教育巴巴 > 高中教案 > 數學教案 >

2024年高中上冊數學教案范本

時間: 夢熒 數學教案

作為一名老師,編寫教案是必不可少的,那么關于高中上冊數學教案怎么寫呢?一起來看看吧,以下是小編整理的一些關于高中上冊數學教案,僅供參考。

2024年高中上冊數學教案范本

2024年高中上冊數學教案范本(精選篇1)

教學目標:

1.了解復數的幾何意義,會用復平面內的點和向量來表示復數;了解復數代數形式的加、減運算的幾何意義.

2.通過建立復平面上的點與復數的一一對應關系,自主探索復數加減法的幾何意義.

教學重點:

復數的幾何意義,復數加減法的幾何意義.

教學難點:

復數加減法的幾何意義.

教學過程:

一 、問題情境

我們知道,實數與數軸上的點是一一對應的,實數可以用數軸上的點來表示.那么,復數是否也能用點來表示呢?

二、學生活動

問題1 任何一個復數a+bi都可以由一個有序實數對(a,b)惟一確定,而有序實數對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數呢?

問題2 平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數能用平面向量表示嗎?

問題3 任何一個實數都有絕對值,它表示數軸上與這個實數對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的,我們可以給出復數的模(絕對值)的概念嗎?它又有什么幾何意義呢?

問題4 復數可以用復平面的向量來表示,那么,復數的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數差的模有什么幾何意義?

三、建構數學

1.復數的幾何意義:在平面直角坐標系中,以復數a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數a+bi,這就是復數的幾何意義.

2.復平面:建立了直角坐標系來表示復數的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數.

3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數z=a+bi,這也是復數的`幾何意義.

4.復數加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數差的模就是復平面內與這兩個復數對應的兩點間的距離.同時,復數加減法的法則與平面向量加減法的坐標形式也是完全一致的.

四、數學應用

例1 在復平面內,分別用點和向量表示下列復數4,2+i,-i,-1+3i,3-2i.

練習 課本P123練習第3,4題(口答).

思考

1.復平面內,表示一對共軛虛數的兩個點具有怎樣的位置關系?

2.如果復平面內表示兩個虛數的點關于原點對稱,那么它們的實部和虛部分別滿足什么關系?

3.“a=0”是“復數a+bi(a,b∈R)是純虛數”的__________條件.

4.“a=0”是“復數a+bi(a,b∈R)所對應的點在虛軸上”的_____條件.

例2 已知復數z=(m2+m-6)+(m2+m-2)i在復平面內所對應的點位于第二象限,求實數m允許的取值范圍.

例3 已知復數z1=3+4i,z2=-1+5i,試比較它們模的大?。?/p>

思考 任意兩個復數都可以比較大小嗎?

例4 設z∈C,滿足下列條件的點Z的集合是什么圖形?

(1)│z│=2;(2)2<│z│<3.

變式:課本P124習題3.3第6題.

五、要點歸納與方法小結

本節課學習了以下內容:

1.復數的幾何意義.

2.復數加減法的幾何意義.

3.數形結合的思想方法.

2024年高中上冊數學教案范本(精選篇2)

一、課程性質與任務

數學是研究空間形式和數量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。

數學課程是中等職業學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數學基礎知識,具備必需的相關技能與能力,為學習專業知識、掌握職業技能、繼續學習和終身發展奠定基礎。

二、課程教學目標

1.在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的數學基礎知識。

2.培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。

3.引導學生逐步養成良好的學習習慣、實踐意識、創新意識和實事求是的科學態度,提高學生就業能力與創業能力。

三、教學內容結構

本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。

1.基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。

2.職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。

3.拓展模塊是滿足學生個性發展和繼續學習需要的任意選修內容,教學時數不做統一規定。

四、教學內容與要求

(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)

了解:初步知道知識的.含義及其簡單應用。

理解:懂得知識的概念和規律(定義、定理、法則等)以及與其它相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養要求(分為三項技能與四項能力)

計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。

空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。

分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。

數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。

(二)教學內容與要求1.基礎模塊(128學時)

第1單元集合(10學時)

第2單元不等式(8學時)

第6單元數列(10學時)

第7單元平面向量(矢量)(10學時)

第8單元直線和圓的方程(18學時)

第10單元概率與統計初步(16學時)

2.職業模塊

第2單元坐標變換與參數方程(12學時)

2024年高中上冊數學教案范本(精選篇3)

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象.恰當地利用定義解題,許多時候能以簡馭繁.因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情.在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率.

四、教學目標

1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的.方程。

2.通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3.借助多媒體輔助教學,激發學習數學的興趣.

五、教學重點與難點:

教學重點

1.對圓錐曲線定義的理解

2.利用圓錐曲線的定義求“最值”

3.“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義解題

六、教學過程設計

【設計思路】

(一)開門見山,提出問題

一上課,我就直截了當地給出——

例題1:(1) 已知a(-2,0), b(2,0)動點m滿足|ma|+|mb|=2,則點m的軌跡是( )。

(a)橢圓 (b)雙曲線 (c)線段 (d)不存在

(2)已知動點 m(x,y)滿足(x1)2(y2)2|3x4y|,則點m的軌跡是( )。

(a)橢圓 (b)雙曲線 (c)拋物線 (d)兩條相交直線

【設計意圖】

定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。

為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。

【學情預設】

估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折—— 如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子|3x4y|入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。

在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是 ,實軸長為 ,焦距為 。以深化對概念的理解。

2024年高中上冊數學教案范本(精選篇4)

一、教材分析

1、教材地位和作用:二面角是我們日常生活中經常見到的、很普通的一個空間圖形?!岸娼恰笔侨私贪妗稊祵W》第二冊(下B)中9.7的內容。它是在學生學過兩條異面直線所成的角、直線和平面所成角、又要重點研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學生進一步研究多面體的基礎。因此,它起著承上啟下的作用。通過本節課的學習還對學生系統地掌握直線和平面的知識乃至于創新能力的培養都具有十分重要的意義。

