人教版高一數學教案大全
教案不能面面俱到、大而全,而應該是在學科基本的知識框架基礎上,對當前急需解決的問題進行研究、探索、闡述,能夠體現教師對相關學科有價值的學術觀點及研究心得。下面是小編為大家整理的關于人教版高一數學教案大全,歡迎大家閱讀參考學習!
人教版高一數學教案大全1
教學準備
教學目標
1.掌握平面向量的數量積及其幾何意義;
2.掌握平面向量數量積的重要性質及運算律;
3.了解用平面向量的數量積可以處理垂直的問題;
4.掌握向量垂直的條件.
教學重難點
教學重點:平面向量的數量積定義
教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用
教學過程
1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,
則數量|a||b|cosq叫a與b的數量積,記作a×b,即有a×b=|a||b|cosq,(0≤θ≤π).
并規定0向量與任何向量的數量積為0.
×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?
2、兩個向量的數量積與實數乘向量的積有什么區別?
(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.
(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.
(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0.
人教版高一數學教案大全2
【教學目標】
(1)體現建立函數模型刻畫現實問題的基本過程.
(2)了解函數模型的廣泛應用
(3)通過學生進行操作和探究提高學生發現問題、分析問題、解決實際問題的能力
(4)提高學生探究學習新知識的興趣,培養學生,勇于探索的科學態度
【重點】了解并建立函數模型刻畫現實問題的基本過程,了解函數模型的廣泛應用
【難點】建立函數模型刻畫現實問題中數據的處理
【教學目標解析】通過對全班學生中抽樣得出的樣本進行分析和處理,,使學生認識到本節課的重點是利用函數建模刻畫現實問題的基本過程和提高解決實際問題的能力,在引導突出重點的同時能過學生的小組合作探究來突破本節課的難點,這樣,在小組合作學習與探究過程中實現教學目標中對知識和能力的要求(目標1,2,3)在如何用函數建模刻畫現實問題的基本過程中讓學生親身體驗函數應用的廣泛性,同時提高學生探究學習新知識的興趣,培養學生主動參與、自主學習、勇于探索的科學態度,從而實現教學目標中的德育目標(目標4)
【學生學習中預期的問題及解決方案預設】
①描點的規范性;②實際操作的速度;③解析式的計算速度④計算結束后不進行檢驗
針對上述可能出現的問題,我在課前課上處理是,課前給學生準備一些坐標紙來提高描點的規范性,同時讓學生使用計算器利用小組討論來進行多人合作以期提高相應計算速度,在解析式得出后引導學生得出的標準應該是只有一個的較好的,不能有很多的標準,這樣以期引導學生想到對結果進行篩選從而引出檢驗.
【教學用具】多媒體輔助教學(ppt、計算機)。
【教學過程】
教學前言:
函數模型是應用最廣泛的數學模型之一,許多實際問題一旦認定是函數關系,就可以通過研究函數的性質把握問題,使問題得到解決.
人
教版高一數學教案大全3
教學準備
教學目標
解三角形及應用舉例
教學重難點
解三角形及應用舉例
教學過程
一.基礎知識精講
掌握三角形有關的定理
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關三角形中的三角函數問題.
二.問題討論
思維點撥:已知兩邊和其中一邊的對角解三角形問題,用正弦定理解,但需注意解的情況的討論.
思維點撥::三角形中的三角變換,應靈活運用正、余弦定理.在求值時,要利用三角函數的有關性質.
例6:在某海濱城市附近海面有一臺風,據檢測,當前臺
風中心位于城市O(如圖)的東偏南方向
300km的海面P處,并以20km/h的速度向西偏北的
方向移動,臺風侵襲的范圍為圓形區域,當前半徑為60km,
并以10km/h的速度不斷增加,問幾小時后該城市開始受到
臺風的侵襲。
一.小結:
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三.作業:P80闖關訓練
人教版高一數學教案大全4
教學準備
教學目標
掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
教學重難點
掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題.
教學過程
等比數列性質請同學們類比得出.
【方法規律】
1、通項公式與前n項和公式聯系著五個基本量,“知三求二”是一類最基本的運算題.方程觀點是解決這類問題的基本數學思想和方法.
