高一數學上冊教案
教師在教學中,細致規劃教案是關鍵,教案能夠幫助學生更好地理解和掌握系統的知識結構。那么,教案的編寫流程是怎樣的呢?以下是小編整理的一些高一數學上冊教案,僅供參考。
高一數學上冊教案篇1
教材分析:
集合概念及其基本理論,稱為集合論,是近、現代數學的一個重要的基礎,一方面,許多重要的數學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數學思想,在越來越廣泛的領域種得到應用。
課型:新授課
教學目標:(1)通過實例,了解集合的含義,體會元素與集合的理解集合“屬于”關系;
(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體
問題,感受集合語言的意義和作用;
教學重點:集合的基本概念與表示方法;
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;教學過程:
一、引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。
二、新課教學
(一)集合的有關概念
1.集合理論創始人康托爾稱集合為一些確定的、不同的東西的全體,人們能意識到這
些東西,并且能判斷一個給定的東西是否屬于這個總體。
2.一般地,研究對象統稱為元素(element),一些元素組成的總體叫集合(set),也簡
稱集。
3.關于集合的元素的特征
(1)確定性:設A是一個給定的集合,x是某一個具體對象,則或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。
(2)互異性:一個給定集合中的元素,指屬于這個集合的互不相同的個體(對象),因此,同一集合中不應重復出現同一元素。
(3)集合相等:構成兩個集合的元素完全一樣
4.元素與集合的關系;
(1)如果a是集合A的元素,就說a屬于(belong to)A,記作a∈A(2)如果a不是集合A的元素,就說a不屬于(not belong to)A,記作a?A(或a A)
5.常用數集及其記法
非負整數集(或自然數集),記作N
正整數集,記作N_或N+;
整數集,記作Z
有理數集,記作Q
實數集,記作R
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1)列舉法:把集合中的元素一一列舉出來,寫在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
(2)描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。
具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與{y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數},即代表整數集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數}。下列寫法{實數集},{R}也是錯誤的。
說明:列舉法與描述法各有優點,應該根據具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
三、歸納小結
本節課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。課題:§1.2集合間的基本關系
教材分析:類比實數的大小關系引入集合的包含與相等關系
了解空集的含義
課型:新授課
教學目的:(1)了解集合之間的包含、相等關系的含義;
(2)理解子集、真子集的概念;
(3)能利用Venn圖表達集合間的關系;
(4)了解與空集的含義。
教學重點:子集與空集的概念;用Venn圖表達集合間的關系。教學難點:弄清元素與子集、屬于與包含之間的區別;
教學過程:
四、引入課題
1、復習元素與集合的關系——屬于與不屬于的關系,填以下空白:(1)0 N;(2;(3)-1.5 R
2、類比實數的大小關系,如5<7,2≤2,試想集合間是否有類似的“大小”關系呢?(宣
布課題)
五、新課教學
A={1,2,3},B={1,2,3,4}
集合A是集合B的`部分元素構成的集合,我們說集合B包含集合A;
如果集合A的任何一個元素都是集合B的元素,我們說這兩個集合有包含關系,稱集合A是集合B的子集(subset)。
記作:A?B(或B?A)
讀作:A包含于(is contained in)B,或B包含(contains)A (一)集合與集合之間的“包含”關系;
當集合A不包含于集合B時,記作B
用Venn圖表示兩個集合間的“包含”關系A?B(或B?A)
(二)集合與集合之間的“相等”關系;
A?B且B?A,則A=B中的元素是一樣的,因此A=B
?A?B即A=B?? B?A?
結論:
任何一個集合是它本身的子集
(三)真子集的概念
若集合A?B,存在元素x∈B且x?A,則稱集合A是集合B的真子集(proper subset)。
記作:A B(或B A)
讀作:A真包含于B(或B真包含A)
(四)空集的概念
(實例引入空集概念)
不含有任何元素的集合稱為空集(empty set),記作:?規定:空集是任何集合的子集,是任何非空集合的真子集。
(五)結論:1A?A ○2A?B,且B?C,則A?C ○
(六)例題
(1)寫出集合{a,b}的所有的子集,并指出其中哪些是它的真子集。
(2)化簡集合A={x|x-3>2},B={x|x≥5},并表示A、B的關系;
(七)歸納小結,強化思想
兩個集合之間的基本關系只有“包含”與“相等”兩種,可類比兩個實數間的大小關系,同時還要注意區別“屬于”與“包含”兩種關系及其表示方法;
1已知集合A={x|a取值范圍。
2設集合A={○四邊形},B={平行四邊形},C={矩形},
D={正方形},試用Venn圖表示它們之間的關系。
課題:§1.3集合的基本運算
教學目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集;(3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。
課型:新授課
教學重點:集合的交集與并集、補集的概念;
教學難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;
教學過程:
六、引入課題
我們兩個實數除了可以比較大小外,還可以進行加法運算,類比實數的加法運算,兩個集合是否也可以“相加”呢?
思考(P9思考題),引入并集概念。
七、新課教學
1.并集
一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)
記作:A∪B
Venn圖表示:讀作:“A并B”即:A∪B={x|x∈A,或x∈B}
高一數學上冊教案篇2
教學目標:
使學生理解函數的概念,明確決定函數的三個要素,學會求某些函數的定義域,掌握判定兩個函數是否相同的方法;使學生理解靜與動的辯證關系.
教學重點:
函數的概念,函數定義域的求法.
教學難點:
函數概念的理解.
教學過程:
Ⅰ.課題導入
[師]在初中,我們已經學習了函數的概念,請同學們回憶一下,它是怎樣表述的?
