教育巴巴 > 高中教案 > 數學教案 >

高中數學等差數列教案

時間: 新華 數學教案

在一年的數學教育活動中,作為高中數學老師的你了解怎樣寫高中數學等差數列教案嗎?來寫一篇高中數學等差數列教案吧,它會對你的數學教學工作起到不菲的幫助。下面是小編為大家收集有關于高中數學等差數列教案,希望你喜歡。

高中數學等差數列教案1

一、指導思想

1、培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力.使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力.

2、根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神.

3、使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀.

二、目的要求

1.深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系和網絡結構,細致領會教材改革的精髓,把握通性通法,逐步明確教材對教學形式、內容和教學目標的影響.

2.因材施教,以學生為學習的主體,構建新的認知體系,營造有利于學生學習的氛圍.

3.加強課堂教學研究,科學設計教學方法,扎實有效的提高課堂教學效果,全面提高數學教學質量.

三、具體措施

1.不孤立記憶和認識各個知識點,而要將其放到相應的體系結構中,在比較、辨析的過程中尋求其內在聯系,達到理解層次,注意知識塊的復習,構建知識網路.注重基礎知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數學語言的表達形式,推力論證要思路清晰、整體完整.

2.學會分析,首先是閱讀理解,側重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側重于經驗及教訓的總結,重視常見題型及通法通解.

3.以“錯”糾錯,查缺補漏,反思錯誤,嚴格訓練,規范解題,養成:想明白,寫清楚,算準確的習慣,注意思路的清晰性、思維的嚴謹性、敘述的條理性、結果的準確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數學思想和數學方法的應用.

4.協調好講、練、評、輔之間的關系,追求數學復習的效果,注重實效,努力提高復習教學的效率和效益;精心設計教學,做到精講精練,不加重學生的負擔,避免“題海戰” ,精心準備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學生的錯誤調整復習策略,使復習更加有重點、針對性,加快教學節奏,提高教學效率.

5.周密計劃合理安排,現數學學科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學,使學生在解題探究中提高能力.

6.多從“貼近教材、貼近學生、貼近實際”角度,選擇典型的數學聯系生活、生產、環境和科技方面的問題,對學生進行有計劃、針對性強的訓練,多給學生鍛煉各種能力的機會,從而達到提升學生數學綜合能力之目的.不脫離基礎知識來講學生的能力,基礎扎實的學生不一定能力 強.教學中,不斷地將基礎知識運用于數學問題的解決中,努力提高學生的學科綜合能力.

新的學期是新的起點,新的希望。通過這份高二數學上學期教學工作計劃,我相信自己在本學期一定能夠將兩個班的數學成績帶上去,我相信,我能行。

高中數學等差數列教案2

一、學情分析

本節課是在學生已學知識的基礎上進行展開學習的,也是對以前所學知識的鞏固和發展,但對學生的知識準備情況來看,學生對相關基礎知識掌握情況是很好,所以在復習時要及時對學生相關知識進行提問,然后開展對本節課的鞏固性復習。而本節課學生會遇到的困難有:數軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。

二、考綱要求

1.會用坐標表示平面向量的加法、減法與數乘運算.

2.理解用坐標表示的平面向量共線的條件.

3.掌握數量積的坐標表達式,會進行平面向量數量積的運算.

4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.

三、教學過程

(一) 知識梳理:

1.向量坐標的求法

(1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.

(2)設A(x1,y1),B(x2,y2),則

=_________________

| |=_______________

(二)平面向量坐標運算

1.向量加法、減法、數乘向量

設 =(x1,y1), =(x2,y2),則

+ = - = λ = .

2.向量平行的坐標表示

設 =(x1,y1), =(x2,y2),則 ∥ ?________________.

(三)核心考點·習題演練

考點1.平面向量的坐標運算

例1.已知A(-2,4),B(3,-1),C(-3,-4).設 (1)求3 + -3 ;

(2)求滿足 =m +n 的實數m,n;

練:(2015江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),則m-n的值為     .

考點2平面向量共線的坐標表示

例2:平面內給定三個向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求實數k的值;

練:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實數,( +λ )∥ ,則λ= (  )

思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?

方法總結:

1.向量共線的兩種表示形式

設a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應視題目的具體條件而定,一般情況涉及坐標的應用②.

2.兩向量共線的充要條件的作用

判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數的值.

