式的正弦函數值和余弦函數值.

探究3求414【導學案】正切函數的誘導公式的值.

三、達標檢測

1下列各式成立的是()

Atan(414【導學案】正切函數的誘導公式=-tan414【導學案】正切函數的誘導公式Btan(414【導學案】正切函數的誘導公式=tan414【導學案】正切函數的誘導公式

Ctan(-414【導學案】正切函數的誘導公式)=-tan414【導學案】正切函數的誘導公式Dtan(2414【導學案】正切函數的誘導公式)=tan414【導學案】正切函數的誘導公式

2求下列三角函數數值

(1)tan(-414【導學案】正切函數的誘導公式(2)tan240414【導學案】正切函數的誘導公式414【導學案】正切函數的誘導公式(3)tan(-1574414【導學案】正切函數的誘導公式)

3化簡求值

tan675414【導學案】正切函數的誘導公式+tan765414【導學案】正切函數的誘導公式+tan(-300414【導學案】正切函數的誘導公式)+tan(-690414【導學案】正切函數的誘導公式)+tan1080414【導學案】正切函數的誘導公式

四、課后延伸

求值:414【導學案】正切函數的誘導公式

高二數學教案反思篇2

1.本節課的重點是了解程序框圖的含義,理解程序框圖的作用,掌握各種程序框和流程線的畫法與功能,理解程序框圖中的順序結構,會用順序結構表示算法.難點是理解程序框圖的作用及用順序結構表示算法.

2.本節課要重點掌握的規律方法

(1)掌握畫程序框圖的幾點注意事項,見講1;

(2)掌握應用順序結構表示算法的步驟,見講2.

3.本節課的易錯點

對程序框圖的理解有誤致錯,如講1.

課下能力提升(二)

[學業水平達標練]

題組1程序框圖

1.在程序框圖中,一個算法步驟到另一個算法步驟的連接用()

A.連接點B.判斷框C.流程線D.處理框

解析:選C流程線的意義是流程進行的方向,一個算法步驟到另一個算法步驟表示的是流程進行的方向,而連接點是當一個框圖需要分開來畫時,在斷開處畫上連接點.判斷框是根據給定條件進行判斷,處理框是賦值、計算、數據處理、結果傳送,所以A,B,D都不對.故選C.

2.a表示“處理框”,b表示“輸入、輸出框”,c表示“起止框”,d表示“判斷框”,以下四個圖形依次為()

A.abcdB.dcabC.bacdD.cbad

答案:D

3.如果輸入n=2,那么執行如下算法的結果是()

第一步,輸入n.

第二步,n=n+1.

第三步,n=n+2.

第四步,輸出n.

A.輸出3B.輸出4

C.輸出5D.程序出錯

答案:C

題組2順序結構

4.如圖所示的程序框圖表示的算法意義是()

A.邊長為3,4,5的直角三角形面積

B.邊長為3,4,5的直角三角形內切圓面積

C.邊長為3,4,5的直角三角形外接圓面積

D.以3,4,5為弦的圓面積

解析:選B由直角三角形內切圓半徑r=a+b-c2,知選B.

第4題圖第5題圖

5.(2016?東營高一檢測)給出如圖所示的程序框圖:

若輸出的結果為2,則①處的執行框內應填的是()

A.x=2B.b=2

C.x=1D.a=5

解析:選C∵b=2,∴2=a-3,即a=5.∴2x+3=5時,得x=1.

6.寫出如圖所示程序框圖的運行結果:S=________.

解析:S=log24+42=18.

答案:18

7.已知半徑為r的圓的周長公式為C=2πr,當r=10時,寫出計算圓的周長的一個算法,并畫出程序框圖.

解:算法如下:第一步,令r=10.第二步,計算C=2πr.第三步,輸出C.

程序框圖如圖:

8.已知函數f(x)=x2-3x-2,求f(3)+f(-5)的值,設計一個算法并畫出算法的程序框圖.

解:自然語言算法如下:

第一步,求f(3)的值.

第二步,求f(-5)的值.

第三步,將前兩步的結果相加,存入y.

第四步,輸出y.

程序框圖:

[能力提升綜合練]

1.程序框圖符號“”可用于()

A.輸出a=10B.賦值a=10

C.判斷a=10D.輸入a=1

解析:選B圖形符號“”是處理框,它的功能是賦值、計算,不是輸出、判斷和輸入,故選B.

2.(2016?廣州高一檢測)如圖程序框圖的運行結果是()

A.52B.32

C.-32D.-1

解析:選C因為a=2,b=4,所以S=ab-ba=24-42=-32,故選C.

3.(2016?廣州高一檢測)如圖是一個算法的程序框圖,已知a1=3,輸出的b=7,則a2等于()

A.9B.10

C.11D.12

解析:選C由題意知該算法是計算a1+a22的值.

