教育巴巴 > 高中教案 > 數學教案 >

2025高一數學教案

時間: 新華 數學教案

寫好教案需要教師認真鉆研教材、精心設計教學方法、合理安排教學步驟、板書設計合理、寫好教學反思等。2025高一數學教案要怎么寫?接下來給大家帶來2025高一數學教案,方便大家學習。

2025高一數學教案篇1

一、教材分析

本節課選自《普通高中課程標準數學教科書-必修1》(人教A版)《1.2.1函數的概念》共3課時,本節課是第1課時。

生活中的許多現象如物體運動,氣溫升降,投資理財等都可以用函數的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。

函數是數學的重要的基礎概念之一,是高等數學重多學科的基礎概念和重要的研究對象。同時函數也是物理學等其他學科的重要基礎知識和研究工具,教學內容中蘊涵著極其豐富的辯證思想。

二、學生學習情況分析

函數是中學數學的主體內容,學生在中學階段對函數的認識分三個階段:

(一)初中從運動變化的角度來刻畫函數,初步認識正比例、反比例、一次和二次函數;

(二)高中用集合與對應的觀點來刻畫函數,研究函數的性質,學習典型的對、指、冪和三解函數;

(三)高中用導數工具研究函數的單調性和最值。

1.有利條件

現代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構。

初中用運動變化的觀點對函數進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規律的內容編排原則,函數概念在初中介紹到這個程度是合適的。也為我們用集合與對應的觀點研究函數打下了一定的基礎。

2.不利條件

用集合與對應的觀點來定義函數,形式和內容上都是比較抽象的,這對學生的理解能力是一個挑戰,是本節課教學的一個不利條件。

三、教學目標分析

課標要求:通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域.

1.知識與能力目標:

⑴能從集合與對應的角度理解函數的概念,更要理解函數的本質屬性;

⑵理解函數的三要素的含義及其相互關系;

⑶會求簡單函數的定義域和值域

2.過程與方法目標:

⑴通過豐富實例,使學生建立起函數概念的背景,體會函數是描述變量之間依賴關系的數學模型;

⑵在函數實例中,通過對關鍵詞的強調和引導使學發現它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用.

3.情感、態度與價值觀目標:

感受生活中的數學,感悟事物之間聯系與變化的辯證唯物主義觀點。

四、教學重點、難點分析

1.教學重點:對函數概念的理解,用集合與對應的語言來刻畫函數;

重點依據:初中是從變量的角度來定義函數,高中是用集合與對應的語言來刻畫函數。二者反映的本質是一致的,即“函數是一種對應關系”。但是,初中定義并未完全揭示出函數概念的本質,對y?1這樣的函數用運動變化的觀點也很難解釋。在以函數為重要內容的高中階段,課本應將函數定義為兩個數集之間的一種對應關系,按照這種觀點,使我們對函數概念有了更深一層的認識,也很容易說明y?1這函數表達式。因此,分析兩種函數概念的關系,讓學生融會貫通地理解函數的概念應為本節課的重點。

突出重點:重點的突出依賴于對函數概念本質屬性的把握,使學生通過表面的語言描述抓住概念的精髓。

2.教學難點:

第一:從實際問題中提煉出抽象的概念;

第二:符號“y=f(x)”的含義的理解.

難點依據:數學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。

突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當地引導,而對抽象符號的理解則要結合函數的三要素和小例子進行說明。

五、教法與學法分析

1.教法分析

本節課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發,關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數概念自然過度到函數的近代定我。

2.學法分析

在教學過程中我注意在教學中引導學生用模型法分析函數問題、通過自主學習法總結“區間”的知識。

2025高一數學教案篇2

第一節集合的含義與表示

學時:1學時

[學習引導]

一、自主學習

1.閱讀課本.

2.回答問題:

⑴本節內容有哪些概念和知識點?

⑵嘗試說出相關概念的含義?

3完成練習

4小結

二、方法指導

1、要結合例子理解集合的概念,能說出常用的數集的名稱和符號。

2、理解集合元素的特性,并會判斷元素與集合的關系

3、掌握集合的表示方法,并會正確運用它們表示一些簡單集合。

4、在學習中要特別注意理解空集的意義和記法

[思考引導]

一、提問題

1.集合中的元素有什么特點?

2、集合的常用表示法有哪些?

3、集合如何分類?

4.元素與集合具有什么關系?如何用數學語言表述?

5集合和是否相同?