(幾位學生試著表述,之后,教師將學生的回答梳理,再表述或者啟示學生將表述補充完整再條理表述).
設在一個變化的過程中有兩個變量x和y,如果對于x的每一個值,y都有惟一的值與它對應,那么就說y是x的函數,x叫做自變量.
[師]我們學習了函數的概念,并且具體研究了正比例函數,反比例函數,一次函數,二次函數,請同學們思考下面兩個問題:
問題一:y=1(xR)是函數嗎?
問題二:y=x與y=x2x 是同一個函數嗎?
(學生思考,很難回答)
[師]顯然,僅用上述函數概念很難回答這些問題,因此,需要從新的高度來認識函數概念(板書課題).
Ⅱ.講授新課
[師]下面我們先看兩個非空集合A、B的元素之間的一些對應關系的例子.
在(1)中,對應關系是乘2,即對于集合A中的每一個數n,集合B中都有一個數2n和它對應.
在(2)中,對應關系是求平方,即對于集合A中的每一個數m,集合B中都有一個平方數m2和它對應.
在(3)中,對應關系是求倒數,即對于集合A中的每一個數x,集合B中都有一個數 1x 和它對應.
請同學們觀察3個對應,它們分別是怎樣形式的對應呢?
[生]一對一、二對一、一對一.
[師]這3個對應的共同特點是什么呢?
[生甲]對于集合A中的任意一個數,按照某種對應關系,集合B中都有惟一的數和它對應.
[師]生甲回答的很好,不但找到了3個對應的共同特點,還特別強調了對應關系,事實上,一個集合中的數與另一集合中的數的對應是按照一定的關系對應的,這是不能忽略的. 實際上,函數就是從自變量x的集合到函數值y的集合的一種對應關系.
現在我們把函數的概念進一步敘述如下:(板書)
設A、B是非空的數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有惟一確定的數f(x)和它對應,那么就稱f︰AB為從集合A到集合B的一個函數.
記作:y=f(x),xA
其中x叫自變量,x的取值范圍A叫做函數的定義域,與x的值相對應的y(或f(x))值叫做函數值,函數值的集合{y|y=f(x),xA}叫函數的值域.
一次函數f(x)=ax+b(a0)的定義域是R,值域也是R.對于R中的任意一個數x,在R中都有一個數f(x)=ax+b(a0)和它對應.
反比例函數f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對于A中的任意一個實數x,在B中都有一個實數f(x)= kx (k0)和它對應.
二次函數f(x)=ax2+bx+c(a0)的定義域是R,值域是當a0時B={f(x)|f(x)4ac-b24a };當a0時,B={f(x)|f(x)4ac-b24a },它使得R中的任意一個數x與B中的數f(x)=ax2+bx+c(a0)對應.
函數概念用集合、對應的語言敘述后,我們就很容易回答前面所提出的兩個問題.
y=1(xR)是函數,因為對于實數集R中的任何一個數x,按照對應關系函數值是1,在R中y都有惟一確定的值1與它對應,所以說y是x的函數.
Y=x與y=x2x 不是同一個函數,因為盡管它們的對應關系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個函數.
[師]理解函數的定義,我們應該注意些什么呢?
(教師提出問題,啟發、引導學生思考、討論,并和學生一起歸納、總結)
注意:①函數是非空數集到非空數集上的一種對應.
②符號f:AB表示A到B的一個函數,它有三個要素;定義域、值域、對應關系,三者缺一不可.
③集合A中數的任意性,集合B中數的`惟一性.
④f表示對應關系,在不同的函數中,f的具體含義不一樣.
⑤f(x)是一個符號,絕對不能理解為f與x的乘積.
[師]在研究函數時,除用符號f(x)表示函數外,還常用g(x) 、F(x)、G(x)等符號來表示
Ⅲ.例題分析
[例1]求下列函數的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數的定義域通常由問題的實際背景確定.如果只給出解析式y=f(x),而沒有指明它的定義域.那么函數的定義域就是指能使這個式子有意義的實數x的集合.
解:(1)x-20,即x2時,1x-2 有意義
這個函數的定義域是{x|x2}
(2)3x+20,即x-23 時3x+2 有意義
函數y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個函數的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數的定義域可用三種方法表示:不等式、集合、區間.
從上例可以看出,當確定用解析式y=f(x)表示的函數的定義域時,常有以下幾種情況:
(1)如果f(x)是整式,那么函數的定義域是實數集R;
(2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實數的集合;
(3)如果f(x)是偶次根式,那么函數的定義域是使根號內的式子不小于零的實數的集合;
(4)如果f(x)是由幾個部分的數學式子構成的,那么函數的定義域是使各部分式子都有意義的實數的集合(即使每個部分有意義的實數的集合的交集);
(5)如果f(x)是由實際問題列出的,那么函數的定義域是使解析式本身有意義且符合實際意義的實數的集合.
例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數定義域為x0而不是全體實數.
由以上分析可知:函數的定義域由數學式子本身的意義和問題的實際意義決定.
[師]自變量x在定義域中任取一個確定的值a時,對應的函數值用符號f(a)來表示.例如,函數f(x)=x2+3x+1,當x=2時的函數值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數f(x)中當自變量x=a時的函數值.
下面我們來看求函數式的值應該怎樣進行呢?
[生甲]求函數式的值,嚴格地說是求函數式中自變量x為某一確定的值時函數式的值,因此,求函數式的值,只要把函數式中的x換為相應確定的數(或字母,或式子)進行計算即可.
[師]回答正確,不過要準確地求出函數式的值,計算時萬萬不可粗心大意噢!