∴3+a22=7,得a2=11,故選C.

4.(2016?佛山高一檢測)閱讀如圖所示的程序框圖,若輸出的結果為6,則①處執行框應填的是()

A.x=1B.x=2

C.b=1D.b=2

解析:選B若b=6,則a=7,∴x3-1=7,∴x=2.

5.根據如圖所示的程序框圖所表示的算法,輸出的結果是________.

解析:該算法的第1步分別將1,2,3賦值給X,Y,Z,第2步使X取Y的值,即X取值變成2,第3步使Y取X的值,即Y的值也是2,第4步讓Z取Y的值,即Z取值也是2,從而第5步輸出時,Z的值是2.

答案:2

6.計算圖甲中空白部分面積的一個程序框圖如圖乙,則①中應填________.

圖甲圖乙

解析:圖甲空白部分的面積為a2-π16a2,故圖乙①中應填S=a2-π16a2.

答案:S=a2-π16a2

7.在如圖所示的程序框圖中,當輸入的x的值為0和4時,輸出的值相等,根據該圖和各小題的條件回答問題.

(1)該程序框圖解決的是一個什么問題?

(2)當輸入的x的值為3時,求輸出的f(x)的值.

(3)要想使輸出的值,求輸入的x的值.

解:(1)該程序框圖解決的是求二次函數f(x)=-x2+mx的函數值的問題.

(2)當輸入的x的值為0和4時,輸出的值相等,即f(0)=f(4).

因為f(0)=0,f(4)=-16+4m,

所以-16+4m=0,

所以m=4.

所以f(x)=-x2+4x.

則f(3)=-32+4×3=3,

所以當輸入的x的值為3時,輸出的f(x)的值為3.

(3)因為f(x)=-x2+4x=-(x-2)2+4,

所以當x=2時,f(x)max=4,

所以要想使輸出的值,輸入的x的值應為2.

8.如圖是為解決某個問題而繪制的程序框圖,仔細分析各框內的內容及圖框之間的關系,回答下面的問題:

(1)圖框①中x=2的含義是什么?

(2)圖框②中y1=ax+b的含義是什么?

(3)圖框④中y2=ax+b的含義是什么?

(4)該程序框圖解決的是怎樣的問題?

(5)當最終輸出的結果是y1=3,y2=-2時,求y=f(x)的解析式.

解:(1)圖框①中x=2表示把2賦值給變量x.

(2)圖框②中y1=ax+b的含義是:該圖框在執行①的前提下,即當x=2時,計算ax+b的值,并把這個值賦給y1.

(3)圖框④中y2=ax+b的含義是:該圖框在執行③的前提下,即當x=-3時,計算ax+b的值,并把這個值賦給y2.

(4)該程序框圖解決的是求函數y=ax+b的函數值的問題,其中輸入的是自變量x的值,輸出的是對應x的函數值.

(5)y1=3,即2a+b=3.⑤

y2=-2,即-3a+b=-2.⑥

由⑤⑥,得a=1,b=1,

所以f(x)=x+1.

高二數學教案反思篇3

一、教學過程

1.復習。

反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。

求出函數y=x3的反函數。

2.新課。

先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統放到其他同學的屏幕上,很快有學生作出反應。

生2:這是y=x3的反函數y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家幫他找找原因。

(生1將他的制作過程重新重復了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?

(學生再次陷入思考,一會兒有學生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的.關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?

(多數學生回答可由y=x3的圖象得到y=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y=的圖象?

生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y=的圖象。

師:將橫坐標與縱坐標互換?怎么換?

(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

(學生重新開始觀察這兩個函數的圖象,一會兒有學生舉手。)

生6:我發現這兩個圖象應是關于某條直線對稱。

師:能說說是關于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導學生利用幾何畫板找出兩函數圖象的對稱軸,畫出如下圖形,如圖2所示:)

學生通過移動點A(點B、C隨之移動)后發現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發現中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。

師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。

(學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)

還是有部分學生舉手,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經發現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,②也不是函數的圖象。

最后教師與學生一起總結:

點(x,y)與點(y,x)關于直線y=x對稱;

函數及其反函數的圖象關于直線y=x對稱。

二、反思與點評

1.在開學初,我就教學幾何畫板4。0的用法,在教函數圖象畫法的過程當中,發現學生根據選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據函數解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節課教學中,我有意選擇了幾何畫板4。0進行教學。

2.荷蘭數學教育家弗賴登塔爾認為,數學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。

計算機作為一種現代信息技術工具,在直觀化方面有很強的表現能力,如在函數的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。

在本節課的教學中,計算機更多的是作為學生探索發現的工具,學生不但發現了函數與其反函數圖象間的對稱關系,而且在更深層次上理解了反函數的概念,對反函數的存在性、反函數的求法等方面也有了更深刻的理解。