2、教學目標:

知識目標:

(1)正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。

(2)進一步培養學生把空間問題轉化為平面問題的化歸思想。

能力目標:

(1)突出對類比、直覺、發散等探索性思維的培養,從而提高學生的創新能力。

(2)通過對圖形的觀察、分析、比較和操作來強化學生的動手操作能力。

德育目標:

(1)使學生認識到數學知識來自實踐,并服務于實踐,增強學生應用數學的意識

(2)通過揭示線線、線面、面面之間的內在聯系,進一步培養學生聯系的辯證唯物主義觀點。

情感目標:在平等的教學氛圍中,通過學生之間、師生之間的交流、合作和評價,拉近學生之間、師生之間的情感距離。

3、重點、難點:

重點:“二面角”和“二面角的平面角”的概念

難點:“二面角的平面角”概念的形成過程

二、教法分析

1、教學方法:在引入課題時,我采用多媒體、實物演示法,在新課探究中采用問題啟導、活動探究和類比發現法,在形成技能時以訓練法、探究研討法為主。

2、教學控制與調節的措施:本節課由于充分運用了多媒體和實物教具,預計學生對二面角及二面角平面角的概念能夠理解,根據學生及教學的實際情況,估計二面角的具體求法一節課內完成有一定的困難,所以將其放在下節課。

3、教學手段:教學手段的現代化有利于提高課堂效益,有利于創新人才的培養,根據本節課的教學需要,確定利用多媒體課件來輔助教學;此外,為加強直觀教學,還要預先做好一些二面角的模型。

三、學法指導

1、樂學:在整個學習過程中學生要保持強烈的好奇心和求知欲,不斷強化自己的創新意識,全身心地投入到學習中去,成為學習的主人。

2、學會:在掌握基礎知識的同時,學生要注意領會化歸、類比聯想等數學思想方法的運用,學會建立完善的認知結構。

3、會學:通過自己親身參與,學生要領會復習類比和深入研究這兩種知識創新的方法,從而既學到知識,又學會創新,既能解決問題,更能發現問題。

四、教學過程

心理學研究表明,當學生明確數學概念的學習目的和意義時,就會對概念的學習產生濃厚的興趣。創設問題情境,激發了學生的創新意識,營造了創新思維的氛圍。

(一)、二面角

1、揭示概念產生背景。

問題情境1、在平面幾何中“角”是怎樣定義的?

問題情境2、在立體幾何中我們還學習了哪些角?

問題情境3、運用多媒體和身邊的實例,展示我們遇到的另一種空間的角——二面角(板書課題)。

通過這三個問題,打開了學生的原有認知結構,為知識的創新做好了準備;同時也讓學生領會到,二面角這一概念的產生是因為它與我們的生活密不可分,激發學生的求知欲。

2、展現概念形成過程。

問題情境4、那么,應該如何定義二面角呢?

創設這個問題情境,為學生創新思維的展開提供了空間。引導學生回憶平面幾何中“角”這一概念的引入過程。教師應注意多讓學生說,對于學生的創新意識和創新結果,教師要給與積極的評價。

問題情境5、同學們能舉出一些二面角的實例嗎?通過實際運用,可以促使學生更加深刻地理解概念。

(二)、二面角的平面角

1、揭示概念產生背景。平面幾何中可以把角理解為是一個旋轉量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉而成的,也是一個旋轉量。說明二面角不僅有大小,而且其大小是唯一確定的。平面與平面的位置關系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,我們有必要來研究二面角的度量問題。

問題情境6、二面角的大小應該怎么度量?能否轉化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產生的背景。

2、展現概念形成過程

(1)、類比。教師啟發,尋找類比聯想的對象。

問題情境7、我們以前碰到過類似的問題嗎?引導學生回憶前面所學過的兩種空間角的定義,電腦演示以提高效率。

問題情境8、兩定義的共同點是什么?生:空間角總是轉化為平面的角,并且這個角是唯一確定的。

問題情境9、這個平面的角的頂點及兩邊是如何確定的?

(2)、提出猜想:二面角的大小也可通過平面的角來定義。對學生提出的猜想,教師應該給予充分的'肯定,以培養他們大膽猜想的意識和習慣,這對強化他們的創新意識大有幫助。

問題情境10、那么,這個角的頂點及兩邊應如何確定呢?生:頂點放在棱上,兩邊分別放在兩個面內。這也是學生直覺思維的結果。

(3)、探索實驗。通過實驗,激發了學生的學習興趣,培養了學生的動手操作能力。

(4)、繼續探索,得到定義。

問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發現,角的頂點確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內唯一確定,聯想到平面內過直線上一點的垂線的唯一性,由此發現二面角的大小的一種描述方法。

(5)、自我驗證:要求學生閱讀課本上的定義。并說明定義的合理性,教師作適當的引導,并加以理論證明。

(三)、二面角及其平面角的畫法

主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。

(四)、范例分析

為鞏固學生所學知識,由于時間的關系設置了一道例題。來源于實際生活,不但培養了學生分析問題和解決問題的能力,也讓學生領會到數學概念來自生活實際,并服務于生活實際,從而增強他們應用數學的意識。

例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點間的距離。

分析:涉及二面角的計算問題,關鍵是找出(或作出)該二面角的平面角。引導學生充分利用已知圖形的性質,最后發現可由定義找出該二面角的平面角??勺寣W生先做,為調動學生的積極性,并增加學生的參與感,活躍課堂的氣氛,教師可給學生板演的機會。教師講評時強調解題規范即必須證明∠BDc是二面角B—AD—c的平面角。

變式訓練:圖中共有幾個二面角?能求出它們的大小嗎?根據課堂實際情況,本題的變式訓練也可作為課后思考題。

題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。

(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)

(五)、練習、小結與作業

練習:習題9.7的第3題

小結在復習完二面角及其平面角的概念后,要求學生對空間中三種角加以比較、歸納,以促成學生建立起空間中角這一概念系統。同時要求學生對本節課的學習方法進行總結,領會復習類比和深入研究這兩種知識創新的方法。

作業:習題9.7的第4題

思考題:見例題

五、板書設計(見課件)

以上是我對《二面角》授課的初步設想,不足之處,懇請大家批評指正,謝謝!