[生乙]判定兩個函數是否相同,就看其定義域或對應關系是否完全一致,完全一致時,這兩個函數就相同;不完全一致時,這兩個函數就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫的).
[師]大家說,判定兩個函數是否相同的依據是什么?
[生]函數的定義.
[師]函數的定義有三個要素:定義域、值域、對應關系,我們判定兩個函數是否相同為什么只看兩個要素:定義域和對應關系,而不看值域呢?
(學生竊竊私語:是啊,函數的三個要素不是缺一不可嗎?怎不看值域呢?)
(無人回答)
[師]同學們預習時還是欠仔細,欠思考!我們做事情,看問題都要多問幾個為什么!函數的值域是由什么決定的,不就是由函數的定義域與對應關系決定的嗎!關注了函數的定義域與對應關系,三者就全看了!
(生恍然大悟,我們怎么就沒想到呢?)
[例2]求下列函數的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數的值域應確定相應的定義域后再根據函數的具體形式及運算確定其值域.
對于(1)(2)可用直接法根據它們的定義域及對應法則得到(1)(2)的值域.
對于(3)可借助數形結合思想利用它們的圖象得到值域,即圖象法.
解:(1)yR
(2)y{1,0,-1}
(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,
當x[-3,1]時,得y[-1,8]
Ⅳ.課堂練習
課本P24練習17.
Ⅴ.課時小結
本節課我們學習了函數的定義(包括定義域、值域的概念)、區間的概念及求函數定義域的方法.學習函數定義應注意的問題及求定義域時的各種情形應該予以重視.(本小結的內容可由學生自己來歸納)
Ⅵ.課后作業
課本P28,習題1、2. 文 章來
高一數學上冊教案篇3
學習目標
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
一、預習檢查
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
二、問題探究
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例2已知雙曲線,直線過點,左焦點到直線的距離等于該雙曲線的虛軸長的',求雙曲線的離心率、
例3(理)求離心率為,且過點的雙曲線標準方程、
三、思維訓練
1、已知雙曲線方程為,經過它的右焦點,作一條直線,使直線與雙曲線恰好有一個交點,則設直線的斜率是、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、(理)設是雙曲線上一點,雙曲線的一條漸近線方程為、分別是雙曲線的左、右焦點,若,則、
四、知識鞏固
1、已知雙曲線方程為,過一點(0,1),作一直線,使與雙曲線無交點,則直線的斜率的集合是、
2、設雙曲線的一條準線與兩條漸近線交于兩點,相應的焦點為,若以為直徑的圓恰好過點,則離心率為、
3、已知雙曲線的左,右焦點分別為,點在雙曲線的右支上,且,則雙曲線的離心率的值為、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
5、(理)雙曲線的焦距為,直線過點和,且點(1,0)到直線的距離與點(-1,0)到直線的距離之和、求雙曲線的離心率的取值范圍、
高一數學上冊教案篇4
【摘要】鑒于大家對數學網十分關注,小編在此為大家整理了此文空間幾何體的三視圖和直觀圖高一數學教案,供大家參考!
本文題目:空間幾何體的三視圖和直觀圖高一數學教案
第一課時 1.2.1中心投影與平行投影 1.2.2空間幾何體的三視圖
教學要求:能畫出簡單幾何體的三視圖;能識別三視圖所表示的空間幾何體.
教學重點:畫出三視圖、識別三視圖.
教學難點:識別三視圖所表示的空間幾何體.
教學過程:
一、新課導入:
1. 討論:能否熟練畫出上節所學習的幾何體?工程師如何制作工程設計圖紙?
2. 引入:從不同角度看廬山,有古詩:橫看成嶺側成峰,遠近高低各不同。不識廬山真面目,只緣身在此山中。 對于我們所學幾何體,常用三視圖和直觀圖來畫在紙上.
三視圖:觀察者從不同位置觀察同一個幾何體,畫出的空間幾何體的圖形;
直觀圖:觀察者站在某一點觀察幾何體,畫出的空間幾何體的圖形.
用途:工程建設、機械制造、日常生活.
二、講授新課:
1. 教學中心投影與平行投影:
① 投影法的提出:物體在光線的照射下,就會在地面或墻壁上產生影子。人們將這種自然現象加以科學的抽象,總結其中的規律,提出了投影的方法。
② 中心投影:光由一點向外散射形成的投影。其投影的大小隨物體與投影中心間距離的變化而變化,所以其投影不能反映物體的實形.
③ 平行投影:在一束平行光線照射下形成的投影. 分正投影、斜投影.
討論:點、線、三角形在平行投影后的結果.
2. 教學柱、錐、臺、球的三視圖:
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖
討論:三視圖與平面圖形的關系? 畫出長方體的三視圖,并討論所反應的長、寬、高
結合球、圓柱、圓錐的模型,從正面(自前而后)、側面(自左而右)、上面(自上而下)三個角度,分別觀察,畫出觀察得出的各種結果. 正視圖、側視圖、俯視圖.
③ 試畫出:棱柱、棱錐、棱臺、圓臺的三視圖. (
④ 討論:三視圖,分別反應物體的哪些關系(上下、左右、前后)?哪些數量(長、寬、高)
正視圖反映了物體上下、左右的位置關系,即反映了物體的.高度和長度;
俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;
側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。
⑤ 討論:根據以上的三視圖,如何逆向得到幾何體的形狀.
(試變化以上的三視圖,說出相應幾何體的擺放)
3. 教學簡單組合體的三視圖:
① 畫出教材P16 圖(2)、(3)、(4)的三視圖.