當前計算機用于中學數學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發現探索,甚至利用計算機來做數學,在此過程當中更好地理解數學概念,促進數學思維,發展數學創新能力。

3.在引出兩個函數圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。

高二數學教案反思篇4

教學目標:

1.進一步理解和掌握數列的有關概念和性質;

2.在對一個數列的探究過程中,提高提出問題、分析問題和解決問題的能力;

3.進一步提高問題探究意識、知識應用意識和同伴合作意識。

教學重點:

問題的提出與解決

教學難點:

如何進行問題的探究

教學方法:

啟發探究式

教學過程:

問題:已知{an}是首項為1,公比為的無窮等比數列。對于數列{an},提出你的問題,并進行研究,你能得到一些什么樣的結論?

研究方向提示:

1.數列{an}是一個等比數列,可以從等比數列角度來進行研究;

2.研究所給數列的項之間的關系;

3.研究所給數列的子數列;

4.研究所給數列能構造的新數列;

5.數列是一種特殊的函數,可以從函數性質角度來進行研究;

6.研究所給數列與其它知識的聯系(組合數、復數、圖形、實際意義等)。

針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。

課堂小結:

1.研究一個數列可以從哪些方面提出問題并進行研究?

2.你最喜歡哪位同學的研究?為什么?

高二數學教案反思篇5

1.教材結構分析

《圓的方程》安排在高中數學第二冊(上)第七章第六節.圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用.圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用.

2.學情分析

圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的.但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難.另外學生在探究問題的能力,合作交流的意識等方面有待加強.

根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:

3.教學目標

(1)知識目標:①掌握圓的標準方程;

②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;

③利用圓的標準方程解決簡單的實際問題.

(2)能力目標:①進一步培養學生用代數方法研究幾何問題的能力;

②加深對數形結合思想的理解和加強對待定系數法的運用;

③增強學生用數學的意識.

(3)情感目標:①培養學生主動探究知識、合作交流的意識;

②在體驗數學美的過程中激發學生的學習興趣.

根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:

4.教學重點與難點

(1)重點:圓的標準方程的求法及其應用.

(2)難點:①會根據不同的已知條件求圓的標準方程;

②選擇恰當的坐標系解決與圓有關的實際問題.

為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:

【二】教法學法分析

1.教法分析為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上.另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程.

2.學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解.通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓.通過應用圓的標準方程,熟悉用待定系數法求的過程.

下面我就對具體的教學過程和設計加以說明:

【三】教學過程與設計

整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:

創設情境啟迪思維深入探究獲得新知應用舉例鞏固提高

反饋訓練形成方法小結反思拓展引申

下面我從縱橫兩方面敘述我的教學程序與設計意圖.

首先:縱向敘述教學過程

(一)創設情境——啟迪思維

問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2.7m,高為3m的貨車能不能駛入這個隧道?

通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決.一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題.用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望.這樣獲取的知識,不但易于保持,而且易于遷移.

通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節.

(二)深入探究——獲得新知

問題二1.根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

2.如果圓心在,半徑為時又如何呢?

這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程.然后再讓學生對圓心不在原點的情況進行探究.我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法.

得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節.

(三)應用舉例——鞏固提高

I.直接應用內化新知

問題三1.寫出下列各圓的標準方程:

(1)圓心在原點,半徑為3;

(2)經過點,圓心在點.

2.寫出圓的圓心坐標和半徑.

我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備.

II.靈活應用提升能力

問題四1.求以點為圓心,并且和直線相切的圓的方程.

2.求過點,圓心在直線上且與軸相切的圓的方程.

3.已知圓的方程為,求過圓上一點的切線方程.

你能歸納出具有一般性的結論嗎?

已知圓的方程是,經過圓上一點的切線的方程是什么?

我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程.第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓.第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間.最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮.

III.實際應用回歸自然

問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0.01m).

我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識.

(四)反饋訓練——形成方法

問題六1.求過原點和點,且圓心在直線上的圓的標準方程.

2.求圓過點的切線方程.

3.求圓過點的切線方程.

接下來是第四環節——反饋訓練.這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心.另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果.

(五)小結反思——拓展引申

1.課堂小結

把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法

①圓心為,半徑為r的圓的標準方程為:

圓心在原點時,半徑為r的圓的標準方程為:.

②已知圓的方程是,經過圓上一點的切線的方程是:.

2.分層作業

(A)鞏固型作業:教材P81-82:(習題7.6)1,2,4.(B)思維拓展型作業:試推導過圓上一點的切線方程.

3.激發新疑

問題七1.把圓的標準方程展開后是什么形式?

2.方程表示什么圖形?