考點3平面向量數量積的坐標運算

例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,

則 的值為     ; 的值為     .

【提示】解決涉及幾何圖形的向量數量積運算問題時,可建立直角坐標系利用向量的數量積的坐標表示來運算,這樣可以使數量積的運算變得簡捷.

練:(2014,安徽,13)設 =(1,2), =(1,1), = +k .若 ⊥ ,則實數k的值等于(  )

【思考】兩非零向量 ⊥ 的充要條件: · =0?     .

解題心得:

(1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.

(2)解決涉及幾何圖形的向量數量積運算問題時,可建立直角坐標系利用向量的數量積的坐標表示來運算,這樣可以使數量積的運算變得簡捷.

(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.

考點4:平面向量模的坐標表示

例4:(2015湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則 的值為(  )

A.6 B.7 C.8 D.9

練:(2016,上海,12)

在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則 的取值范圍是?

解題心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉化為數量積運算;

(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..

五、課后作業(課后習題1、2題)

高中數學等差數列教案3

教學目標

知識與技能目標:

本節的中心任務是研究導數的幾何意義及其應用,概念的形成分為三個層次:

(1) 通過復習舊知“求導數的兩個步驟”以及“平均變化率與割線斜率的關系”,解決了平均變化率的幾何意義后,明確探究導數的幾何意義可以依據導數概念的形成尋求解決問題的途徑。

(2) 從圓中割線和切線的變化聯系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

(3) 依據割線與切線的變化聯系,數形結合探究函數導數的幾何意義教案在導數的幾何意義教案處的導數導數的幾何意義教案的幾何意義,使學生認識到導數導數的幾何意義教案就是函數導數的幾何意義教案的圖象在導數的幾何意義教案處的切線的斜率。即:

導數的幾何意義教案=曲線在導數的幾何意義教案處切線的斜率k

在此基礎上,通過例題和練習使學生學會利用導數的幾何意義解釋實際生活問題,加深對導數內涵的理解。在學習過程中感受逼近的思想方法,了解“以直代曲”的數學思想方法。

過程與方法目標:

(1) 學生通過觀察感知、動手探究,培養學生的動手和感知發現的能力。

(2) 學生通過對圓的切線和割線聯系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質的本質,有助于數學思維能力的提高。

(3) 結合分層的探究問題和分層練習,期望各種層次的學生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發現新知、應用新知。

情感、態度、價值觀:

(1) 通過在探究過程中滲透逼近和以直代曲思想,使學生了解近似與精確間的辨證關系;通過有限來認識無限,體驗數學中轉化思想的意義和價值;

(2) 在教學中向他們提供充分的從事數學活動的機會,如:探究活動,讓學生自主探究新知,例題則采用練在講之前,講在關鍵處。在活動中激發學生的學習潛能,促進他們真正理解和掌握基本的數學知識技能、數學思想方法,獲得廣泛的數學活動經驗,提高綜合能力,學會學習,進一步在意志力、自信心、理性精神等情感與態度方面得到良好的發展。

教學重點與難點

重點:理解和掌握切線的新定義、導數的幾何意義及應用于解決實際問題,體會數形結合、以直代曲的思想方法。

難點:發現、理解及應用導數的幾何意義。

教學過程

一、復習提問

1.導數的定義是什么?求導數的三個步驟是什么?求函數y=x2在x=2處的導數.

定義:函數在導數的幾何意義教案處的導數導數的幾何意義教案就是函數在該點處的瞬時變化率。

求導數的步驟:

第一步:求平均變化率導數的幾何意義教案;

第二步:求瞬時變化率導數的幾何意義教案.

(即導數的幾何意義教案,平均變化率趨近于的確定常數就是該點導數)

2.觀察函數導數的幾何意義教案的圖象,平均變化率導數的幾何意義教案 在圖形中表示什么?

生:平均變化率表示的是割線PQ的斜率.導數的幾何意義教案

師:這就是平均變化率(導數的幾何意義教案)的幾何意義,

3.瞬時變化率(導數的幾何意義教案)在圖中又表示什么呢?

如圖2-1,設曲線C是函數y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.