② 從教材P16思考中三視圖,說出幾何體.
4. 練習:
① 畫出正四棱錐的三視圖.
畫出右圖所示幾何體的三視圖.
③ 右圖是一個物體的正視圖、左視圖和俯視圖,試描述該物體的形狀.
5. 小結:投影法;三視圖;順與逆
三、鞏固練習: 練習:教材P17 1、2、3、4
第二課時 1.2.3 空間幾何體的直觀圖
教學要求:掌握斜二測畫法;能用斜二測畫法畫空間幾何體的直觀圖.
教學重點:畫出直觀圖.
高一數學上冊教案篇5
1.1 集合含義及其表示
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
教學過程:
一、閱讀下列語句:
1) 全體自然數0,1,2,3,4,5,
2) 代數式 .
3) 拋物線 上所有的點
4) 今年本校高一(1)(或(2))班的全體學生
5) 本校實驗室的所有天平
6) 本班級全體高個子同學
7) 著名的科學家
上述每組語句所描述的對象是否是確定的?
二、1)集合:
2)集合的元素:
3)集合按元素的個數分,可分為1)__________2)_________
三、集合中元素的三個性質:
1)___________2)___________3)_____________
四、元素與集合的關系:1)____________2)____________
五、特殊數集專用記號:
1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______
4)有理數集______5)實數集_____ 6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、 中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是 ( )
A,直角三角形 B,銳角三角形 C,鈍角三角形 D,等腰三角形
例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
1)地球上的四大洋構成的集合;
2)函數 的全體 值的集合;
3)函數 的全體自變量 的集合;
4)方程組 解的集合;
5)方程 解的集合;
6)不等式 的解的集合;
7)所有大于0且小于10的奇數組成的集合;
8)所有正偶數組成的集合;
例3、用符號 或 填空:
1) ______Q ,0_____N, _____Z,0_____
2) ______ , _____
3)3_____ ,
4)設 , , 則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數
2.圖中陰影部分點(含邊界)的坐標的'集合
課堂練習:
例6、設含有三個實數的集合既可以表示為 ,也可以表示為 ,則 的值等于___________
例7、已知: ,若 中元素至多只有一個,求 的取值范圍。
思考題:數集A滿足:若 ,則 ,證明1):若2 ,則集合中還有另外兩個元素;2)若 則集合A不可能是單元素集合。
小結:
作業 班級 姓名 學號
1. 下列集合中,表示同一個集合的是 ( )
A . M= ,N= B. M= ,N=
C. M= ,N= D. M= ,N=
2. M= ,X= ,Y= , , .則 ( )
A . B. C. D.
3. 方程組 的解集是____________________.
4. 在(1)難解的題目,(2)方程 在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________.
5. 設集合 A= , B= ,
C= , D= ,E= 。
其中有限集的個數是____________.
6. 設 ,則集合 中所有元素的和為
7. 設x,y,z都是非零實數,則用列舉法將 所有可能的值組成的集合表示為
8. 已知f(x)=x2-ax+b,(a,b R),A= ,B= ,
若A= ,試用列舉法表示集合B=
9. 把下列集合用另一種方法表示出來:
(1) (2)
(3) (4)
10. 設a,b為整數,把形如a+b 的一切數構成的集合記為M,設 ,試判斷x+y,x-y,xy是否屬于M,說明理由。
11. 已知集合A=
(1) 若A中只有一個元素,求a的值,并求出這個元素;
(2) 若A中至多只有一個元素,求a的取值集合。
12.若-3 ,求實數a的值。
【總結】20__年已經到來,新的一年數學網會為您整理更多更好的文章,希望本文高一數學教案:集合含義及其表示能給您帶來幫助!
高一數學上冊教案篇6
一、教學目標
(1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;
(2)理解邏輯聯結詞“或”“且”“非”的含義;
(3)能用邏輯聯結詞和簡單命題構成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯結詞及其聯結的簡單命題;
(5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎上,培養學生簡單推理的技能.
二、教學重點難點:
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
三、教學過程
1.新課導入
在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質的重要方面.數學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤.其實,同學們在初中已經開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學議論結果,答案是肯定的.)
教師提問:什么是命題?
(學生進行回憶、思考.)
概念總結:對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內容主要講了哪些問題?
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 x2-5x+6=0
中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯結詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯結詞.邏輯聯結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.
命題可分為簡單命題和復合命題.
不含邏輯聯結詞的'命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡單命題“6是自然數”和“6是偶數”由邏輯聯結詞“且”構成的復合命題.
(4)命題的表示:用p ,q ,r ,s ,……來表示.
(教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)
我們接觸的復合命題一般有“p 或q ”“p且q ”、“非p ”、“若p 則q ”等形式.
給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯結詞;應能根據所給出的兩個簡單命題,寫出含有邏輯聯結詞“或”、“且”、“非”的復合命題.
對于給出“若p 則q ”形式的復合命題,應能找到條件p 和結論q .
在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數的末位數字不是0就是5”的字面上無“或”,但它們都是復合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡單命題.
(1)5 ;
(2)0.5非整數;
(3)內錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0 ,則a=0 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充.)
高一數學上冊教案篇7
學 習 目 標
1明確空間直角坐標系是如何建立;明確空間中任意一點如何表示;
2 能夠在空間直角坐標系中求出點坐標
教 學 過 程
一 自 主 學 習
1平面直角坐標系建立方法,點坐標確定過程、表示方法?
2一個點在平面怎么表示?在空間呢?