2024年高中上冊數學教案范本(精選篇5)

【教學目標】

1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。

2.能根據幾何結構特征對空間物體進行分類。

3.提高學生的觀察能力;培養學生的空間想象能力和抽象括能力。

【教學重難點】

教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。

教學難點:柱、錐、臺、球的結構特征的概括。

【教學過程】

1.情景導入

教師提出問題,引導學生觀察、舉例和相互交流,提出本節課所學內容,出示課題。

2.展示目標、檢查預習

3、合作探究、交流展示

(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?

(2)組織學生分組討論,每小組選出一名同學發表本組討論結果。

在此基礎上得出棱柱的主要結構特征。

(1)有兩個面互相平行;

(2)其余各面都是平行四邊形;

(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。

(3)提出問題:請列舉身邊的棱柱并對它們進行分類

(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。

(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關的概念及圓柱的表示。

(6)引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。

(7)教師指出圓柱和棱柱統稱為柱體,棱臺與圓臺統稱為臺體,圓錐與棱錐統稱為錐體。

4.質疑答辯,排難解惑,發展思維,教師提出問題,讓學生思考。

(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)

(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?

(3)圓柱可以由矩形旋轉得到,圓錐可以由直角三角形旋轉得到,圓臺可以由什么圖形旋轉得到?如何旋轉?

(4)棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?

(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?

5、典型例題

例1:判斷下列語句是否正確。

⑴有一個面是多邊形,其余各面都是三角形的幾何體是棱錐。

⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。

答案 A B

6、課堂檢測:

課本P8,習題1.1 A組第1題。

7.歸納整理

由學生整理學習了哪些內容

【板書設計】

一、柱、錐、臺、球的結構

二、例題

例1

變式1、2

【作業布置】

導學案課后練習與提高

1.1.1柱、錐、臺、球的結構特征

課前預習學案

一、預習目標:

通過圖形探究柱、錐、臺、球的結構特征

二、預習內容:

閱讀教材第2—6頁內容,然后填空

(1)多面體的概念: 叫多面體,

叫多面體的面, 叫多面體的棱,

叫多面體的`頂點。

① 棱柱:兩個面 ,其余各面都是 ,并且每相鄰兩個四邊形的公共邊都 ,這些面圍成的幾何體叫作棱柱

②棱錐:有一個面是 ,其余各面都是 的三角形,這些面圍成的幾何體叫作棱錐

③棱臺:用一個 棱錐底面的平面去截棱錐, ,叫作棱臺。

(2)旋轉體的概念: 叫旋轉體, 叫旋轉體的軸。

①圓柱: 所圍成的幾何體叫做圓柱

②圓錐: 所圍成的幾何體叫做圓錐

③圓臺: 的部分叫圓臺

④球的定義

思考:

(1)試分析多面體與旋轉體有何去別

(2)球面球體有何去別

(3)圓與球有何去別

三、提出疑惑

同學們,通過你的自主學習,你還有哪些疑惑,請把它填在下面的表格中

疑惑點 疑惑內容

2024年高中上冊數學教案范本(精選篇6)

一、教學目標:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的'問題。

二、教學重點:

向量的性質及相關知識的綜合應用。

三、教學過程:

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:略

四、小結:

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數學建模的思想,切實培養分析和解決問題的能力。

五、作業:

2024年高中上冊數學教案范本(精選篇7)

【課題名稱】

《等差數列》的導入

【授課年級】

高中二年級

【教學重點】

理解等差數列的概念,能夠運用等差數列的定義判斷一個數列是否為等差數列。

【教學難點】

等差數列的性質、等差數列“等差”特點的理解,

【教具準備】多媒體課件、投影儀

【三維目標】

㈠知識目標:

了解公差的概念,明確一個等差數列的限定條件,能根據定義判斷一個等差數列是否是一個等差數列;

㈡能力目標:

通過尋找等差數列的共同特征,培養學生的觀察力以及歸納推理的能力;

㈢情感目標:

通過對等差數列概念的歸納概括,培養學生的觀察、分析資料的能力。

【教學過程】

導入新課

師:上兩節課我們已經學習了數列的定義以及給出表示數列的幾種方法—列舉法、通項法,遞推公式、圖像法。這些方法分別從不同的角度反映了數列的特點。下面我們觀察以下的幾個數列的例子:

(1)我們經常這樣數數,從0開始,每個5個數可以得到數列:0,5,10,15,20,()

(2)2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目工設置了7個級別,其中較輕的4個級別體重組成的數列(單位:kg)為48,53,58,63,()試問第五個級別體重多少?

(3)為了保證優質魚類有良好的生活環境,水庫管理員定期放水清庫以清除水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一個數列:18,15.5,13,10.5,8,(),則第六個數應為多少?

(4)10072,10144,10216,( ),10360

請同學們回答以上的四個問題

生:第一個數列的第6項為25,第二個數列的第5個數為68,第三個數列的第6個數為5.5,第四個數列的第4個數為10288。

師:我來問一下,你是依據什么得到了這幾個數的呢?請以第二個數列為例說明一下。

生:第二個數列的后一項總比前一項多5,依據這個規律我就得到了這個數列的第5個數為68.

師:說的很好!同學們再仔細地觀察一下以上的四個數列,看看以上的四個數列是否有什么共同特征?請注意,是共同特征。

生1:相鄰的兩項的差都等于同一個常數。

師:很好!那作差是否有順序?是否可以顛倒?

生2:作差的.順序是后項減去前項,不能顛倒!