導數的幾何意義教案

追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設割線PQ的傾斜角為導數的幾何意義教案,切線PT的傾斜角為導數的幾何意義教案,易知割線PQ的斜率為導數的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導數的幾何意義教案,即導數的幾何意義教案。

由導數的定義知導數的幾何意義教案 導數的幾何意義教案。

導數的幾何意義教案

由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導數f'(x0).今天我們就來探究導數的幾何意義。

C類學生回答第1題,A,B類學生回答第2題在學生回答基礎上教師重點講評第3題,然后逐步引入導數的幾何意義.

二、新課

1、導數的幾何意義:

函數y=f(x)在點x0處的導數f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.

即:導數的幾何意義教案

口答練習:

(1)如果函數y=f(x)在已知點x0處的導數分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數圖像在對應點的切線的傾斜角,并說明切線各有什么特征。

(C層學生做)

(2)已知函數y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數在各點的導數.(A、B層學生做)

導數的幾何意義教案

2、如何用導數研究函數的增減?

小結:附近:瞬時,增減:變化率,即研究函數在該點處的瞬時變化率,也就是導數。導數的正負即對應函數的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導數的正負,就可以判斷函數的增減性,體會導數是研究函數增減、變化快慢的有效工具。

同時,結合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數的增減性。都反應了導數是研究函數增減、變化快慢的有效工具。

例1 函數導數的幾何意義教案上有一點導數的幾何意義教案,求該點處的導數導數的幾何意義教案,并由此解釋函數的增減情況。

導數的幾何意義教案

函數在定義域上任意點處的瞬時變化率都是3,函數在定義域內單調遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)

3、利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程.

例2 求曲線y=x2在點M(2,4)處的切線方程.

解:導數的幾何意義教案

∴y'|x=2=2×2=4.

∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

由上例可歸納出求切線方程的兩個步驟:

(1)先求出函數y=f(x)在點x0處的導數f'(x0).

(2)根據直線方程的點斜式,得切線方程為 y-y0=f'(x0)(x-x0).

提問:若在點(x0,f(x0))處切線PT的傾斜角為導數的幾何意義教案導數的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導數不存在,不能用上面方法求切線方程。根據切線定義可直接得切線方程導數的幾何意義教案)

(先由C類學生來回答,再由A,B補充.)

例3 已知曲線導數的幾何意義教案上一點導數的幾何意義教案,求:(1)過P點的切線的斜率;

(2)過P點的切線的方程。

解:(1)導數的幾何意義教案,

導數的幾何意義教案

y'|x=2=22=4. ∴ 在點P處的切線的斜率等于4.

(2)在點P處的切線方程為導數的幾何意義教案 即 12x-3y-16=0.

練習:求拋物線y=x2+2在點M(2,6)處的切線方程.

(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

B類學生做題,A類學生糾錯。

三、小結

1.導數的幾何意義.(C組學生回答)

2.利用導數求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.

(B組學生回答)

四、布置作業

1. 求拋物線導數的幾何意義教案在點(1,1)處的切線方程。

2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.

3. 求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角

4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標; (2)拋物線在交點處的切線方程;

(C組學生完成1,2題;B組學生完成1,2,3題;A組學生完成2,3,4題)

教學反思:

本節內容是在學習了“變化率問題、導數的概念”等知識的基礎上,研究導數的幾何意義,由于新教材未設計極限,于是我盡量采用形象直觀的方式,讓學生通過動手作圖,自我感受整個逼近的過程,讓學生更加深刻地體會導數的幾何意義及“以直代曲”的思想。

本節課主要圍繞著“利用函數圖象直觀理解導數的幾何意義”和“利用導數 的幾何意義解釋實際問題”兩個教學重心展開。 先回憶導數的實際意義、數值意義,由數到形,自然引出從圖形的角度研究導數的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導學生從數形結合的角度思考,獲得導數的幾何意義——“導數是曲線上某點處切線的斜率”。

完成本節課第一階段的內容學習后,教師點明,利用導數的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復雜對象”的目的,并通過兩個例題的研究,讓學生從不同的角度完整地體驗導數與切線斜率的關系,并感受導數應用的廣泛性。 本節課注重以學生為主體,每一個知識、每一個發現,總設法由學生自己得出,課堂上給予學生充足的思考時間和空間,讓學生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關鍵處加以引導。從學生的作業看來,效果較好。

高中數學等差數列教案4

一、教學內容分析

向量作為工具在數學、物理以及實際生活中都有著廣泛的應用.

本小節的重點是結合向量知識證明數學中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學中的應用.