二、變題目

1.下列各組對象不能構成集合的是()

A.北京大學2008級新生

B.26個英文字母

C.著名的藝術家

D.2008年北京奧運會中所設定的比賽項目

2.下列語句:①0與表示同一個集合;

②由1,2,3組成的集合可表示為或;

③方程的解集可表示為;

④集合可以用列舉法表示。

其中正確的是()

A.①和④B.②和③

C.②D.以上語句都不對

[總結引導]

1.集合中元素的三特性:

2.集合、元素、及其相互關系的數學符號語言的表示和理解:

3.空集的含義:

[拓展引導]

1.課外作業:習題11第題;

2.若集合,求實數的值;

3.若集合只有一個元素,則實數的值為;若為空集,則的取值范圍是.

撰稿:程曉杰審稿:宋慶

2025高一數學教案篇3

教學目標

1.使學生掌握的概念,圖象和性質.

(1)能根據定義判斷形如什么樣的函數是,了解對底數的限制條件的合理性,明確的定義域.

(2)能在基本性質的指導下,用列表描點法畫出的圖象,能從數形兩方面認識的性質.

(3)能利用的性質比較某些冪形數的大小,會利用的圖象畫出形如的圖象.

2.通過對的概念圖象性質的學習,培養學生觀察,分析歸納的能力,進一步體會數形結合的思想方法.

3.通過對的研究,讓學生認識到數學的應用價值,激發學生學習數學的興趣.使學生善于從現實生活中數學的發現問題,解決問題.教學建議

教材分析

(1)是在學生系統學習了函數概念,基本掌握了函數的性質的基礎上進行研究的,它是重要的基本初等函數之一,作為常見函數,它既是函數概念及性質的第一次應用,也是今后學習對數函數的基礎,同時在生活及生產實際中有著廣泛的應用,所以應重點研究.

(2)本節的教學重點是在理解定義的基礎上掌握的圖象和性質.難點是對底數在和時,函數值變化情況的區分.

(3)是學生完全陌生的一類函數,對于這樣的函數應怎樣進行較為系統的理論研究是學生面臨的重要問題,所以從的研究過程中得到相應的結論固然重要,但更為重要的是要了解系統研究一類函數的方法,所以在教學中要特別讓學生去體會研究的方法,以便能將其遷移到其他函數的研究.

教法建議

(1)關于的定義按照課本上說法它是一種形式定義即解析式的特征必須是的樣子,不能有一點差異,諸如,等都不是.

(2)對底數的限制條件的理解與認識也是認識的重要內容.如果有可能盡量讓學生自己去研究對底數,指數都有什么限制要求,教師再給予補充或用具體例子加以說明,因為對這個條件的認識不僅關系到對的認識及性質的分類討論,還關系到后面學習對數函數中底數的認識,所以一定要真正了解它的由來.

關于圖象的繪制,雖然是用列表描點法,但在具體教學中應避免描點前的盲目列表計算,也應避免盲目的連點成線,要把表列在關鍵之處,要把點連在恰當之處,所以應在列表描點前先把函數的性質作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認識后,以此為指導再列表計算,描點得圖象.

2025高一數學教案篇4

新學期開始了,本學期我擔任高一(1)(2)兩個班的數學教學工作,從學生的入學成績上看,兩班學生的數學基礎很差,所以本學期的教學任務非常艱巨,但我仍有信心迎接這個新挑戰。為了能更出色地完成教學任務,特制定計劃如下:

一、本學期教材分析,學生現狀分析

本學期教學內容是華師大版七年級上教材,內容與現實生活聯系非常密切,知識的綜合性也較強,教材為學生動手操作,歸納猜想提供了可能。觀察、思考、實驗、想一想、試一試、做一做等,給學生留有思考的`空間,讓學生能更好地自主學習。因此對每一章的教學都要體現師生交往、互動、共同發展的過程。要求老師成為學生數學學習的組織者和引導者,從學生的生活經驗和已有的知識背景出發,在活動中激發學生的學習潛能,促使學生在自主探索與合作交流的過程中真正理解和掌握基本數學知識、技能、思想、方法,提高解決問題的能力。開學第一周我對學生的觀察和了解中發現少部分學生基礎還可以,而大部分學生基礎和能力比較差,甚至加減乘除運算都不過關,更不用提解決實際問題了。所以一定要想方設法,鼓勵他們增強信心,改變現狀。在扎實基礎上提高他們解題的基本技能和技巧。

二、確立本學期的教學目標及實施目標的具體做法。

本學期的教學目標是五章內容,力求學生掌握基礎的同時提高他們的動手操的能力,概括的能力,類比猜想的能力和自主學習的能力。在初中的數學教學實踐中,常常發現相當一部分學生一開始不適應中學教師的教法,出現消化不良的癥狀,究其原因,就學生方面主要有三點:一是學習態度不夠端正;二是智能上存在差異;三是學習方法不科學。我以為施教之功,貴在引導,重在轉化,妙在開竅。因此為防止過早出現兩極分化,我準備具體從以下幾方面入手:

(一)掌握學生心理特征,激發他們學習數學的積極性。

學生由小學進入中學,心理上發生了較大的變化,開始要求“獨立自主”,但學生環境的更換并不等于他們已經具備了中學生的諸多能力。因此對學習道路上的困難估計不足。鑒于這些心理特征,教師必須十分重視激發學生的求知欲,有目的地時時地向學生介紹數學在日常生活中的應用,還要想辦法讓學生親身體驗生活離開數學知識將無法進行。從而激發他們學習數學知識的直接興趣,數學第一章內容的正確把握能較好地做到這些。同時在言行上,教師要切忌傷害學生的自尊心。

(二)努力提高課堂45分鐘效率

(1)在教師這方面,首先做到要通讀教材,駕奴教材,認真備課,認真備學生,認真備教法,對所講知識的每一環節的過渡都要精心設計。給學生出示的問題也要有層次,有梯度,哪些是獨立完成的,哪些是小組合作完成的,知識的達標程度教師更要掌握。同時作業也要分層次進行,使優生吃飽,差生吃好。

(2)重視學生能力的培養

七年級的數學是培養學

生運算能力,發展思維能力和綜合運用知識解決實際問題的能力,從而培養學生的創新意識。根據當前素質教育和新課改的的精神,在教學中我著重對學生進行上述幾方面能力的培養。充分發揮學生的主體作用,盡可能地把學生的潛能全部挖掘出來。

(三)加強對學生學法指導

進入中學,有些學生縱然很努力,成績依舊上不去,這說明中學階段學習方法問題已成為突出問題,這就要求學生必須掌握知識的內存規律,不僅要知其然,還要知其所以然,以逐步提高分析、判斷、綜合、歸納的解題能力,我要求學生養成先復習,后做作業的好習慣。課后注意及時復習鞏固以及經常復習鞏固,能使學過的知識達到永久記憶,遺忘緩慢。

三、教學研究計劃

課堂教學與數學改革是相鋪相成的,做好教學研究能更好地為課堂教學服務。本學期將積極參加學校和備課組的各項教研活動,撰寫“教學隨筆”和“教學反思”。本人決定在第十一周開一堂公開課,與學校同組的老師共同探討教學。

四、繼續教育計劃:

繼續教育是提高教師基本技能的重要途徑。本學期我積極參與校內外組織的各項繼續教育,努力提升教育教學水平。

1、通過網絡繼續教育培訓,學習新教育理念,不斷完善教育教學方式。

2、閱讀有關新課程的書籍,做好讀書筆記。

總之,本學期的教學工作任務還有很多,需要在今后的實際工作中進一步補充和完善。

2025高一數學教案篇5

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

(二)教學內容

本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。

二、教學目標分析

根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:

知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

三、重難點分析

一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。

要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

2025高一數學教案篇6

一、教學目標:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

二、教學重點:

向量的性質及相關知識的綜合應用。

三、教學過程:

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結:

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數學建模的思想,切實培養分析和解決問題的能力。

2025高一數學教案篇7

教學目標

掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。

教學重難點

掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。

教學過程

等比數列性質請同學們類比得出。

【方法規律】

1、通項公式與前n項和公式聯系著五個基本量,“知三求二”是一類最基本的運算題。方程觀點是解決這類問題的基本數學思想和方法。

2、判斷一個數列是等差數列或等比數列,常用的方法使用定義。特別地,在判斷三個實數a,b,c成等差(比)數列時,常用(注:若為等比數列,則a,b,c均不為0)

3、在求等差數列前n項和的(?。┲禃r,常用函數的思想和方法加以解決。

【示范舉例】

例1:(1)設等差數列的前n項和為30,前2n項和為100,則前3n項和為。

(2)一個等比數列的前三項之和為26,前六項之和為728,則a1=,q=。

例2:四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數。

例3:項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項。

2025高一數學教案篇8

一、指導思想

以校本教研為基礎,以市第__屆學科帶頭人評選活動為契機,以學科基地為陣地,以網絡教研為形式,以提高課堂教學的有效性為突破口,以深入推進課程改革為重點,以促進學生全面發展和教師專業成長為目標,進一步全面深化教學改革,全面推進素質教育,全面提升學科品位,全面提高學科質量。