師:正如生1的總結,這四個數列有共同的特征:從第二項起,每一項與它的前一項的差都等于同一個常數(即等差)。我們叫這樣的數列為等差數列。這就是我們這節課要研究的內容。

推進新課

等差數列的定義:一般地,如果一個數列從第2項起,每一項與它的前一項的差都等于同一個常數,那么這個數列就叫做等差數列,這個常數就叫做等差數列的公差,公差常用字母d表示。從剛才的分析,同學們應該注意公差d一定是由后項減前項。

師:有哪個同學知道定義中的關鍵字是什么?

生2:“從第二項起”和“同一個常數”

2024年高中上冊數學教案范本(精選篇8)

一、教學目標

1.知識與技能

(1)掌握畫三視圖的基本技能

(2)豐富學生的空間想象力

2.過程與方法

主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態度與價值觀

(1)提高學生空間想象力

(2)體會三視圖的作用

二、教學重點、難點

重點:畫出簡單組合體的三視圖

難點:識別三視圖所表示的空間幾何體

三、學法與教學用具

1.學法:觀察、動手實踐、討論、類比

2.教學用具:實物模型、三角板

四、教學思路

(一)創設情景,揭開課題

“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

在初中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

(二)實踐動手作圖

1.講臺上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完后可交流結果并討論;

2.教師引導學生用類比方法畫出簡單組合體的三視圖

(1)畫出球放在長方體上的三視圖

(2)畫出礦泉水瓶(實物放在桌面上)的三視圖

學生畫完后,可把自己的作品展示并與同學交流,總結自己的作圖心得。

作三視圖之前應當細心觀察,認識了它的基本結構特征后,再動手作圖。

3.三視圖與幾何體之間的.相互轉化。

(1)投影出示圖片(課本P10,圖1.2-3)

請同學們思考圖中的三視圖表示的幾何體是什么?

(2)你能畫出圓臺的三視圖嗎?

(3)三視圖對于認識空間幾何體有何作用?你有何體會?

教師巡視指導,解答學生在學習中遇到的困難,然后讓學生發表對上述問題的看法。

4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學交流。

(三)鞏固練習

課本P12練習1、2

P18習題1.2A組1

(四)歸納整理

請學生回顧發表如何作好空間幾何體的三視圖

(五)課外練習

1.自己動手制作一個底面是正方形,側面是全等的三角形的棱錐模型,并畫出它的三視圖。

2.自己制作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。

2024年高中上冊數學教案范本(精選篇9)

一、教學目標

1.知識與技能

(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。

(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。

2.過程與方法

學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

3.情感態度與價值觀

(1)提高空間想象力與直觀感受。

(2)體會對比在學習中的作用。

(3)感受幾何作圖在生產活動中的應用。

二、教學重點、難點

重點、難點:用斜二測畫法畫空間幾何值的直觀圖。

三、學法與教學用具

1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

2.教學用具:三角板、圓規

四、教學思路

(一)創設情景,揭示課題

1.我們都學過畫畫,這節課我們畫一物體:圓柱

把實物圓柱放在講臺上讓學生畫。

2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節主要學習的內容。

(二)研探新知

1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發表自己的見解,教師及時給予點評。

畫水平放置的多邊形的直觀圖的`關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。

練習反饋

根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。

2.例2,用斜二測畫法畫水平放置的圓的直觀圖

教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。

教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。

3.探求空間幾何體的直觀圖的畫法

(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。

教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。

4.平行投影與中心投影

投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。

5.鞏固練習,課本P16練習1(1),2,3,4

三、歸納整理

學生回顧斜二測畫法的關鍵與步驟

四、作業

1.書畫作業,課本P17練習第5題

2.課外思考課本P16,探究(1)(2)

2024年高中上冊數學教案范本(精選篇10)

教材分析:

三角函數的誘導公式是普通高中課程標準實驗教科書(人教B版)數學必修四,第一章第二節內容,其主要內容是公式(一)至公式(四)。本節課是第二課時,教學內容是公式(三)。教材要求通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法。

教案背景:

通過學生在已經掌握的任意角的三角函數定義和公式(一)(二)的基礎上,發現他們與單位圓的交點坐標之間關系,進而發現三角函數值的關系。同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求。因此本節內容在三角函數中占有非常重要的地位.

教學方法:

以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式。

教學目標:

借助單位圓探究誘導公式。

能正確運用誘導公式將任意角的三角函數化為銳角三角函數。

教學重點:

誘導公式(三)的推導及應用。

教學難點:

誘導公式的應用。

教學手段:

多媒體。

教學情景設計:

一.復習回顧:

1.誘導公式(一)(二)。

2.角(終邊在一條直線上)

3.思考:下列一組角有什么特征?能否用式子來表示?

二.新課:

設計意圖:結合幾何畫板的演示利用同一點的坐標變換,導出公式。

由公式(一)(三)可以看出,角角相等。

公式(一)(二)(三)都叫誘導公式。利用誘導公式可以求三角函數式的值或化簡三角函數式。

設計意圖:結合學過的公式(一)(二),發現特點,總結公式。

練習

設計意圖:利用公式解決問題,發現新問題,小組研究討論,得到新公式。

(學生板演,老師點評,用彩色粉筆強調重點,引導學生總結公式。)

三.例題

例3:求下列各三角函數值:

例4:化簡

設計意圖:利用公式解決問題。

練習

設計意圖:觀察公式特點,選擇公式解決問題。

四.課堂小結:將任意角三角函數轉化為銳角三角函數,體現轉化化歸,數形結合思想的應用,培養了學生分析問題、解決問題的能力,熟練應用解決問題。

五.課后作業:課后練習A、B組

六.課后反思與交流

很榮幸大家來聽我的.課,通過這課,我學習到如下的東西:

1.要認真的研讀新課標,對教學的目標,重難點把握要到位

2.注意板書設計,注重細節的東西,語速需要改正

3.進一步的學習網頁制作,讓你的網頁更加的完善,學生更容易操作

4.盡可能讓你的學生自主提出問題,自主的思考,能夠化被動學習為主動學習,充分享受學習數學的樂趣

5.上課的生動化,形象化需要加強

2024年高中上冊數學教案范本(精選篇11)

教學目標

1、知識與技能:

函數是描述客觀世界變化規律的重要數學模型。高中階段不僅把函數看成變量之間的依賴關系,同時還用集合與對應的語言刻畫函數,高中階段更注重函數模型化的思想與意識。

2、過程與方法:

(1)通過實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;

(2)了解構成函數的要素;

(3)會求一些簡單函數的定義域和值域;

(4)能夠正確使用“區間”的符號表示函數的定義域;

3、情感態度與價值觀,使學生感受到學習函數的必要性和重要性,激發學習的積極性.