在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了.在知識的拓展中再次掀起學生探究的熱情.另外它為下節課研究圓的一般方程作了重要的準備.

以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:

橫向闡述教學設計

(一)突出重點抓住關鍵突破難點

求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點.

第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心.最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五.這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破.

(二)學生主體教師主導探究主線

本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終.從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的.另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務.

(三)培養思維提升能力激勵創新

為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力.在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行.

以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變.最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”.

高二數學教案反思篇6

學習目標:

1、了解本章的學習的內容以及學習思想方法2、能敘述隨機變量的定義

3、能說出隨機變量與函數的關系,4、能夠把一個隨機試驗結果用隨機變量表示

重點:能夠把一個隨機試驗結果用隨機變量表示

難點:隨機事件概念的透徹理解及對隨機變量引入目的的認識:

環節一:隨機變量的定義

1.通過生活中的一些隨機現象,能夠概括出隨機變量的定義

2能敘述隨機變量的定義

3能說出隨機變量與函數的區別與聯系

一、閱讀課本33頁問題提出和分析理解,回答下列問題?

1、了解一個隨機現象的規律具體指的是什么?

2、分析理解中的兩個隨機現象的隨機試驗結果有什么不同?建立了什么樣的對應關系?

總結:

3、隨機變量

(1)定義:

這種對應稱為一個隨機變量。即隨機變量是從隨機試驗每一個可能的結果所組成的

到的映射。

(2)表示:隨機變量常用大寫字母.等表示.

(3)隨機變量與函數的區別與聯系

函數隨機變量

自變量

因變量

因變量的范圍

相同點都是映射都是映射

環節二隨機變量的應用

1、能正確寫出隨機現象所有可能出現的結果2、能用隨機變量的描述隨機事件

例1:已知在10件產品中有2件不合格品。現從這10件產品中任取3件,其中含有的次品數為隨機變量的學案.這是一個隨機現象。(1)寫成該隨機現象所有可能出現的結果;(2)試用隨機變量來描述上述結果。

變式:已知在10件產品中有2件不合格品。從這10件產品中任取3件,這是一個隨機現象。若Y表示取出的3件產品中的合格品數,試用隨機變量描述上述結果

例2連續投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的次數,則X是一個隨機變

量,分別說明下列集合所代表的隨機事件:

(1){X=0}(2){X=1}

(3){X<2}(4){X>0}

變式:連續投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數,則X是一個隨機變量,X的可能取值是?并說明這些值所表示的隨機試驗的結果.

練習:寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機變量的結果。

(1)從學校回家要經過5個紅綠燈路口,可能遇到紅燈的次數;

(2)一個袋中裝有5只同樣大小的球,編號為1,2,3,4,5,現從中隨機取出3只球,被取出的球的號碼數;

小結(對標)

高二數學教案反思篇7

一、教學目標

1.把握菱形的判定.

2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養學生的學習愛好.

4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.

二、教法設計

觀察分析討論相結合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的判定方法.

2.教學難點:菱形判定方法的綜合應用.

四、課時安排

1課時

五、教具學具預備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

高二數學教案反思篇8

教學目標

1.掌握平面向量的數量積及其幾何意義;

2.掌握平面向量數量積的重要性質及運算律;

3.了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;

4.掌握向量垂直的條件.

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學工具

投影儀

教學過程

一、復習引入:

1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ

五,課堂小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

六、課后作業

P107習題2.4A組2、7題

課后小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

課后習題

作業

P107習題2.4A組2、7題

高二數學教案反思篇9

教學準備

教學目標

1.掌握平面向量的數量積及其幾何意義;

2.掌握平面向量數量積的重要性質及運算律;

3.了解用平面向量的數量積可以處理垂直的問題;

4.掌握向量垂直的條件.

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學過程

1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,

則數量abcosq叫a與b的數量積,記作a×b,即有a×b=abcosq,(0≤θ≤π).

并規定0向量與任何向量的數量積為0.

×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?

2、兩個向量的數量積與實數乘向量的積有什么區別?

(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.

(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.

(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0

高二數學教案反思篇10

一、教學目標

1.把握菱形的判定.

2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養學生的學習愛好.

4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.

二、教法設計

觀察分析討論相結合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的判定方法.

2.教學難點:菱形判定方法的綜合應用.

四、課時安排

1課時

五、教具學具預備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

復習提問

1.敘述菱形的定義與性質.

2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.

引入新課

師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學習這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對角錢互相垂直的&39;平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個條件?

生答:兩個.

師問:哪兩個?

生答:(1)是平行四邊形(2)兩條對角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學生口述證實)

證實時讓學生注重線段垂直平分線在這里的應用,

師問:對角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對角線,但都不是菱形.

菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):

注重:(2)與(4)的題設也是從四邊形出發,和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.

