教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高二數(shù)學(xué)教案模板下載

時(shí)間: 新華 數(shù)學(xué)教案

教案可以幫助教師合理規(guī)劃教學(xué)時(shí)間,安排教學(xué)環(huán)節(jié)和教學(xué)資源,使教學(xué)過(guò)程有序、連貫。這里提供優(yōu)秀的高二數(shù)學(xué)教案模板下載,方便大家寫(xiě)高二數(shù)學(xué)教案模板下載參考。

高二數(shù)學(xué)教案模板下載篇1

1.本節(jié)課的重點(diǎn)是理解算法的概念,體會(huì)算法的思想,難點(diǎn)是掌握簡(jiǎn)單問(wèn)題算法的表述.

2.本節(jié)課要重點(diǎn)掌握的規(guī)律方法

(1)掌握算法的特征,見(jiàn)講1;

(2)掌握設(shè)計(jì)算法的一般步驟,見(jiàn)講2;

(3)會(huì)設(shè)計(jì)實(shí)際問(wèn)題的算法,見(jiàn)講3.

3.本節(jié)課的易錯(cuò)點(diǎn)

(1)混淆算法的特征,如講1.

(2)算法語(yǔ)言不規(guī)范致誤,如講3.

課下能力提升(一)

[學(xué)業(yè)水平達(dá)標(biāo)練]

題組1算法的含義及特征

1.下列關(guān)于算法的說(shuō)法錯(cuò)誤的是()

A.一個(gè)算法的步驟是可逆的

B.描述算法可以有不同的方式

C.設(shè)計(jì)算法要本著簡(jiǎn)單方便的原則

D.一個(gè)算法不可以無(wú)止境地運(yùn)算下去

解析:選A由算法定義可知B、C、D對(duì),A錯(cuò).

2.下列語(yǔ)句表達(dá)的是算法的有()

①撥本地電話的過(guò)程為:1提起話筒;2撥號(hào);3等通話信號(hào);4開(kāi)始通話或掛機(jī);5結(jié)束通話;

②利用公式V=Sh計(jì)算底面積為3,高為4的三棱柱的體積;

③x2-2x-3=0;

④求所有能被3整除的正數(shù),即3,6,9,12,….

A.①②B.①②③

C.①②④D.①②③④

解析:選A算法通常是指按照一定規(guī)則解決某一類問(wèn)題的明確和有限的步驟.①②都各表達(dá)了一種算法;③只是一個(gè)純數(shù)學(xué)問(wèn)題,不是一個(gè)明確步驟;④的步驟是無(wú)窮的,與算法的有窮性矛盾.

3.下列各式中S的值不可以用算法求解的是()

A.S=1+2+3+4

B.S=12+22+32+…+1002

C.S=1+12+…+110000

D.S=1+2+3+4+…

解析:選DD中的求和不符合算法步驟的有限性,所以它不可以用算法求解,故選D.

題組2算法設(shè)計(jì)

4.給出下面一個(gè)算法:

第一步,給出三個(gè)數(shù)x,y,z.

第二步,計(jì)算M=x+y+z.

第三步,計(jì)算N=13M.

第四步,得出每次計(jì)算結(jié)果.

則上述算法是()

A.求和B.求余數(shù)

C.求平均數(shù)D.先求和再求平均數(shù)

解析:選D由算法過(guò)程知,M為三數(shù)之和,N為這三數(shù)的平均數(shù).

5.(2016?東營(yíng)高一檢測(cè))一個(gè)算法步驟如下:

S1,S取值0,i取值1;

S2,如果i≤10,則執(zhí)行S3,否則執(zhí)行S6;

S3,計(jì)算S+i并將結(jié)果代替S;

S4,用i+2的值代替i;

S5,轉(zhuǎn)去執(zhí)行S2;

S6,輸出S.

運(yùn)行以上步驟后輸出的結(jié)果S=()

A.16B.25

C.36D.以上均不對(duì)

解析:選B由以上計(jì)算可知:S=1+3+5+7+9=25,答案為B.

6.給出下面的算法,它解決的是()

第一步,輸入x.

第二步,如果x<0,則y=x2;否則執(zhí)行下一步.

第三步,如果x=0,則y=2;否則y=-x2.

第四步,輸出y.

A.求函數(shù)y=x2?x<0?,-x2?x≥0?的函數(shù)值

B.求函數(shù)y=x2?x<0?,2?x=0?,-x2?x>0?的函數(shù)值

C.求函數(shù)y=x2?x>0?,2?x=0?,-x2?x<0?的函數(shù)值

D.以上都不正確

解析:選B由算法知,當(dāng)x<0時(shí),y=x2;當(dāng)x=0時(shí),y=2;當(dāng)x>0時(shí),y=-x2.故選B.