教學重點/難點

重點:理解函數的模型化思想,用集合與對應的語言來刻畫函數;

難點:符號“y=f(x)”的含義,函數定義域和值域的區間表示;

教學用具

多媒體

標簽

函數及其表示

教學過程

(一)創設情景,揭示課題

1、復習初中所學函數的概念,強調函數的模型化思想;

2、閱讀課本引例,體會函數是描述客觀事物變化規律的數學模型的思想:

(1)炮彈的射高與時間的變化關系問題;

(2)南極臭氧空洞面積與時間的變化關系問題;

(3)“八五”計劃以來我國城鎮居民的恩格爾系數與時間的變化關系問題.

3、分析、歸納以上三個實例,它們有什么共同點;

4、引導學生應用集合與對應的語言描述各個實例中兩個變量間的依賴關系;

5、根據初中所學函數的概念,判斷各個實例中的兩個變量間的關系是否是函數關系.

(二)研探新知

函數的有關概念

(1)函數的概念:

設A、B是非空的'數集,如果按照某個確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函數(function)。

記作:y=f(x),x∈A。

其中,x叫做自變量,x的取值范圍A叫做函數的定義域(domain);與x的值相對應的y值叫做函數值,函數值的集合{f(x)|x∈A}叫做函數的值域(range)。

注意:

①“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x。

(2)構成函數的三要素是什么?

定義域、對應關系和值域

(3)區間的概念

①區間的分類:開區間、閉區間、半開半閉區間;

②無窮區間;

③區間的數軸表示.

(4)初中學過哪些函數?它們的定義域、值域、對應法則分別是什么?

通過三個已知的函數:y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比較描述性定義和集合,與對應語言刻畫的定義,談談體會。

師:歸納總結

(三)質疑答辯,排難解惑,發展思維。

1、如何求函數的定義域

例1:已知函數f(x)=+

(1)求函數的定義域;

(2)求f(-3),f(x)的值;

(3)當a>0時,求f(a),f(a-1)的值.

分析:函數的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y=f(x),而沒有指明它的定義域,那么函數的定義域就是指能使這個式子有意義的實數的集合,函數的定義域、值域要寫成集合或區間的形式。

例2、設一個矩形周長為80,其中一邊長為x,求它的面積關于x的函數的解析式,并寫出定義域。

分析:由題意知,另一邊長為x,且邊長x為正數,所以0<x<40.

所以s==(40-x)x(0<x<40)

引導學生小結幾類函數的定義域:

(1)如果f(x)是整式,那么函數的定義域是實數集R。

(2)如果f(x)是分式,那么函數的定義域是使分母不等于零的實數的集合。

(3)如果f(x)是二次根式,那么函數的定義域是使根號內的式子大于或等于零的實數的集合。

(4)如果f(x)是由幾個部分的數學式子構成的,那么函數定義域是使各部分式子都有意義的實數集合。(即求各集合的交集)

(5)滿足實際問題有意義.

鞏固練習:課本P19第1

2、如何判斷兩個函數是否為同一函數

例3、下列函數中哪個與函數y=x相等?

分析:

1構成函數三個要素是定義域、對應關系和值域.由于值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)

2兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變量和函數值的字母無關。

解:

課本P18例2

(四)歸納小結

①從具體實例引入了函數的概念,用集合與對應的語言描述了函數的定義及其相關概念;

②初步介紹了求函數定義域和判斷同一函數的基本方法,同時引出了區間的概念。

(五)設置問題,留下懸念

1、課本P24習題1.2(A組)第1—7題(B組)第1題

2、舉出生活中函數的例子(三個以上),并用集合與對應的語言來描述函數,同時說出函數的定義域、值域和對應關系。

課堂小結

2024年高中上冊數學教案范本(精選篇12)

教學目標:

1、通過生活中優化問題的學習,體會導數在解決實際問題中的作用,促進學生全面認識數學的科學價值、應用價值和文化價值。

2、通過實際問題的研究,促進學生分析問題、解決問題以及數學建模能力的提高。

教學重點:

如何建立實際問題的目標函數是教學的重點與難點。

教學過程:

一、問題情境

問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?

問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最???

問題3做一個容積為256L的方底無蓋水箱,它的高為多少時材料最???

二、新課引入

導數在實際生活中有著廣泛的應用,利用導數求最值的方法,可以求出實際生活中的某些最值問題。

1、幾何方面的應用(面積和體積等的最值)。

2、物理方面的應用(功和功率等最值)。

3、經濟學方面的應用(利潤方面最值)。

三、知識建構

例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?

說明1解應用題一般有四個要點步驟:設——列——解——答。

說明2用導數法求函數的最值,與求函數極值方法類似,加一步與幾個極

值及端點值比較即可。

例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應怎樣選取,才能使所用的材料最?。?/p>

變式當圓柱形金屬飲料罐的表面積為定值S時,它的高與底面半徑應怎樣選取,才能使所用材料最省?

說明1這種在定義域內僅有一個極值的函數稱單峰函數。

說明2用導數法求單峰函數最值,可以對一般的求法加以簡化,其步驟為:

S1列:列出函數關系式。

S2求:求函數的導數。

S3述:說明函數在定義域內僅有一個極大(?。┲?,從而斷定為函數的最大(?。┲担匾獣r作答。

例3在如圖所示的電路中,已知電源的內阻為,電動勢為。外電阻為

多大時,才能使電功率最大?最大電功率是多少?