二、工作要點

1、扎實開展校本教研。通過“骨干引路”、“自我反思”、“同伴協助”、“聯片互動”、“專業扶持”等形式,在全體小學數學教師中廣泛、深入、持久、扎實、有效地開展新課程下的校本教研活動。通過研究,促進課改理念在課堂教學中的運用,促進課堂教學有效性的提升,促進全體教師的專業發展,尤其是促進農村小學教師的專業發展。

2、認真抓好教學視導。對全市小學的進行認真視導,通過聽課、評課、講座、問卷、教學常規檢查、組織教師和學生座談等形式,總結教學經驗,發現和解決教學問題,推動教學研究,提高教學質量。

3、建立學科教研基地。充分利用學科教研基地,廣泛、深入開展數學新課程領域的相關問題研究和探討,推動全市小學數學教學研究工作。本學年研究重點為:如何推進網上學習和網絡教研。

4、切實改革考試評價。要指導學校建立新的評價考試制度,大力改革考試內容和形式,使之符合新課程的新要求。要通過考試,發現學生的潛在能力與不足,判斷學生的發展方向,促進學生的知識與技能,過程與方法,情感態度價值觀和培養創新精神與實踐能力的全面和諧發展。

5、加強農村課改指導。本著求真務實的態度,研究在鄉村教師、教學設施條件較差的情況下,如何有效地促進課程教學改革,推進鄉村課程改革順利實施。

6、著力網研骨干培訓。在培訓對象上,要加強對各校網研骨干的培訓;在培訓內容上,要結合教學改革的需要組織培訓;在培訓的方式上,要多采用參與式、互動式等方式。要切實通過培訓,提高網研興趣和能力。

7、認真組織學科帶頭人評比活動。要嚴格按照市教育局和教科院要求,做好市第__屆小學數學學科帶頭人的評選工作。

8、抓好學科專業委員會建設。本學年,要召開學科專業委員會年會,并組織學科專業委員會開展主題研究論壇,深入研究教學改革的難點、熱點問題。

2025高一數學教案篇9

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用__解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.

四、教學目標

1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用__解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3.借助多媒體輔助教學,激發學習數學的興趣.

五、教學重點與難點:

教學重點

1.對圓錐曲線定義的理解

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程

教學難點:

巧用圓錐曲線解題

2025高一數學教案篇10

教學目的:

(1)使學生初步理解集合的概念,知道常用數集的概念及記法

(2)使學生初步了解“屬于”關系的意義

(3)使學生初步了解有限集、無限集、空集的意義

教學重點:集合的基本概念及表示方法

教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合

授課類型:新授課

課時安排:1課時

教具:多媒體、實物投影儀

內容分析:

1.集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎

把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯

本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子

這節課主要學習全章的引言和集合的基本概念學習引言是引發學生的學習興趣,使學生認識學習本章的意義本節課的教學重點是集合的基本概念

集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明

教學過程:

一、復習引入:

1.簡介數集的發展,復習公約數和最小公倍數,質數與和數;

2.教材中的章頭引言;

3.集合論的創始人——康托爾(德國數學家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關概念:

由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.

定義:一般地,某些指定的對象集在一起就成為一個集合.

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數集及記法

(1)非負整數集(自然數集):全體非負整數的集合記作N,

(2)正整數集:非負整數集內排除0的集記作N_或N+

(3)整數集:全體整數的集合記作Z,

(4)有理數集:全體有理數的集合記作Q,

(5)實數集:全體實數的集合記作R

注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0

(2)非負整數集內排除0的集記作N_或N+Q、Z、R等其它

數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z_

3、元素對于集合的隸屬關系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作

4、集合中元素的特性

(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,

或者不在,不能模棱兩可

(2)互異性:集合中的元素沒有重復

(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開口方向,不能把a∈A顛倒過來寫

三、練習題:

1、教材P5練習1、2

2、下列各組對象能確定一個集合嗎?

(1)所有很大的實數(不確定)

(2)好心的人(不確定)

(3)1,2,2,3,4,5.(有重復)

3、設a,b是非零實數,那么可能取的值組成集合的元素是_-2,0,2__

4、由實數x,-x,|x|,所組成的集合,最多含(A)

(A)2個元素(B)3個元素(C)4個元素(D)5個元素

5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:

(1)當x∈N時,x∈G;

(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G

證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,

則x=x+0_=a+b∈G,即x∈G

證明(2):∵x∈G,y∈G,

∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)

∴x+y=(a+b)+(c+d)=(a+c)+(b+d)

∵a∈Z,b∈Z,c∈Z,d∈Z

∴(a+c)∈Z,(b+d)∈Z

∴x+y=(a+c)+(b+d)∈G,

又∵=

且不一定都是整數,

∴=不一定屬于集合G

四、小結:本節課學習了以下內容:

1.集合的有關概念:(集合、元素、屬于、不屬于)

2.集合元素的性質:確定性,互異性,無序性

3.常用數集的定義及記法

五、課后作業:

六、板書設計(略)

七、課后記:

2025高一數學教案篇11

教學目標:

(1) 了解集合、元素的概念,體會集合中元素的三個特征;

(2) 理解元素與集合的"屬于"和"不屬于"關系;

(3) 掌握常用數集及其記法;

教學重點:掌握集合的基本概念;

教學難點:元素與集合的關系;

教學過程:

一、引入課題

軍訓前學校通知:8月15日8點,高一年級在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念--集合(宣布課題),即是一些研究對象的總體。

閱讀課本P2-P3內容

二、新課教學

(一)集合的有關概念

1. 集合理論創始人康托爾稱集合為一些確定的、不同的東西的全體,人們

能意識到這些東西,并且能判斷一個給定的東西是否屬于這個總體。

2. 一般地,我們把研究對象統稱為元素(element),一些元素組成的總體叫集合(set),也簡稱集。

3. 思考1:判斷以下元素的全體是否組成集合,并說明理由:

(1) 大于3小于11的偶數;

(2) 我國的小河流;

(3) 非負奇數;

(4) 方程的解;

(5) 某校2021級新生;(6) 血壓很高的人;

(7) 的數學家;

(8) 平面直角坐標系內所有第三象限的點

(9) 全班成績好的學生。

對學生的解答予以討論、點評,進而講解下面的問題。

4. 關于集合的元素的特征

(1)確定性:設A是一個給定的集合,_是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。

(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。

(3)無序性:給定一個集合與集合里面元素的順序無關。

(4)集合相等:構成兩個集合的元素完全一樣。

5. 元素與集合的關系;

(1)如果a是集合A的元素,就說a屬于(belong to)A,記作:a∈A

(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作:aA

例如,我們A表示"1~20以內的所有質數"組成的集合,則有3∈A

4A,等等。

6.集合與元素的字母表示: 集合通常用大寫的拉丁字母A,B,C...表示,集合的元素用小寫的拉丁字母a,b,c,...表示。

7.常用的數集及記法:

非負整數集(或自然數集),記作N;

正整數集,記作N_或N+;

整數集,記作Z;

有理數集,記作Q;

實數集,記作R;

(二)例題講解:

例1.用"∈"或""符號填空:

(1)8 N; (2)0 N;

(3)-3 Z; (4) Q;

(5)設A為所有亞洲國家組成的集合,則中國 A,美國 A,印度 A,英國 A。

例2.已知集合P的元素為, 若3∈P且-1P,求實數m的值。

(三)課堂練習:

課本P5練習1;

歸納小結:

本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了常用集合及其記法。

作業布置:

1.習題1.1,第1- 2題;

2.預習集合的表示方法。

2025高一數學教案篇12

重點難點教學:

1.正確理解映射的概念;

2.函數相等的兩個條件;

3.求函數的定義域和值域。

一.教學過程:

1. 使學生熟練掌握函數的概念和映射的定義;

2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法。

二.教學內容: 1.函數的定義

設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數_,在集合B中都有確定的數()f_和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:

(),yf__A

其中,_叫自變量,_的取值范圍A叫作定義域(domain),與_的值對應的y值叫函數值,函數值的集合{()|}f__A?叫值域(range)。顯然,值域是集合B的子集。

注意:

① “y=f(_)”是函數符號,可以用任意的字母表示,如“y=g(_)”;

②函數符號“y=f(_)”中的f(_)表示與_對應的函數值,一個數,而不是f乘_. 2.構成函數的三要素 定義域、對應關系和值域。 3、映射的定義

設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意

一個元素_,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。

4. 區間及寫法:

設a、b是兩個實數,且a

(1) 滿足不等式a_b??的實數_的集合叫做閉區間,表示為[a,b];

(2) 滿足不等式a_b??的實數_的集合叫做開區間,表示為(a,b);

5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法

99365 主站蜘蛛池模板: 怀安县| 凤凰县| 雷波县| 朝阳区| 巴林左旗| 富裕县| 德化县| 鹿泉市| 隆子县| 招远市| 贵德县| 响水县| 喜德县| 普格县| 新晃| 武乡县| 新沂市| 陆河县| 安化县| 蒙山县| 济源市| 婺源县| 象山县| 东城区| 陕西省| 泸州市| 定陶县| 辽宁省| 伊宁市| 巴南区| 化州市| 磐石市| 台中县| 巫山县| 松溪县| 左贡县| 和顺县| 崇仁县| 南岸区| 潞西市| 东至县|