7.試設(shè)計(jì)一個(gè)判斷圓(x-a)2+(y-b)2=r2和直線Ax+By+C=0位置關(guān)系的算法.

解:算法步驟如下:

第一步,輸入圓心的坐標(biāo)(a,b)、半徑r和直線方程的系數(shù)A、B、C.

第二步,計(jì)算z1=Aa+Bb+C.

第三步,計(jì)算z2=A2+B2.

第四步,計(jì)算d=z1z2.

第五步,如果d>r,則輸出“相離”;如果d=r,則輸出“相切”;如果d

8.某商場(chǎng)舉辦優(yōu)惠促銷活動(dòng).若購(gòu)物金額在800元以上(不含800元),打7折;若購(gòu)物金額在400元以上(不含400元)800元以下(含800元),打8折;否則,不打折.請(qǐng)為商場(chǎng)收銀員設(shè)計(jì)一個(gè)算法,要求輸入購(gòu)物金額x,輸出實(shí)際交款額y.

解:算法步驟如下:

第一步,輸入購(gòu)物金額x(x>0).

第二步,判斷“x>800”是否成立,若是,則y=0.7x,轉(zhuǎn)第四步;否則,執(zhí)行第三步.

第三步,判斷“x>400”是否成立,若是,則y=0.8x;否則,y=x.

第四步,輸出y,結(jié)束算法.

題組3算法的實(shí)際應(yīng)用

9.國(guó)際奧委會(huì)宣布2020年夏季奧運(yùn)會(huì)主辦城市為日本的東京.據(jù)《中國(guó)體育報(bào)》報(bào)道:對(duì)參與競(jìng)選的5個(gè)夏季奧林匹克運(yùn)動(dòng)會(huì)申辦城市進(jìn)行表決的操作程序是:首先進(jìn)行第一輪投票,如果有一個(gè)城市得票數(shù)超過(guò)總票數(shù)的一半,那么該城市將獲得舉辦權(quán);如果所有申辦城市得票數(shù)都不超過(guò)總票數(shù)的一半,則將得票最少的城市淘汰,然后進(jìn)行第二輪投票;如果第二輪投票仍沒(méi)選出主辦城市,將進(jìn)行第三輪投票,如此重復(fù)投票,直到選出一個(gè)主辦城市為止,寫(xiě)出投票過(guò)程的算法.

解:算法如下:

第一步,投票.

第二步,統(tǒng)計(jì)票數(shù),如果一個(gè)城市得票數(shù)超過(guò)總票數(shù)的一半,那么該城市就獲得主辦權(quán),否則淘汰得票數(shù)最少的城市并轉(zhuǎn)第一步.

第三步,宣布主辦城市.

[能力提升綜合練]

1.小明中午放學(xué)回家自己煮面條吃,有下面幾道工序:①洗鍋、盛水2分鐘;②洗菜6分鐘;③準(zhǔn)備面條及佐料2分鐘;④用鍋把水燒開(kāi)10分鐘;⑤煮面條和菜共3分鐘.以上各道工序,除了④之外,一次只能進(jìn)行一道工序.小明要將面條煮好,最少要用()

A.13分鐘B.14分鐘

C.15分鐘D.23分鐘

解析:選C①洗鍋、盛水2分鐘+④用鍋把水燒開(kāi)10分鐘(同時(shí)②洗菜6分鐘+③準(zhǔn)備面條及佐料2分鐘)+⑤煮面條和菜共3分鐘=15分鐘.解決一個(gè)問(wèn)題的算法不是的,但在設(shè)計(jì)時(shí)要綜合考慮各個(gè)方面的因素,選擇一種較好的算法.

2.在用二分法求方程零點(diǎn)的算法中,下列說(shuō)法正確的是()

A.這個(gè)算法可以求方程所有的零點(diǎn)

B.這個(gè)算法可以求任何方程的零點(diǎn)

C.這個(gè)算法能求方程所有的近似零點(diǎn)

D.這個(gè)算法并不一定能求方程所有的近似零點(diǎn)

解析:選D二分法求方程零點(diǎn)的算法中,僅能求方程的一些特殊的近似零點(diǎn)(滿足函數(shù)零點(diǎn)存在性定理的條件),故D正確.

3.(2016?青島質(zhì)檢)結(jié)合下面的算法:

第一步,輸入x.

第二步,判斷x是否小于0,若是,則輸出x+2,否則執(zhí)行第三步.

第三步,輸出x-1.