2、判斷一個數列是等差數列或等比數列,常用的方法使用定義.特別地,在判斷三個實數
a,b,c成等差(比)數列時,常用(注:若為等比數列,則a,b,c均不為0)
3、在求等差數列前n項和的(小)值時,常用函數的思想和方法加以解決.
【示范舉例】
例1:(1)設等差數列的前n項和為30,前2n項和為100,則前3n項和為.
(2)一個等比數列的前三項之和為26,前六項之和為728,則a1=,q=.
例2:四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數.
例3:項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項.
人教版高一數學教案大全5
教學準備
教學目標
1、數學知識:掌握等比數列的概念,通項公式,及其有關性質;
2、數學能力:通過等差數列和等比數列的類比學習,培養學生類比歸納的能力;
歸納——猜想——證明的數學研究方法;
3、數學思想:培養學生分類討論,函數的數學思想。
教學重難點
重點:等比數列的概念及其通項公式,如何通過類比利用等差數列學習等比數列;
難點:等比數列的性質的探索過程。
教學過程
教學過程:
1、問題引入:
前面我們已經研究了一類特殊的數列——等差數列。
問題1:滿足什么條件的數列是等差數列?如何確定一個等差數列?
(學生口述,并投影):如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。
要想確定一個等差數列,只要知道它的首項a1和公差d。
已知等差數列的首項a1和d,那么等差數列的通項公式為:(板書)an=a1+(n-1)d。
師:事實上,等差數列的關鍵是一個“差”字,即如果一個數列,從第2項起,每一項與它前一項的差等于同一個常數,那么這個數列就叫做等差數列。
(第一次類比)類似的,我們提出這樣一個問題。
問題2:如果一個數列,從第2項起,每一項與它的前一項的……等于同一個常數,那么這個數列叫做……數列。
(這里以填空的形式引導學生發揮自己的想法,對于“和”與“積”的情況,可以利用具體的例子予以說明:如果一個數列,從第2項起,每一項與它的前一項的“和”(或“積”)等于同一個常數的話,這個數列是一個各項重復出現的“周期數列”,而與等差數列最相似的是“比”為同一個常數的情況。而這個數列就是我們今天要研究的等比數列了。)
2、新課:
1)等比數列的定義:如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,那么這個數列就叫做等比數列。這個常數叫做公比。
師:這就牽涉到等比數列的通項公式問題,回憶一下等差數列的通項公式是怎樣得到的?類似于等差數列,要想確定一個等比數列的通項公式,要知道什么?
師生共同簡要回顧等差數列的通項公式推導的方法:累加法和迭代法。
公式的推導:(師生共同完成)
若設等比數列的公比為q和首項為a1,則有:
方法一:(累乘法)
3)等比數列的性質:
下面我們一起來研究一下等比數列的性質
通過上面的研究,我們發現等比數列和等差數列之間似乎有著相似的地方,這為我們研究等比數列的性質提供了一條思路:我們可以利用等差數列的性質,通過類比得到等比數列的性質。
問題4:如果{an}是一個等差數列,它有哪些性質?
(根據學生實際情況,可引導學生通過具體例子,尋找規律,如:
3、例題鞏固:
例1、一個等比數列的第二項是2,第三項與第四項的和是12,求它的第八項的值。__
答案:1458或128。
例2、正項等比數列{an}中,a6·a15+a9·a12=30,則log15a1a2a3…a20=_10____.
例3、已知一個等差數列:2,4,6,8,10,12,14,16,……,2n,……,能否在這個數列中取出一些項組成一個新的數列{cn},使得{cn}是一個公比為2的等比數列,若能請指出{cn}中的第k項是等差數列中的第幾項?
(本題為開放題,沒有的答案,如對于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項是等差數列中的第2k-1項。關鍵是對通項公式的理解)
1、小結:
今天我們主要學習了有關等比數列的概念、通項公式、以及它的性質,通過今天的學習
我們不僅學到了關于等比數列的有關知識,更重要的是我們學會了由類比——猜想——證明的科學思維的過程。
2、作業:
P129:1,2,3
思考題:在等差數列:2,4,6,8,10,12,14,16,……,2n,……,中取出一些項:6,12,24,48,……,組成一個新的數列{cn},{cn}是一個公比為2的等比數列,請指出{cn}中的第k項是等差數列中的第幾項?