3關于一些對稱點坐標求法
關于坐標平面 對稱點 ;
關于坐標平面 對稱點 ;
關于坐標平面 對稱點 ;
關于 軸對稱點 ;
關于 對軸稱點 ;
關于 軸對稱點 ;
二 師 生 互動
例1在長方體 中, , 寫出 四點坐標
討論:若以 點為原點,以射線 方向分別為 軸,建立空間直角坐標系,則各頂點坐標又是怎樣呢?
變式:已知 ,描出它在空間位置
例2 為正四棱錐, 為底面中心,若 ,試建立空間直角坐標系,并確定各頂點坐標
練1 建立適當直角坐標系,確定棱長為3正四面體各頂點坐標
練2 已知 是棱長為2正方體, 分別為 和 中點,建立適當空間直角坐標系,試寫出圖中各中點坐標
三 鞏 固 練 習
1 關于空間直角坐標系敘述正確是( )
A 中 位置是可以互換
B空間直角坐標系中點與一個三元有序數組是一種一一對應關系
C空間直角坐標系中三條坐標軸把空間分為八個部分
D某點在不同空間直角坐標系中坐標位置可以相同
2 已知點 ,則點 關于原點對稱點坐標為( )
A B C D
3 已知 三個頂點坐標分別為 ,則 重心坐標為( )
A B C D
4 已知 為平行四邊形,且 , 則頂點 坐標
5 方程 幾何意義是
四 課 后 反 思
五 課 后 鞏 固 練 習
1 在空間直角坐標系中,給定點 ,求它分別關于坐標平面,坐標軸和原點對稱點坐標
2 設有長方體 ,長、寬、高分別為 是線段 中點分別以 所在直線為 軸, 軸, 軸,建立空間直角坐標系
⑴求 坐標;
⑵求 坐標;
高一數學上冊教案篇8
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);
(2)理解任意角的三角函數不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
2、過程與方法
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
3、情態與價值
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的'本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
高一數學上冊教案篇9
教材分析:冪函數作為一類重要的函數模型,是學生在系統地學習了指數函數、對數函數之后研究的又一類基本的初等函數。本課的教學重點是掌握常見冪函數的概念和性質,難點是根據冪函數的單調性比較兩個同指數的指數式的大小。 冪函數模型在生活中是比較常見的,學習時結合生活中的具體實例來引出常見的冪函數 。
組織學生畫出他們的圖象,根據圖象觀察、總結這幾個常見冪函數的性質。對于冪函數,只需重點掌握 這五個函數的圖象和性質。 學習中學生容易將冪函數和指數函數混淆,因此在引出冪函數的概念之后,可以組織學生對兩類不同函數的表達式進行辨析。
學生已經有了學習冪函數和對象函數的學習經歷,這為學習冪函數做好了方法上的準備。因此,學習過程中,引入冪函數的概念之后,嘗試放手讓學生自己進行合作探究學習。
教學目標:
㈠知識和技能
1、了解冪函數的概念,會畫冪函數 ,的圖象,并能結合這幾個冪函數的圖象,了解冪函數圖象的變化情況和性質。
2、了解幾個常見的冪函數的性質。
㈡過程與方法
1、通過觀察、總結冪函數的性質,培養學生概括抽象和識圖能力。
2、使學生進一步體會數形結合的思想。
㈢情感、態度與價值觀
1、通過生活實例引出冪函數的概念,使學生體會到生活中處處有數學,激發學生的學習興趣。
2、利用計算機等工具,了解冪函數和指數函數的本質差別,使學生充分認識到現代技術在人們認識世界的過程中的作用,從而激發學生的學習欲望。 教學重點 常見冪函數的概念和性質 教學難點 冪函數的單調性與冪指數的關系
教學過程
一、創設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關系? (總結:根據函數的定義可知,這里p是w的函數)
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數。
問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數。
問題4:如果正方形場地面積為S,那么正方形的邊長__,這里a是S的函數
問題5:如果某人__s內騎車行進了__km,那么他騎車的速度,這里v是t的函數。
以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函數解析式有什么共同點嗎?(右邊指數式,且底數都是變量)這只是我們生活中常用到的一類函數的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
(一)冪函數的概念如果設變量為,函數值為__,你能根據以上的生活實例得到怎樣的一些具體的函數式?這里所得到的函數是冪函數的幾個典型代表,你能根據此給出冪函數的一般式嗎?這就是冪函數的一般式,你能根據指數函數、對數函數的定義,給出冪函數的定義嗎?__冪函數的定義:一般地,我們把形如__的函數稱為冪函數(power function),其中__是自變量,__是常數。
【探究一】冪函數與指數函數有什么區別?(組織學生回顧指數函數的概念)
結論:冪函數和指數函數都是我們高中數學中研究的兩類重要的基本初等函數,從它們的解析式看有如下區別:對冪函數來說,底數是自變量,指數是常數對指數函數來說,指數是自變量,底數是常數
試一試:判斷下列函數那些是冪函數(1)(2)(3)(4)我們已經對冪函數的.概念有了比較深刻的認識,根據我們前面學習指數函數、對數函數的學習經歷,你認為我們下面應該研究什么呢?(研究圖象和性質)
(二)幾個常見冪函數的圖象和性質 在初中我們已經學習了冪函數x的圖象和性質,請同學們在同一坐標系中畫出它們的圖象。根據你的學習經歷,你能在同一坐標系內畫出函數x的圖象嗎?