當(dāng)輸入的x的值為-1,0,1時(shí),輸出的結(jié)果分別為()

A.-1,0,1B.-1,1,0

C.1,-1,0D.0,-1,1

解析:選C根據(jù)x值與0的關(guān)系選擇執(zhí)行不同的步驟.

4.有如下算法:

第一步,輸入不小于2的正整數(shù)n.

第二步,判斷n是否為2.若n=2,則n滿足條件;若n>2,則執(zhí)行第三步.

第三步,依次從2到n-1檢驗(yàn)?zāi)懿荒苷齨,若不能整除,則n滿足條件.

則上述算法滿足條件的n是()

A.質(zhì)數(shù)B.奇數(shù)

C.偶數(shù)D.合數(shù)

解析:選A根據(jù)質(zhì)數(shù)、奇數(shù)、偶數(shù)、合數(shù)的定義可知,滿足條件的n是質(zhì)數(shù).

5.(2016?濟(jì)南檢測(cè))輸入一個(gè)x值,利用y=x-1求函數(shù)值的算法如下,請(qǐng)將所缺部分補(bǔ)充完整:

第一步:輸入x;

第二步:________;

第三步:當(dāng)x<1時(shí),計(jì)算y=1-x;

第四步:輸出y.

解析:以x-1與0的大小關(guān)系為分類準(zhǔn)則知第二步應(yīng)填當(dāng)x≥1時(shí),計(jì)算y=x-1.

答案:當(dāng)x≥1時(shí),計(jì)算y=x-1

6.已知一個(gè)算法如下:

第一步,令m=a.

第二步,如果b<m,則m=b.<p="">

第三步,如果c<m,則m=c.<p="">

第四步,輸出m.

如果a=3,b=6,c=2,則執(zhí)行這個(gè)算法的結(jié)果是________.

解析:這個(gè)算法是求a,b,c三個(gè)數(shù)中的最小值,故這個(gè)算法的結(jié)果是2.

答案:2

7.下面給出了一個(gè)問(wèn)題的算法:

第一步,輸入a.

第二步,如果a≥4,則y=2a-1;否則,y=a2-2a+3.

第三步,輸出y的值.

問(wèn):(1)這個(gè)算法解決的是什么問(wèn)題?

(2)當(dāng)輸入的a的值為多少時(shí),輸出的數(shù)值最小?最小值是多少?

解:(1)這個(gè)算法解決的是求分段函數(shù)

y=2a-1,a≥4,a2-2a+3,a<4的函數(shù)值的問(wèn)題.

(2)當(dāng)a≥4時(shí),y=2a-1≥7;

當(dāng)a<4時(shí),y=a2-2a+3=(a-1)2+2≥2,

∵當(dāng)a=1時(shí),y取得最小值2.

∴當(dāng)輸入的a值為1時(shí),輸出的數(shù)值最小為2.

8.“韓信點(diǎn)兵”問(wèn)題:韓信是漢高祖手下的大將,他英勇善戰(zhàn),謀略超群,為漢朝的建立立下了不朽功勛.據(jù)說(shuō)他在一次點(diǎn)兵的時(shí)候,為保住軍事秘密,不讓敵人知道自己部隊(duì)的軍事實(shí)力,采用下述點(diǎn)兵方法:①先令士兵從1~3報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)2;②又令士兵從1~5報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)3;③又令士兵從1~7報(bào)數(shù),結(jié)果最后一個(gè)士兵報(bào)4.這樣韓信很快算出自己部隊(duì)里士兵的總數(shù).請(qǐng)?jiān)O(shè)計(jì)一個(gè)算法,求出士兵至少有多少人.

解:第一步,首先確定最小的滿足除以3余2的正整數(shù):2.

第二步,依次加3就得到所有除以3余2的正整數(shù):2,5,8,11,14,17,20,….

第三步,在上列數(shù)中確定最小的滿足除以5余3的正整數(shù):8.

第四步,然后在自然數(shù)內(nèi)在8的基礎(chǔ)上依次加上15,得到8,23,38,53,….

第五步,在上列數(shù)中確定最小的滿足除以7余4的正整數(shù):53.

即士兵至少有53人.

高二數(shù)學(xué)教案模板下載篇2

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

1.掌握平面向量的數(shù)量積及其幾何意義;

2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

3.了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;

4.掌握向量垂直的條件.

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):平面向量的數(shù)量積定義

教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)過(guò)程

1.平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,

則數(shù)量abcosq叫a與b的數(shù)量積,記作a×b,即有a×b=abcosq,(0≤θ≤π).

并規(guī)定0向量與任何向量的數(shù)量積為0.

×探究:1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?

2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?

(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定.

(2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分.符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替.