說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應的自變量必須有解。

例4強度分別為a,b的兩個光源A,B,它們間的距離為d,試問:在連接這兩個光源的線段AB上,何處照度最小?試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的距離的平方成反比)。

例5在經濟學中,生產單位產品的`成本稱為成本函數,記為;出售單位產品的收益稱為收益函數,記為;稱為利潤函數,記為。

(1)設,生產多少單位產品時,邊際成本最低?

(2)設,產品的單價,怎樣的定價可使利潤最大?

四、課堂練習

1、將正數a分成兩部分,使其立方和為最小,這兩部分應分成____和___。

2、在半徑為R的圓內,作內接等腰三角形,當底邊上高為時,它的面積最大。

3、有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應為多少?

4、一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面ABCD的面積為定值S時,使得濕周1=AB+BC+CD最小,這樣可使水流阻力小,滲透少,求此時的高h和下底邊長b。

五、回顧反思

(1)解有關函數最大值、最小值的實際問題,需要分析問題中各個變量之間的關系,找出適當的函數關系式,并確定函數的定義區間;所得結果要符合問題的實際意義。

(2)根據問題的實際意義來判斷函數最值時,如果函數在此區間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。

(3)相當多有關最值的實際問題用導數方法解決較簡單。

六、課外作業

課本第38頁第1,2,3,4題。

2024年高中上冊數學教案范本(精選篇13)

【教學目標】

1.知識與技能

(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:

(2)賬務等差數列的通項公式及其推導過程:

(3)會應用等差數列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

3.情感、態度與價值觀

通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。

【教學重點】

①等差數列的概念;

②等差數列的通項公式

【教學難點】

①理解等差數列“等差”的特點及通項公式的含義;

②等差數列的通項公式的推導過程.

【學情分析】

我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。

【設計思路】

1、教法

①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.

②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性。

③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點。

2、學法

引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法。

【教學過程】

一、創設情境,引入新課

1、從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?

2、水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m。那么從開始放水算起,到可以進行清理工作的`那天,水庫每天的水位(單位:m)組成一個什么數列?

3、我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息,按照單利計算本利和的公式是:本利和=本金x(1+利率x存期)。按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?

教師:以上三個問題中的數蘊涵著三列數

學生:

①0,5,10,15,20,25….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360

(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型。通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力。

二、觀察歸納,形成定義

①0,5,10,15,20,25….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數列有什么共同特點?

思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?

思考3你能將上述的文字語言轉換成數學符號語言嗎?

教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.

學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義。

(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓?。骸皬牡诙椘?,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達。)

三、舉一反三,鞏固定義

1、判定下列數列是否為等差數列?若是,指出公差d。

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16

教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0

(設計意圖:強化學生對等差數列“等差”特征的理解和應用)

2、思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

(設計意圖:強化等差數列的證明定義法)

四、利用定義,導出通項

1、已知等差數列:8,5,2,…求第200項?

2、已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示,根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法。

(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力。學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識。鼓勵學生自主解答,培養學生運算能力)

五、應用通項,解決問題

1、判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?

2、在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

3、求等差數列3,7,11,…的第4項和第10項

教師:給出問題,讓學生自己操練,教師巡視學生答題情況。

學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題。)

六、反饋練習:教材13頁練習1

七、歸納總結:

1、一個定義:

等差數列的定義及定義表達式

2、一個公式:

等差數列的通項公式

3、二個應用:

定義和通項公式的應用

教師:讓學生思考整理,找幾個代表發言,最后教師給出補充

(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念。)

【設計反思】

本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率。

2024年高中上冊數學教案范本(精選篇14)

教學目的:

(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并集與交集;

(2))能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽象概念的作用。

課型:新授課

教學重點:集合的交集與并集的概念;

教學難點:集合的交集與并集 “是什么”,“為什么”,“怎樣做”;

教學過程:

一、引入課題

我們兩個實數除了可以比較大小外,還可以進行加法運算,類比實數的加法運算,兩個集合是否也可以“相加”呢?

思考(P9思考題),引入并集概念。

二、新課教學

1、并集

一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Unin)

記作:A∪B讀作:“A并B”

即: A∪B={x|x∈A,或x∈B}

表示:

說明:兩個集合求并集,結果還是一個集合,是由集合A與B的所有元素組成的集合(重復元素只看成一個元素)。

例題1求集合A與B的并集

①A={6,8,10,12} B={3,6,9,12}

②A={x|-1≤x≤2} B={x|0≤x≤3}

(過度)問題:在上圖中我們除了研究集合A與B的并集外,它們的.公共部分(即問號部分)還應是我們所關心的,我們稱其為集合A與B的交集。

2、交集

一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersectin)。

記作:A∩B讀作:“A交B”

即: A∩B={x|∈A,且x∈B}

說明:兩個集合求交集,結果還是一個集合,是由集合A與B的公共元素組成的集合。

例題2求集合A與B的交集

③A={6,8,10,12} B={3,6,9,12}

④A={x|-1≤x≤2} B={x|0≤x≤3}

拓展:求下列各圖中集合A與B的并集與交集(用彩筆圖出)

說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,而不能說兩個集合沒有交集

3、例題講解

例3(P12例1):理解所給集合的含義,可借助venn圖分析

例4 P12例2):先“化簡”所給集合,搞清楚各自所含元素后,再進行運算。

4、集合基本運算的一些結論:

A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A

A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A

若A∩B=A,則A B,反之也成立

若A∪B=B,則A B,反之也成立

若x∈(A∩B),則x∈A且x∈B

若x∈(A∪B),則x∈A,或x∈B

三、課堂練習(P13練習)

四、歸納小結:略

五、作業布置

1、書面作業:P13習題1.1,第6-12題

2024年高中上冊數學教案范本(精選篇15)

【學情分析】:

學生已經掌握了橢圓的概念、標準方程的概念,也能夠運用標準方程中的a,b,c的關系解決題目,但還不夠熟練。另外對于求軌跡方程、解決直線與橢圓關系的題目,還不能很好地分析、解決。

【三維目標】:

1、知識與技能:

①進一步強化學生對于橢圓標準方程中a,b,c關系理解,并能運用到解題當中去。

②強化求軌跡方程的方法、步驟。

③解決直線與橢圓的題目,強化數形結合的運用。

2、過程與方法:

通過習題、例題的練講結合,達到學生熟練解決橢圓有關問題的能力。

3、情感態度與價值觀:

通過一部分有難度的題目,培養學生克服困難的毅力。

【教學重點】:

知識與技能②③

【教學難點】:

知識與技能②③

【課前準備】:

學案

【教學過程設計】:

教學環節

教學活動

設計意圖

一、復習、引入

1、請講出橢圓的'標準方程?并講出a,b,c之間的關系?