【探究二】觀察函數x的圖象,將你發現的結論寫在下表內。定義域,值域,奇偶性,單調性,定點,圖象范圍
【探究三】根據上表的內容并結合圖象,試總結函數:x的共同性質。
(1)函數x的圖象都過點
(2)函數x在x上單調遞增;
歸納:冪函數x圖象的基本特征是,當x是,圖象過點x,且在第一象限隨x的增大而上升,函數在區間x上是單調增函數。(演示幾何畫板制作課件:冪函數。asp)
請同學們模仿我們探究冪函數x圖象的基本特征x的情況探討x時冪函數x圖象的基本特征。(利用drawtools軟件作圖研究)
歸納:__時冪函數x圖象的基本特征:過點x,且在第一象限隨x的增大而下降,函數在區間x上是單調減函數,且向右無限接近X軸,向上無限接近Y軸。
(三)例題剖析
【例1】求下列冪函數的定義域,并指出其奇偶性、單調性。(1) (2) (3)
分析:根據你的學習經歷,你覺得求一個函數的定義域應該從哪些方面來考慮?
方法引導:解決有關函數求定義域的問題時,可以從以下幾個方面來考慮,列出相應不等式或不等式組,解不等式或不等式組即可得到所求函數的定義域。
(1)若函數解析式中含有分母,分母不能為0;
(2)若函數解析式中含有根號,要注意偶次根號下非負;
(3)0的0次冪沒有意義;
(4)若函數解析式中含有對數式,要注意對數的真數大于0;求函數的定義域的本質是解不等式或不等式組。
結論:在函數解析式中含有分數指數時,可以把它們的解析式化成根式,根據“偶次根號下非負”這一條件來求出對應函數的定義域;當函數解析式的冪指數為負數時,根據負指數冪的意義將其轉化為分式形式,根據分式的分母不能為0這一限制條件來求出對應函數的定義域。歸納分析如果判斷冪函數的單調性(第一象限利用性質,其余象限利用函數奇偶性與單調性的關系)
【例2】比較下列各組數中兩個值的大小(在橫線上填上“<”或“>”)
(1)________
(2)________
(3)__________
(4)____________
分析:利用考察其相對應的冪函數和指數函數來比較大小
三、課堂小結
1、冪函數的概念及其指數函數表達式的區別
2、常見冪函數的圖象和冪函數的性質。
四、布置作業
㈠課本第73頁習題2.4
第1、2、3題
㈡思考題:根據下列條件對于冪函數x的有關性質的敘述,分別指出冪函數x的圖象具有下列特點之一時的x的值,其中:
(1)圖象過原點,且隨x的增大而上升;
(2)圖象不過原點,不與坐標軸相交,且隨x的增大而下降;
(3)圖象關于x軸對稱,且與坐標軸相交;
(4)圖象關于x軸對稱,但不與坐標軸相交;
(5)圖象關于原點對稱,且過原點;
(6)圖象關于原點對稱,但不過原點;
檢測與反饋
1、下列函數中,是冪函數的是( )
A、 B、 C、 D、
2、下列結論正確的是( )
A、冪函數的圖象一定過原點
B、當__時,冪函數x是減函數
C、當__時,冪函數x是增函數
D、函數 既是二次函數,也是冪函數
3、下列函數中,在 是增函數的是( )
A、 B、 C、 D、
4、函數 的圖象大致是( )
5、已知某冪函數的圖象經過點 ,則這個函數的解析式為_______________________
6、寫出下列函數的定義域,并指出它們的單調性:
同伴評 (優、良、中、須努力)
自 評 (優、良、中、須努力)
教師評 (優、良、中、須努力)
高一數學上冊教案篇10
一、指導思想:
(1)隨著素質教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現代化和教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。
(2)培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數據、制作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
二、學生狀況分析
本學期擔任高一(1)班和(5)班的數學教學工作,學生共有111人,其中(1)班學生是名校直通班,學生思維活躍,(5)班是火箭班,學生基本素質不錯,一些基本知識掌握不是很好,學習積極性需要教師提高,成績以中等為主,中上不多。兩個班中,從軍訓一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由于基礎知識不太牢固,上課效率不是很高。
教材簡析
使用人教版《普通高中課程標準實驗教科書數學(A版)》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑒、發展、創新之間的關系,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、應用性、聯系性等特點。必修1有三章(集合與函數概念;基本初等函數;函數的應用);必修4有三章(三角函數;平面向量;三角恒等變換)。
必修1,主要涉及兩章內容:
第一章 集合
通過本章學習,使學生感受到用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言表示數學對象,為以后的學習奠定基礎。
1.了解集合的含義,體會元素與集合的屬于關系,并初步掌握集合的表示方法;新-課-標-第-一-網
2.理解集合間的包含與相等關系,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的并集和交集的含義,會求兩個簡單集合的并集和交集;
5.滲透數形結合、分類討論等數學思想方法;
6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關系等數學知識的過程中,培養學生的思維能力。
第二章 函數的概念與基本初等函數Ⅰ
教學本章時應立足于現實生活從具體問題入手,以問題為背景,按照問題情境數學活動意義建構數學理論數學應用回顧反思的.順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數學地提出、分析和解決問題。通過本章學習,使學生進一步感受函數是探索自然現象、社會現象基本規律的工具和語言,學會用函數的思想、變化的觀點分析和解決問題,達到培養學生的創新思維的目的。
1.了解函數概念產生的背景,學習和掌握函數的概念和性質,能借助函數的知識表述、刻畫事物的變化規律;X|k |b| 1 . c|o |m
2.理解有理指數冪的意義,掌握有理指數冪的運算性質;掌握指數函數的概念、圖象和性質;理解對數的概念,掌握對數的運算性質,掌握對數函數的概念、圖象和性質;了解冪函數的概念和性質,知道指數函數、對數函數、冪函數時描述客觀世界變化規律的重要數學模型;
3.了解函數與方程之間的關系;會用二分法求簡單方程的近似解;了解函數模型及其意義;
4.培養學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創新意識與探究能力、數學建模能力以及數學交流的能力。
必修4,主要涉及三章內容:
第一章 三角函數