二、教學目標設計

1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應用,體會從不同角度去看待一些數學問題,使一些數學知識有機聯系,拓寬解決問題的思路.

2、了解構造法在解題中的運用.

三、教學重點及難點

重點:平面向量知識在各個領域中應用.

難點:向量的構造.

四、教學流程設計

五、教學過程設計

一、復習與回顧

1、提問:下列哪些量是向量?

(1)力 (2)功 (3)位移 (4)力矩

2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說明]復習數量積的有關知識.

二、學習新課

例1(書中例5)

向量作為一種工具,不僅在物理學科中有廣泛的應用,同時它在數學學科中也有許多妙用!請看

例2(書中例3)

證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.

證法(二)向量法

[說明]本例關鍵引導學生觀察不等式結構特點,構造向量,并發現(等號成立的充要條件是)

例3(書中例4)

[說明]本例的關鍵在于構造單位圓,利用向量數量積的兩個公式得到證明.

二、鞏固練習

1、如圖,某人在靜水中游泳,速度為 km/h.

(1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進?速度大小為多少?

答案:沿北偏東方向前進,實際速度大小是8 km/h.

(2) 他必須朝哪個方向游才能沿與水流垂直的方向前進?實際前進的速度大小為多少?

答案:朝北偏西方向前進,實際速度大小為km/h.

三、課堂小結

1、向量在物理、數學中有著廣泛的應用.

2、要學會從不同的角度去看一個數學問題,是數學知識有機聯系.

四、作業布置

1、書面作業:課本P73, 練習8.4 4

高中數學等差數列教案5

教學目標:

(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

(2)進一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節內容的教學,培養學生分析問題和轉化的能力.

教學重點、難點:求曲線的方程.

教學用具:計算機.

教學方法:啟發引導法,討論法.

教學過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學生思考并回答.教師強調.

2.坐標法和解析幾何的意義、基本問題.

對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質.

事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節課就初步研究曲線方程的求法.

【問題】

如何根據已知條件,求出曲線的方程.

【實例分析】

例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

首先由學生分析:根據直線方程的知識,運用點斜式即可解決.

解法一:易求線段 的中點坐標為(1,3),

由斜率關系可求得l的斜率為

于是有

即l的方程為

分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據是什么,有證明嗎?

(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據就是定義中的兩條).

證明:(1)曲線上的點的坐標都是這個方程的解.

設 是線段 的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點 的坐標 是方程 的解.

(2)以這個方程的解為坐標的點都是曲線上的點.

設點 的坐標 是方程①的任意一解,則

到 、 的距離分別為

所以 ,即點 在直線 上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內容我們會發現一個有趣的現象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現了曲線方程定義中點集與對應的思想.因此是個好方法.

讓我們用這個方法試解如下問題:

例2:點 與兩條互相垂直的直線的距離的積是常數 求點 的軌跡方程.

分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

求解過程略.

【概括總結】通過學生討論,師生共同總結:

分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:

首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

(1)建立適當的坐標系,用有序實數對例如 表示曲線上任意一點 的坐標;

(2)寫出適合條件 的點 的集合

;

(3)用坐標表示條件 ,列出方程 ;

(4)化方程 為最簡形式;

(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

下面再看一個問題:

例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系.

解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

由距離公式,點 適合的條件可表示為

將①式 移項后再兩邊平方,得

化簡得

由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

【練習鞏固】

題目:在正三角形 內有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

根據條件 ,代入坐標可得

化簡得

由于題目中要求點 在三角形內,所以 ,在結合①式可進一步求出 、 的范圍,最后曲線方程可表示為

【小結】師生共同總結:

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

【作業】課本第72頁練習1,2,3;

 

7893 主站蜘蛛池模板: 久治县| 宁安市| 荣成市| 资兴市| 襄城县| 通河县| 青铜峡市| 汉沽区| 彝良县| 罗源县| 永川市| 航空| 长岭县| 德州市| 南召县| 兴文县| 惠东县| 江油市| 嵩明县| 紫金县| 威远县| 仙桃市| 萍乡市| 南陵县| 武邑县| 商洛市| 县级市| 馆陶县| 邮箱| 都江堰市| 竹溪县| 视频| 札达县| 黄石市| 沧源| 沙洋县| 晋宁县| 永清县| 桐乡市| 荔浦县| 泾源县|