2、怎樣來求動點的軌跡方程,具體的步驟有哪些?

3、直線與橢圓的關系有哪些種?

突出本節要復習的內容

二、例題、練習

一、橢圓的標準方程及a,b,c之間的關系

1、方程表示焦點在y軸上的橢圓,則k的取值范圍是

2、、焦點坐標為(0,-4)、(0,4),a=5的橢圓的標準方程

3、動點M到兩個定點A(0,-)、B(0,)的距離的和是,則動點M的軌跡方程是

4、經過點A(-2,0),B(—1,—)兩點的橢圓的標準方程.

二、求動點的軌跡方程。(重視步驟)

1、點M(x,y)與定點F(4,0)的距離和它到直線L:的距離的比是常數,求點M的軌跡方程,并說明它是什么曲線?。()

2、若P(-3,0)是圓x+y-6x-55=0內一定點,動圓M與

已知圓相內切且過P點,求動圓圓心M的軌跡方程。()

三、直線與橢圓的關系。(數形結合,關注過程)

1、k為何止時,直線和曲線有兩個公共點?一個公共點?沒有公共點?

分析:利用聯立方程組,再利用△進行判斷。

__2、已知橢圓,直線L:,橢圓上是否存在一點,它到直線L的距離最???,最小距離是多少?()

利用三組題目,復習相關的三個知識點。

第一組:先練后評

第二組:先引導分析再做,后評;

第三組:與前一節例題呼應,先經過分析,在引導學生寫出過程。

目的:1、使學生在做題的過程中,復習橢圓的相關知識。

2、強化學生對后兩大類題型步驟的掌握。

三、小結

本節課對于前面幾節課講過的知識,進行了一次復習。橢圓是高考中??嫉闹R點,需要同學們對橢圓相關知識足夠的熟悉,過程步驟清楚,做題速度足夠的快、準確。

四、作業

1、若方程表示的曲線是橢圓,則k的取

值范圍是

2、與橢圓共焦點,且過點(3,-2)的橢圓

方程是

3、若C、D是以F1、F2為焦點的橢圓上的

兩點, CD過點F1,則△F2CD的長 20

4、已知(4,2)是直線l被橢圓=1所截得的線段的中點,則l的方程是_____

5、一動圓與圓外切,同時與圓內切,求動圓圓心的軌跡方

程,并說明它是什么曲線?()

6、直線l過點M(1,1),與橢圓+=1相交于A、B兩點,若AB的中點為M,試求直線l的方程. (3x+4y-7=0)

2024年高中上冊數學教案范本(精選篇16)

一、教材的地位和作用

本節課是“空間幾何體的三視圖和直觀圖”的第一課時,主要內容是投影和三視圖,這部分知識是立體幾何的基礎之一,一方面它是對上一節空間幾何體結構特征的再一次強化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎和訓練學生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內容之一,常常結合給出的三視圖求給定幾何體的表面積或體積設置在選擇或填空中。同時,三視圖在工程建設、機械制造中有著廣泛應用,同時也為學生進入高一層學府學習有很大的幫助。所以在人們的日常生活中有著重要意義。

二、教學目標

(1)知識與技能:能畫出簡單空間圖形(長方體,球,圓柱,圓錐,棱柱等的簡易組合)的三視圖,能識別上述三視圖表示的立體模型,從而進一步熟悉簡單幾何體的結構特征。

(2)過程與方法:通過直觀感知,操作確認,提高學生的空間想象能力、幾何直觀能力,培養學生的應用意識。

(3)情感、態度與價值觀:讓感受數學就在身邊,提高學生學習立體幾何的興趣,培養學生相互交流、相互合作的精神。

三、設計思路

本節課的主要任務是引導學生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復雜過程。直觀感知操作確認是新課程幾何課堂的一個突出特點,也是這節課的設計思路。通過大量的多媒體直觀,實物直觀使學生獲得了對三視圖的感性認識,通過學生的觀察思考,動手實踐,操作練習,實現認知從感性認識上升為理性認識。培養學生的空間想象能力,幾何直觀能力為學習立體幾何打下基礎。

教學的重點、難點

(一)重點:畫出空間幾何體及簡單組合體的三視圖,體會在作三視圖時應遵循的“長對正、高平齊、寬相等”的原則。

(二)難點:識別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。

四、學生現實分析

本節首先簡單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見的兩種投影形式,學生具有這方面的直接經驗和基礎。投影和三視圖雖為高中新增內容,但學生在初中有一定基礎,在七年級上冊“從不同方向看”的基礎上給出了三視圖的概念。到了九年級下冊則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的.三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進入高中后特別是再次學習和認識了柱、錐、臺等幾何體的概念后,學生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側視圖、俯視圖的概念。這些概念的變化也說明了學生年齡特點和思維差異。

五、教學方法

(1)教學方法及教學手段

針對本節課知識是由抽象到具體再到抽象、空間思維難度較大的特點,我采用的教法是直觀教學法、啟導發現法。

在教學中,通過創設問題情境,充分調動學生學習的積極性和主動性,并引導啟發學生動眼、動腦、動手、同時采用多媒體的教學手段,加強直觀性和啟發性,解決了教師“口說無憑”的尷尬境地,增大了課堂容量,提高了課堂效率。