(3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0.因?yàn)槠渲衏osq有可能為0

高二數(shù)學(xué)教案模板下載篇3

一、內(nèi)容和內(nèi)容解析

1.內(nèi)容

本節(jié)課主要內(nèi)容是讓學(xué)生了解在客觀世界中要認(rèn)識(shí)客觀現(xiàn)象的第一步就是通過(guò)觀察或試驗(yàn)取得觀測(cè)資料,然后通過(guò)分析這些資料來(lái)認(rèn)識(shí)此現(xiàn)象.如何取得有代表性的觀測(cè)資料并能夠正確的加以分析,是正確的認(rèn)識(shí)未知現(xiàn)象的基礎(chǔ),也是統(tǒng)計(jì)所研究的基本問(wèn)題.

2.內(nèi)容解析

本節(jié)課是高中階段學(xué)習(xí)統(tǒng)計(jì)學(xué)的第一節(jié)課,統(tǒng)計(jì)是研究如何合理收集、整理、分析數(shù)據(jù)的學(xué)科,它可以為人們制定決策提供依據(jù).學(xué)生在九年義務(wù)階段已經(jīng)學(xué)習(xí)了收集、整理、描述和分析數(shù)據(jù)等處理數(shù)據(jù)的基本方法.在高中學(xué)習(xí)統(tǒng)計(jì)的過(guò)程中還將逐步讓學(xué)生體會(huì)確定性思維與統(tǒng)計(jì)思維的差異,注意到統(tǒng)計(jì)結(jié)果的隨機(jī)性特征,統(tǒng)計(jì)推斷是有可能錯(cuò)的,這是由統(tǒng)計(jì)本身的性質(zhì)所決定的.統(tǒng)計(jì)有兩種.一種是把所有個(gè)體的信息都收集起來(lái),然后進(jìn)行描述,這種統(tǒng)計(jì)方法稱為描述性統(tǒng)計(jì),例如我國(guó)進(jìn)行的人口普查.但是在很多情況下我們無(wú)法采用描述性統(tǒng)計(jì)對(duì)所有的個(gè)體進(jìn)行調(diào)查,通常是在總體中抽取一定的樣本為代表,從樣本的信息來(lái)推斷總體的特征,這稱為推斷性統(tǒng)計(jì).例如有的產(chǎn)品數(shù)量非常的大或者有的產(chǎn)品的質(zhì)量檢查是破壞性的.統(tǒng)計(jì)和概率的基礎(chǔ)知識(shí)已經(jīng)成為一個(gè)未來(lái)公民的必備常識(shí).

抽樣調(diào)查是我們收集數(shù)據(jù)的一種重要途徑,是一種重要的、科學(xué)的非全面調(diào)查方法.它根據(jù)調(diào)查的目的和任務(wù)要求,按照隨機(jī)原則,從若干單位組成的事物總體中,抽取部分樣本單位來(lái)進(jìn)行調(diào)查、觀察,用所得到的調(diào)查標(biāo)志的數(shù)據(jù)來(lái)推斷總體.其中蘊(yùn)涵了重要的統(tǒng)計(jì)思想——樣本估計(jì)總體.而樣本代表性的好壞直接影響統(tǒng)計(jì)結(jié)論的準(zhǔn)確性,所以抽樣過(guò)程中,考慮的最主要原則為:保證樣本能夠很好地代表總體.而隨機(jī)抽樣的出發(fā)點(diǎn)是使每個(gè)個(gè)體都有相同的機(jī)會(huì)被抽中,這是基于對(duì)樣本數(shù)據(jù)代表性的考慮.

本節(jié)課重點(diǎn):能從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題,理解隨機(jī)抽樣的必要性與重要性.

二、目標(biāo)和目標(biāo)解析

1.目標(biāo)

(1)通過(guò)對(duì)具體的案例分析,逐步學(xué)會(huì)從現(xiàn)實(shí)生活中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題,

(2)結(jié)合具體的實(shí)際問(wèn)題情境,理解隨機(jī)抽樣的必要性和重要性;

(3)以問(wèn)題鏈的形式深刻理解樣本的代表性.

2.目標(biāo)解析

本章章頭圖列舉了我國(guó)水資源缺乏問(wèn)題、土地沙漠化問(wèn)題等情境,提出了學(xué)習(xí)統(tǒng)計(jì)的意義.同時(shí)通過(guò)具體的實(shí)例,使學(xué)生能夠嘗試從實(shí)際問(wèn)題中發(fā)現(xiàn)統(tǒng)計(jì)問(wèn)題,提出統(tǒng)計(jì)問(wèn)題.讓學(xué)生養(yǎng)成從現(xiàn)實(shí)生活或其他學(xué)科中發(fā)現(xiàn)問(wèn)題、提出問(wèn)題的習(xí)慣,培養(yǎng)學(xué)生發(fā)現(xiàn)問(wèn)題與提出問(wèn)題的能力與意識(shí).