求證:四邊形是菱形(按教材講解).

總結、擴展

1.小結:

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區別與聯系.

2.思考題:已知:如圖4△中,,平分,,,交于.

求證:四邊形為菱形.

八、布置作業

教材P159中9、10、11、13

高二數學教案反思篇11

選修Ⅱ

1.概率與統計(14課時)

離散型隨機變量的分布列。離散型隨機變量的期望值和方差。

抽樣方法。總體分布的估計。正態分布。線性回歸。

實習作業。

教學目標:

(1)了解隨機變量、離散型隨機變量的意義,會求出某些簡單的離散型隨機變量的分布列。

(2)了解離散型隨機變量的期望值、方差的意義,會根據離散型隨機變量的分布列求出期望值、方差。

(3)會用隨機抽樣、系統抽樣、分層抽樣等常用的抽樣方法從總體中抽取樣本。

(4)會用樣本頻率分布估計總體分布。

(5)了解正態分布的意義及主要性質。

(6)通過生產過程的質量控制圖了解假設檢驗的基本思想。

(7)了解線性回歸的方法。

(8)實習作業以抽樣方法為內容,培養學生用數學解決實際問題的能力。

2.極限(12課時)

數學歸納法。數學歸納法應用舉例。

數列的極限。

函數的極限。極限的四則運算。函數的連續性。

教學目標:

(1)理解數學歸納法的原理,能用數學歸納法證明一些簡單的數學命題。

(2)從數列和函數的變化趨勢理解數列極限和函數極限的概念。

(3)掌握極限的四則運算法則;會求某些數列與函數的極限。

(4)了解連續的意義,借助幾何直觀理解閉區間上連續函數有最大值和最小值的性質。

3.導數與微分(16課時)

導數的概念。導數的幾何意義。幾種常見函數的導數。

兩個函數的和、差、積、商的導數。復合函數的導數。基本導數公式。

微分的概念與運算。

利用導數研究函數的單調性和極值。函數的最大值和最小值。

教學目標:

(1)了解導數概念的某些實際背景(如瞬時速度,加速度,光滑曲線切線的斜率等);掌握函數在一點處的導數的定義和導數的幾何意義;理解導函數的概念。

(2)熟記基本導數公式(c,xm(m為有理數),sinx,cosx,ex,ax,lnx,logax的導數);掌握兩個函數和、差、積、商的求導法則和復合函數的求導法則,會求某些簡單函數的導數。

(3)理解微分的概念(dy=y'dx),了解函數在一點處的微分是函數增量的線性近似值,會求某些簡單函數的微分。

(4)會從幾何直觀了解可導函數的單調性與其導數的關系;了解可導函數在某點取得極值的必要條件和充分條件(導數在極值點兩側異號);會求一些實際問題(一般指單峰函數)的最大值和最小值。

4.積分(14課時)

定積分的概念。定積分的簡單性質。微積分基本公式。

原函數與不定積分的概念。不定積分的線性性質。基本積分公式。

平面圖形的面積。旋轉體的體積。路程問題。變力作功。

微積分學建立的時代背景和歷史意義。

教學目標:

(1)了解定積分概念的某些實際背景(如變速直線運動的路程,曲邊梯形的面積等);了解定積分的定義和定積分的幾何意義;知道函數連續是定積分存在的充分條件。

(2)理解定積分的簡單性質(線性性質和對區間的可加性);了解微積分基本公式(牛頓-萊布尼茲公式),會用它來求一些函數的定積分。

(3)掌握原函數與不定積分的概念,掌握不定積分的線性性質;熟記基本積分公式(c,xm(m為有理數),sinx,cosx,,ex,ax的積分);會利用線性性質和基本積分公式求較簡單的函數的不定積分。

(4)會用定積分求一些平面圖形的面積、旋轉體的體積、變速直線運動的路程、變力所作的功。

(5)通過微積分初步的教學,了解微積分學產生的時代背景和歷史意義,進行客觀事物相互制約、相互轉化、對立統一的辯證關系等觀點的教育。

5.復數(16課時)

復數的概念。復數的向量表示法。

復數的加法與減法。復數的乘法與除法。

復數的三角形式。復數三角形式的乘法、除法、乘方、開方。

教學目標:

(1)了解引進復數的必要性;理解復數的有關概念;掌握復數的代數表示及向量表示。

(2)掌握復數代數形式的運算法則,能進行復數代數形式的加法、減法、乘法、除法運算。

(3)掌握復數三角形式,會進行復數三角形式和代數形式的互化;掌握復數三角形式的乘法、除法、乘方、開方運算。

6.研究性課題(選修Ⅰ3課時,選修Ⅱ6課時)

有關研究性課題的要求和教學目標見本大綱必修課中“研究性課題”的說明。

高二數學教案反思篇12

一、說教材:

1、地位、作用和特點:

《__》是高中數學課本第__冊(x修)的第__章“__”的第__節內容。

本節是在學習了之后編排的。通過本節課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《__》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。本節的特點之一是__;特點之二是:__。

教學目標:

根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

(1)知識目標:A、B、C

(2)能力目標:A、B、C

(3)德育目標:A、B

教學的重點和難點:

(1)教學重點:

(2)教學難點:

二、說教法:

基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學__真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:

導入新課新課教學反饋發展

三、說學法:

學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。

1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

本節教師通過列舉具體事例來進行分析,歸納出,并依據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。

2、讓學生親自經歷運用科學方法探索的過程。主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創設探索規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。

四、教學過程:

(一)、課題引入:

教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數學科學的有關情況。)激發學生的探究__,引導學生提出接下去要研究的問題。

(二)、新課教學:

1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

(三)、實施反饋:

1、課堂反饋,遷移知識(遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。

2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。

五、板書設計:

在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

六、說課綜述:

以上是我對《__》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。

高二數學教案反思篇13

一、說教材:

1、地位、作用和特點:

《___》是高中數學課本第__冊(_修)的第__章“___”的第__節內容。

本節是在學習了之后編排的。通過本節課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《__》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。本節的特點之一是__;特點之二是:___。

教學目標:

根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

(1)知識目標:A、B、C

(2)能力目標:A、B、C

(3)德育目標:A、B

教學的重點和難點:

(1)教學重點:

(2)教學難點:

二、說教法:

基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學__真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:

導入新課新課教學反饋發展

三、說學法:

學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。

1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

本節教師通過列舉具體事例來進行分析,歸納出,并依據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。

2、讓學生親自經歷運用科學方法探索的過程。主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創設探索規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。

四、教學過程:

(一)、課題引入:

教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數學科學的有關情況。)激發學生的探究__,引導學生提出接下去要研究的問題。

(二)、新課教學:

1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

(三)、實施反饋:

1、課堂反饋,遷移知識(遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。

2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。

五、板書設計:

在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

六、說課綜述:

以上是我對《___》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。

高二數學教案反思篇14

1.復習。

反函數的概念、反函數求法、互為反函數的函數定義域值域的關系。

求出函數y=x3的反函數。

2.新課。

先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數的圖象。有部分學生發出了“咦”的一聲,因為他們得到了如下的圖象(圖1):

教師在畫出上述圖象的學生中選定

生1,將他的屏幕內容通過教學系統放到其他同學的屏幕上,很快有學生作出反應。

生2:這是y=x3的反函數y=的圖象。

師:對,但是怎么會得到這個圖象,請大家討論。

(學生展開討論,但找不出原因。)

師:我們請生1再給大家演示一下,大家幫他找找原因。

(生1將他的制作過程重新重復了一次。)

生3:問題出在他選擇的次序不對。

師:哪個次序?

生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。

師:是這樣嗎?我們請生1再做一次。

(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數y=x3的圖象。)

師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數y=的圖象呢?

(學生再次陷入思考,一會兒有學生舉手。)

師:我們請生4來告訴大家。

生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數也正好是將x與y交換。

師:完全正確。下面我們進一步研究y=x3的圖象及其反函數y=的圖象的.關系,同學們能不能看出這兩個函數的圖象有什么樣的關系?

(多數學生回答可由y=x3的圖象得到y=的圖象,于是教師進一步追問。)

師:怎么由y=x3的圖象得到y=的圖象?

生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y=的圖象。

師:將橫坐標與縱坐標互換?怎么換?

(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)

師:我其實是想問大家這兩個函數的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?

(學生重新開始觀察這兩個函數的圖象,一會兒有學生舉手。)

生6:我發現這兩個圖象應是關于某條直線對稱。

師:能說說是關于哪條直線對稱嗎?

生6:我還沒找出來。

(接下來,教師引導學生利用幾何畫板找出兩函數圖象的對稱軸,畫出如下圖形,如圖2所示:)

學生通過移動點A(點B、C隨之移動)后發現,BC的中點M在同一條直線上,這條直線就是兩函數圖象的對稱軸,在追蹤M點后,發現中點的軌跡是直線y=x。

生7:y=x3的圖象及其反函數y=的圖象關于直線y=x對稱。

師:這個結論有一般性嗎?其他函數及其反函數的圖象,也有這種對稱關系嗎?請同學們用其他函數來試一試。

(學生紛紛畫出其他函數與其反函數的圖象進行驗證,最后大家一致得出結論:函數及其反函數的圖象關于直線y=x對稱。)

還是有部分學生舉手,因為他們畫出了如下圖象(圖3):

教師巡視全班時已經發現這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數y=x2(x∈R)沒有反函數,②也不是函數的圖象。

最后教師與學生一起總結:

點(x,y)與點(y,x)關于直線y=x對稱;

函數及其反函數的圖象關于直線y=x對稱。

高二數學教案反思篇15

教學目標:

使學生理解函數的概念,明確決定函數的三個要素,學會求某些函數的定義域,掌握判定兩個函數是否相同的方法;使學生理解靜與動的辯證關系.