(2)學法指導

力爭在新課程要求的大背景下組織教學,為學生創設良好的問題情境,留給學生充分的思考空間,在學生的辯證和討論前提下,發揮教師的概括和引領的作用。

2024年高中上冊數學教案范本(精選篇17)

【學情分析】:

高一學過了函數的單調性,在引入導數概念與幾何意義后,發現導數是描述函數在某一點的瞬時變化率。在此基礎上,我們發現導數與函數的增減性以及增減的快慢都有很緊密的聯系。本節內容就是通過對函數導數計算,來判定可導函數增減性。

【教學目標】:

(1)正確理解利用導數判斷函數的單調性的原理;

(2)掌握利用導數判斷函數單調性的方法

(3)能夠利用導數解釋實際問題中的函數單調性

【教學重點】:

利用導數判斷函數單調性,會求不超過三次的多項式函數的單調區間

【教學過程設計】:

教學環節

教學活動

設計意圖

情景引入過程

從高臺跳水運動員的高度h隨時間t變化的函數:

分析運動動員的運動過程:

上升→最高點→下降

運動員瞬時速度變換過程:

減速→0→加速

從實際問題中物理量入手

學生容易接受

實際意義向函數意義過渡

從函數的角度分析上述過程:

先增后減

由正數減小到0,再由0減小到負數

將實際的量與函數及其導數意義聯系起來,過渡自然,突破理解障礙

引出函數單調性與導數正負的關系

通過上述實際例子的分析,聯想觀察其他函數的單調性與其導數正負的關系

進一步的函數單調性與導數正負驗證,加深兩者之間的關系

我們能否得出以下結論:

在某個區間(a,b)內,如果,那么函數y=f(x)在這個區間內單調遞增;如果,那么函數y=f(x)在這個區間內單調遞減

答案是肯定的

從導數的概念給出解釋

表明函數在此點處的切線斜率是由左下向右上,因此在附近單調遞增

表明函數在此點處的切線斜率是由左上向右下,因此在附近單調遞減

所以,若,則,f(x)為增函數

同理可說明時,f(x)為減函數

用導數的幾何意義理解導數正負與單調性的內在關系,幫助理解與記憶

導數正負與函數單調性總結

若y=f(x)在區間(a,b)上可導,則

(1)在(a,b)內,y=f(x)在(a,b)單調遞增

(2)在(a,b)內,y=f(x)在(a,b)單調遞減

抽象概括我們的心法手冊(用以指導我們拆解題目)

例題精講

1、根據導數正負判斷函數單調性

教材例1在教學環節中的處理方式:

以學生的自學為主,可以更改部分數據,讓學生動手模仿。

小結:導數的正負→函數的增減→構建函數大致形狀

提醒學生觀察的點的圖像特點(為下節埋下伏筆)

丟出思考題:“”的點是否一定對應函數的最值(由于學生尚未解除“極值”的概念,暫時還是以最值代替)

例題處理的目標就是為達到將“死結論”變成“活套路”

2、利用導數判斷函數單調性以及計算求函數單調區間

教材例2在教學環節中的處理方式:

可以先以為例回顧我們高一判斷函數單調性的定義法;再與我們導數方法形成對比,體會導數方法的優越性。

引導學生逐步貫徹落實我們之前準備的“心法手冊”

判斷單調性→計算導數大小→能否判斷導數正負

→Y,得出函數單調性;

→N,求“導數大于(小于)0”的不等式的'解集→得出單調區間

補充例題:

已知函數y=x+,試討論出此函數的單調區間.

解:y′=(x+)′=1-1·x-2=

令>0. 解得x>1或x<-1.

∴y=x+的單調增區間是(-∞,-1)和(1,+∞).

令<0,解得-1<x<0或0<x<1.

∴y=x+的單調減區間是(-1,0)和(0,1)

要求根據函數單調性畫此函數的草圖

3、實際問題中利用導數意義判斷函數圖像

教材例3的處理方式:

可以根據課程進度作為課堂練習處理

同時還可以引入類似的練習補充(如學生上學路上,距離學校的路程與時間的函數圖像)

堂上練習

教材練習2——由函數圖像寫函數導數的正負性

教材練習1——判斷函數單調性,計算單調區間

針對教材的三個例題作知識強化練習

內容總結

體會導數在判斷函數單調性方面的極大優越性

體會學習導數的重要性

課后練習:

1、函數的遞增區間是( )

A B全品 C D全品

答案C 對于任何實數都恒成立

2、已知函數在上是單調函數,則實數的

取值范圍是( )

A B全品

C D全品

答案B在恒成立,

3、函數單調遞增區間是( )

A B全品 C D全品

答案C 令

4、對于上可導的任意函數,若滿足,則必有( )

A B全品

C D全品

答案C 當時,,函數在上是增函數;當時,,在上是減函數,故當時取得最小值,即有

5、函數的單調增區間為 ,單調減區間為___________________

答案

6、函數的單調遞增區間是___________________________全品

答案

7、已知的圖象經過點,且在處的切線方程是

(1)求的解析式;(2)求的單調遞增區間

解:(1)的圖象經過點,則,

切點為,則的圖象經過點

得單調遞增區間為

80599 主站蜘蛛池模板: 闵行区| 奉贤区| 尤溪县| 博客| 平江县| 尼勒克县| 威远县| 柏乡县| 青海省| 定安县| 平定县| 菏泽市| 中卫市| 莲花县| 三台县| 布尔津县| 泰安市| 宜州市| 申扎县| 千阳县| 丹凤县| 张掖市| 霍州市| 龙井市| 巢湖市| 扬中市| 林西县| 定西市| 金沙县| 始兴县| 定远县| 台东市| 宜宾县| 万载县| 陈巴尔虎旗| 高青县| 洛隆县| 大洼县| 株洲市| 泽库县| 土默特右旗|