通過本章學習,有助于學生認識三角函數與實際生活的緊密聯系,以及三角函數在解決實際問題中的廣泛應用,從中感受數學的價值,學會用數學的思維方式觀察、分析現實世界、解決日常生活和其他學科學習中的問題,發展數學應用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函數的定義,理解同角三角函數的基本關系及誘導公式;
3.了解三角函數的周期性;
4.掌握三角函數的圖像與性質。
第二章 平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數學和物理中的一些問題,發展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數乘的運算;
3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;
4.理解平面向量數量積的含義,會用平面向量的數量積解決有關角度和垂直的問題。
第三章 三角恒等變換
通過推導兩角和與差的余弦、正弦、正切公式,二倍角的正弦、余弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經歷和參與數學發現活動的基礎上,體會向量與三角函數的聯系、向量與三角恒等變換公式的聯系,理解并掌握三角變換的基本方法。
1.掌握兩角和與差的余弦、正弦、正切公式;
2.掌握二倍角的正弦、余弦、正切公式 ;
3.能正確運用三角公式進行簡單的三角函數式的化簡、求值和恒等式證明。
三、教學任務
本期授課內容為必修1和必修4,必修1在期中考試前完成(約在11月5日前完成);必修4在期末考試前完成(約在12月31日前完成)。
四、教學質量目標新 課 標
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
2.提高空間想象、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數學新課標精神,樹立新的教學理念,以雙基教學為主要內容,堅持抓兩頭、帶中間、整體推進,使每個學生的數學能力都得到提高和發展。
分層推進措施
1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇于克服困難與戰勝困難的信心。
2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、培養能力是數學教學的落腳點。能力是在獲得和運用知識的過程中逐步培養起來的。在銜接教學中,首先要加強基本概念和基本規律的教學。
加強培養學生的邏輯思維能力和解決實際問題的能力,以及培養提高學生的自學能力,養成善于分析問題的習慣,進行辨證唯物主義教育。
4、講清講透數學概念和規律,使學生掌握完整的基礎知識,培養學生數學思維能力 ,抓住公式的推導和內在聯系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創新教學方法,把學生被動接受知識轉化主動學習知識。
6、重視數學應用意識及應用能力的培養。
7、加強學生良好學習習慣的培養
六、教學時間大致安排
集合與函數概念 13 課時
基本初等函數 15
課時
函數的應用 8
課時
三角函數 24
課時
平面向量 14
課時
三角恒等變換 9
課時
高一數學上冊教案篇11
學習目標
1.能根據拋物線的定義建立拋物線的標準方程;
2.會根據拋物線的標準方程寫出其焦點坐標與準線方程;
3.會求拋物線的標準方程。
一、預習檢查
1.完成下表:
標準方程
圖形
焦點坐標
準線方程
開口方向
2.求拋物線的焦點坐標和準線方程.
3.求經過點的拋物線的標準方程.
二、問題探究
探究1:回顧拋物線的定義,依據定義,如何建立拋物線的標準方程?
探究2:方程是拋物線的標準方程嗎?試將其與拋物線的標準方程辨析比較.
例1.已知拋物線的頂點在原點,對稱軸為坐標軸,焦點在直線上,求拋物線的方程.
例2.已知拋物線的焦點在軸上,點是拋物線上的一點,到焦點的距離是5,求的值及拋物線的標準方程,準線方程.
例3.拋物線的頂點在原點,對稱軸為軸,它與圓相交,公共弦的長為.求該拋物線的方程,并寫出其焦點坐標與準線方程.
三、思維訓練
1.在平面直角坐標系中,若拋物線上的點到該拋物線的焦點的距離為6,則點的橫坐標為.
2.拋物線的焦點到其準線的距離是.
3.設為拋物線的焦點,為該拋物線上三點,若,則=.
4.若拋物線上兩點到焦點的距離和為5,則線段的中點到軸的距離是.
5.(理)已知拋物線,有一個內接直角三角形,直角頂點在原點,斜邊長為,一直角邊所在直線方程是,求此拋物線的`方程。
四、課后鞏固
1.拋物線的準線方程是.
2.拋物線上一點到焦點的距離為,則點到軸的距離為.
3.已知拋物線,焦點到準線的距離為,則.
4.經過點的拋物線的標準方程為.
5.頂點在原點,以雙曲線的焦點為焦點的拋物線方程是.
6.拋物線的頂點在原點,以軸為對稱軸,過焦點且傾斜角為的直線被拋物線所截得的弦長為8,求拋物線的方程.
7.若拋物線上有一點,其橫坐標為,它到焦點的距離為10,求拋物線方程和點的坐標。
高一數學上冊教案篇12
學習是一個潛移默化、厚積薄發的過程。編輯老師編輯了高一數學教案:數列,希望對您有所幫助!
教學目標
1.使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項.
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的.
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式.
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項.
2.通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養學生的觀察能力和抽象概括能力.
3.通過由求的過程,培養學生嚴謹的科學態度及良好的思維習慣.
教學建議
(1)為激發學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等.
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發現數列與函數的關系.在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列.函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法.由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法.
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助.
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的`結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規律性的結論,如正負相間用來調整等.如果學生一時不能寫出通項公式,可讓學生依據前幾項的規律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系.