教學重點:

函數的概念,函數定義域的求法.

教學難點:

函數概念的理解.

教學過程:

Ⅰ.課題導入

[師]在初中,我們已經學習了函數的概念,請同學們回憶一下,它是怎樣表述的?

(幾位學生試著表述,之后,教師將學生的回答梳理,再表述或者啟示學生將表述補充完整再條理表述).

設在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說y是x的函數,x叫做自變量.

[師]我們學習了函數的概念,并且具體研究了正比例函數,反比例函數,一次函數,二次函數,請同學們思考下面兩個問題:

問題一:y=1(x∈R)是函數嗎?

問題二:y=x與y=x2x是同一個函數嗎?

(學生思考,很難回答)

[師]顯然,僅用上述函數概念很難回答這些問題,因此,需要從新的高度來認識函數概念(板書課題).

Ⅱ.講授新課

[師]下面我們先看兩個非空集合A、B的元素之間的一些對應關系的例子.

在(1)中,對應關系是“乘2”,即對于集合A中的每一個數n,集合B中都有一個數2n和它對應.

在(2)中,對應關系是“求平方”,即對于集合A中的每一個數m,集合B中都有一個平方數m2和它對應.

在(3)中,對應關系是“求倒數”,即對于集合A中的每一個數x,集合B中都有一個數1x和它對應.

請同學們觀察3個對應,它們分別是怎樣形式的對應呢?

[生]一對一、二對一、一對一.

[師]這3個對應的共同特點是什么呢?

[生甲]對于集合A中的任意一個數,按照某種對應關系,集合B中都有惟一的數和它對應.

[師]生甲回答的很好,不但找到了3個對應的共同特點,還特別強調了對應關系,事實上,一個集合中的數與另一集合中的數的對應是按照一定的關系對應的,這是不能忽略的.實際上,函數就是從自變量x的集合到函數值y的集合的一種對應關系.

現在我們把函數的概念進一步敘述如下:(板書)

設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有惟一確定的數f(x)和它對應,那么就稱f︰A→B為從集合A到集合B的一個函數.

記作:y=f(x),x∈A

其中x叫自變量,x的取值范圍A叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{yy=f(x),x∈A}叫函數的值域.

一次函數f(x)=ax+b(a≠0)的定義域是R,值域也是R.對于R中的任意一個數x,在R中都有一個數f(x)=ax+b(a≠0)和它對應.

反比例函數f(x)=kx(k≠0)的定義域是A={--≠0},值域是B={f(x)f(x)≠0},對于A中的任意一個實數x,在B中都有一個實數f(x)=kx(k≠0)和它對應.

二次函數f(x)=ax2+bx+c(a≠0)的定義域是R,值域是當a>0時B={f(x)f(x)≥4ac-b24a};當a<0時,B={f(x)f(x)≤4ac-b24a},它使得R中的任意一個數x與B中的數f(x)=ax2+bx+c(a≠0)對應.

函數概念用集合、對應的語言敘述后,我們就很容易回答前面所提出的兩個問題.

y=1(x∈R)是函數,因為對于實數集R中的任何一個數x,按照對應關系“函數值是1”,在R中y都有惟一確定的值1與它對應,所以說y是x的函數.

Y=x與y=x2x不是同一個函數,因為盡管它們的對應關系一樣,但y=x的定義域是R,而y=x2x的定義域是{--≠0}.所以y=x與y=x2x不是同一個函數.

[師]理解函數的定義,我們應該注意些什么呢?(教師提出問題,啟發、引導學生思考、討論,并和學生一起歸納、總結)

注意:①函數是非空數集到非空數集上的一種對應.

②符號“f:A→B”表示A到B的一個函數,它有三個要素;定義域、值域、對應關系,三者缺一不可.

③集合A中數的任意性,集合B中數的惟一性.

④f表示對應關系,在不同的函數中,f的具體含義不一樣.

⑤f(x)是一個符號,絕對不能理解為f與x的乘積.

[師]在研究函數時,除用符號f(x)表示函數外,還常用g(x)、F(x)、G(x)等符號來表示

Ⅲ.例題分析

[例1]求下列函數的定義域.

(1)f(x)=1x-2(2)f(x)=3x+2(3)f(x)=x+1+12-x

分析:函數的定義域通常由問題的實際背景確定.如果只給出解析式y=f(x),而沒有指明它的定義域.那么函數的定義域就是指能使這個式子有意義的實數x的集合.