(5)對每個數列都有求和問題,所以在本節課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況.
(6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現,對程度好的學生應提出這一問題,學生運用函數知識是可以解決的.
上述提供的高一數學教案:數列希望能夠符合大家的實際需要!
高一數學上冊教案篇13
各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節“一元二次不等式解法”。
下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。
(二)教學內容
本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。
二、教學目標分析
根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:
知識目標——理解“三個二次”的.關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。
要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。
四、教法與學法分析
(一)學法指導
教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。
(二)教法分析
本節課設計的指導思想是:現代認知心理學——建構主義學習理論。
建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
高一數學上冊教案篇14
一、教材分析
本節課選自《普通高中課程標準數學教科書—必修1》(人教A版)《1。2。1函數的概念》共3課時,本節課是第1課時。生活中的許多現象如物體運動,氣溫升降,投資理財等都可以用函數的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。函數是數學的重要的基礎概念之一,是高等數學重多學科的基礎概念和重要的研究對象。同時函數也是物理學等其他學科的重要基礎知識和研究工具,教學內容中蘊涵著極其豐富的辯證思想。
二、學生學習情況分析
函數是中學數學的主體內容,學生在中學階段對函數的認識分三個階段:
(一)初中從運動變化的角度來刻畫函數,初步認識正比例、反比例、一次和二次函數;
(二)高中用集合與對應的觀點來刻畫函數,研究函數的性質,學習典型的對、指、冪和三解函數;
(三)高中用導數工具研究函數的單調性和最值。
1、有利條件
現代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構。
初中用運動變化的觀點對函數進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規律的內容編排原則,函數概念在初中介紹到這個程度是合適的。也為我們用集合與對應的觀點研究函數打下了一定的基礎。
2、不利條件
用集合與對應的觀點來定義函數,形式和內容上都是比較抽象的,這對學生的理解能力是一個挑戰,是本節課教學的一個不利條件。
三、教學目標分析
課標要求:通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域。
1、知識與能力目標:
⑴能從集合與對應的角度理解函數的概念,更要理解函數的本質屬性;
⑵理解函數的三要素的含義及其相互關系;
⑶會求簡單函數的定義域和值域
2、過程與方法目標:
⑴通過豐富實例,使學生建立起函數概念的背景,體會函數是描述變量之間依賴關系的數學模型;
⑵在函數實例中,通過對關鍵詞的強調和引導使學發現它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用。
3、情感、態度與價值觀目標:
感受生活中的數學,感悟事物之間聯系與變化的辯證唯物主義觀點。
四、教學重點、難點分析
1、教學重點:對函數概念的理解,用集合與對應的語言來刻畫函數;
重點依據:初中是從變量的角度來定義函數,高中是用集合與對應的語言來刻畫函數。二者反映的本質是一致的,即“函數是一種對應關系”。但是,初中定義并未完全揭示出函數概念的本質,對y?1這樣的函數用運動變化的觀點也很難解釋。在以函數為重要內容的高中階段,課本應將函數定義為兩個數集之間的一種對應關系,按照這種觀點,使我們對函數概念有了更深一層的認識,也很容易說明y?1這函數表達式。因此,分析兩種函數概念的關系,讓學生融會貫通地理解函數的概念應為本節課的重點。
突出重點:重點的突出依賴于對函數概念本質屬性的把握,使學生通過表面的語言描述抓住概念的.精髓。
2、教學難點:
第一:從實際問題中提煉出抽象的概念;
第二:符號“y=f(x)”的含義的理解。
難點依據:數學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當地引導,而對抽象符號的理解則要結合函數的三要素和小例子進行說明。
五、教法與學法分析
1、教法分析
本節課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發,關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數概念自然過度到函數的近代定我。
2、學法分析
在教學過程中我注意在教學中引導學生用模型法分析函數問題、通過自主學習法總結“區間”的知識。
高一數學上冊教案篇15
[教學重、難點]
認識直角三角形、銳角三角形、鈍角三角形、等腰三角形和等邊三角形,體會每一類三角形的特點。
[教學準備]
學生、老師剪下附頁2中的圖2。
[教學過程]
一、畫一畫,說一說
1、學生各自借助三角板或直尺分別畫一個銳角、直角、鈍角。
2、教師巡查練習情況。
3、學生展示練習,說一說為什么是銳角、直角、鈍角?
二、分一分
1、小組活動;把附頁2中的圖2中的'三角形進行分類,動手前先觀察這些三角形的特點,然后小組討論怎樣分?
2、匯報:分類的標準和方法。可以按角來分,可以按邊來分。
二、按角分類:
1、觀察第一類三角形有什么共同的特點,從而歸納出三個角都是銳角的'三角形是銳角三角形。
2、觀察第二類三角形有什么共同的特點,從而歸納出有一個角是直角的三角形是直角三角形
3、觀察第三類三角形有什么共同的特點,從而歸納出有一個角是鈍角的三角形是鈍角三角形。
三、按邊分類:
1、觀察這類三角形的邊有什么共同的特點,引導學生發現每個三角形中都有兩條邊相等,這樣的三角形叫等腰三角形,并介紹各部分的名稱。
2、引導學生發現有的三角形三條邊都相等,這樣的三角形是等邊三角形。討論等邊三角形是等腰三角形嗎?
四、填一填:
24、25頁讓學生辨認各種三角形。
五、練一練:
第1題:通過“猜三角形游戲”讓學生體會到看到一個銳角,不能決定是一個銳角三角形,必須三個角都是銳角才是銳角三角形。
第2題:在點子圖上畫三角形第3題:剪一剪。