解:(1)x-2≠0,即x≠2時,1x-2有意義

∴這個函數的定義域是{--≠2}

(2)3x+2≥0,即x≥-23時3x+2有意義

∴函數y=3x+2的定義域是[-23,+∞)

(3)x+1≥02-x≠0x≥-1x≠2

∴這個函數的定義域是{--≥-1}∩{--≠2}=[-1,2)∪(2,+∞).

注意:函數的定義域可用三種方法表示:不等式、集合、區間.

從上例可以看出,當確定用解析式y=f(x)表示的函數的定義域時,常有以下幾種情況:

(1)如果f(x)是整式,那么函數的定義域是實數集R;

(2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實數的集合;

(3)如果f(x)是偶次根式,那么函數的定義域是使根號內的式子不小于零的實數的集合;

(4)如果f(x)是由幾個部分的數學式子構成的,那么函數的定義域是使各部分式子都有意義的實數的集合(即使每個部分有意義的實數的集合的交集);

(5)如果f(x)是由實際問題列出的,那么函數的定義域是使解析式本身有意義且符合實際意義的實數的集合.

例如:一矩形的寬為xm,長是寬的2倍,其面積為y=2x2,此函數定義域為x>0而不是全體實數.

由以上分析可知:函數的定義域由數學式子本身的意義和問題的實際意義決定.

[師]自變量x在定義域中任取一個確定的值a時,對應的函數值用符號f(a)來表示.例如,函數f(x)=x2+3x+1,當x=2時的函數值是f(2)=22+3?2+1=11

注意:f(a)是常量,f(x)是變量,f(a)是函數f(x)中當自變量x=a時的函數值.

下面我們來看求函數式的值應該怎樣進行呢?

[生甲]求函數式的值,嚴格地說是求函數式中自變量x為某一確定的值時函數式的值,因此,求函數式的值,只要把函數式中的x換為相應確定的數(或字母,或式子)進行計算即可.

[師]回答正確,不過要準確地求出函數式的值,計算時萬萬不可粗心大意噢!

[生乙]判定兩個函數是否相同,就看其定義域或對應關系是否完全一致,完全一致時,這兩個函數就相同;不完全一致時,這兩個函數就不同.

[師]生乙的回答完整嗎?

[生]完整!(課本上就是如生乙所述那樣寫的).

[師]大家說,判定兩個函數是否相同的依據是什么?

[生]函數的定義.

[師]函數的定義有三個要素:定義域、值域、對應關系,我們判定兩個函數是否相同為什么只看兩個要素:定義域和對應關系,而不看值域呢?

(學生竊竊私語:是啊,函數的三個要素不是缺一不可嗎?怎不看值域呢?)

(無人回答)

[師]同學們預習時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數的值域是由什么決定的,不就是由函數的定義域與對應關系決定的嗎!關注了函數的定義域與對應關系,三者就全看了!

(生恍然大悟,我們怎么就沒想到呢?)

[例2]求下列函數的值域

(1)y=1-2x(x∈R)(2)y=x-1x∈{-2,-1,0,1,2}

(3)y=x2+4x+3(-3≤x≤1)

分析:求函數的值域應確定相應的定義域后再根據函數的具體形式及運算確定其值域.

對于(1)(2)可用“直接法”根據它們的定義域及對應法則得到(1)(2)的值域.

對于(3)可借助數形結合思想利用它們的圖象得到值域,即“圖象法”.

解:(1)y∈R

(2)y∈{1,0,-1}

(3)畫出y=x2+4x+3(-3≤x≤1)的圖象,如圖所示,

當x∈[-3,1]時,得y∈[-1,8]

Ⅳ.課堂練習

課本P24練習1—7.

Ⅴ.課時小結

本節課我們學習了函數的定義(包括定義域、值域的概念)、區間的概念及求函數定義域的方法.學習函數定義應注意的問題及求定義域時的各種情形應該予以重視.(本小結的內容可由學生自己來歸納)

Ⅵ.課后作業

課本P28,習題1、2.

99497 主站蜘蛛池模板: 景宁| 宁南县| 沾益县| 德格县| 阿拉善左旗| 资中县| 阆中市| 丹棱县| 元江| 遂平县| 吉隆县| 黑龙江省| 宁城县| 仁布县| 多伦县| 嘉荫县| 涡阳县| 隆安县| 板桥市| 青田县| 洪泽县| 桓台县| 即墨市| 绍兴市| 博客| 丰原市| 马关县| 西华县| 东乌珠穆沁旗| 尤溪县| 北票市| 紫阳县| 茌平县| 晋中市| 乐昌市| 庄河市| 舞钢市| 太白县| 镶黄旗| 浦东新区| 施甸县|