對(duì)某個(gè)問(wèn)題的調(diào)查最簡(jiǎn)單的方法就是普查,但是這種方法的局限性很大,出于費(fèi)用和時(shí)間的考慮,有時(shí)一個(gè)精心設(shè)計(jì)的抽樣方案,其實(shí)施效果甚至可以勝過(guò)普查,在這個(gè)過(guò)程中讓學(xué)生逐步體會(huì)到隨機(jī)抽樣的必要性和重要性.抽樣調(diào)查,就是通過(guò)從總體中抽取一部分個(gè)體進(jìn)行調(diào)查,借以獲得對(duì)整體的了解.為了使由樣本到總體的推斷有效,樣本必須是總體的代表,否則就可能出現(xiàn)方便樣本.由此在對(duì)實(shí)例的分析過(guò)程中探討獲取能夠代表總體的樣本的方法,得到隨機(jī)樣本的概念,逐步理解樣本的代表性與統(tǒng)計(jì)推斷結(jié)論可靠性之間的關(guān)系.

三、教學(xué)問(wèn)題診斷分析

學(xué)生在九年義務(wù)教育階段已有對(duì)統(tǒng)計(jì)活動(dòng)的認(rèn)識(shí),并學(xué)習(xí)了統(tǒng)計(jì)圖表、收集數(shù)據(jù)的方法,但對(duì)于如何抽樣更能使樣本代表總體的意識(shí)還不強(qiáng);在以前的學(xué)習(xí)中,學(xué)生的學(xué)習(xí)內(nèi)容以確定性數(shù)學(xué)學(xué)習(xí)為主;學(xué)生對(duì)全面調(diào)查,即普查有所了解,它在經(jīng)驗(yàn)上更接近確定性數(shù)學(xué),而隨機(jī)抽樣學(xué)習(xí)則要求學(xué)生通過(guò)對(duì)具體問(wèn)題的解決,能體會(huì)到統(tǒng)計(jì)中的重要思想——樣本估計(jì)總體以及統(tǒng)計(jì)結(jié)果的不確定性.學(xué)生已有知識(shí)經(jīng)驗(yàn)與本節(jié)要達(dá)成的教學(xué)目標(biāo)之間還有很大的差距.主要的困難有:對(duì)樣本估計(jì)總體的思想、對(duì)統(tǒng)計(jì)結(jié)果的“不確定性”產(chǎn)生懷疑,對(duì)統(tǒng)計(jì)的科學(xué)性有所質(zhì)疑;對(duì)抽樣應(yīng)該具有隨機(jī)性,每個(gè)樣本的抽取又都落實(shí)在某個(gè)人的具體操作上不理解,因此教學(xué)中要通過(guò)具體實(shí)例的研究給學(xué)生釋疑.

在教學(xué)過(guò)程中,可以鼓勵(lì)學(xué)生從自己的生活中提出與典型案例類似的統(tǒng)計(jì)問(wèn)題,如每天完成家庭作業(yè)所需的時(shí)間,每天的體育鍛煉時(shí)間,學(xué)生的近視率,一批電燈泡的壽命是否符合要求等等.在學(xué)生提出這些問(wèn)題后,要引導(dǎo)學(xué)生考慮問(wèn)題中的總體是什么,要觀測(cè)的變量是什么,如何獲取樣本,通過(guò)這樣一個(gè)教學(xué)過(guò)程,更能激起學(xué)生的學(xué)習(xí)興趣,能學(xué)有所用,拉近知識(shí)與實(shí)踐的距離,培養(yǎng)學(xué)生從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問(wèn)題的能力.在這個(gè)過(guò)程中提升學(xué)生對(duì)統(tǒng)計(jì)抽樣概念的理解,初步培養(yǎng)學(xué)生運(yùn)用統(tǒng)計(jì)思想表述、思考和理解現(xiàn)實(shí)世界中的問(wèn)題能力,這樣教學(xué)效果可能會(huì)更佳.

根據(jù)這一分析,確定本課時(shí)的教學(xué)難點(diǎn)是:如何使學(xué)生真正理解樣本的抽取是隨機(jī)的,隨機(jī)抽取的樣本將能夠代表總體.

四、教學(xué)支持條件分析

準(zhǔn)備一些隨機(jī)抽樣成功或失敗的事例,利用實(shí)物投影或放映的多媒體設(shè)備輔助教學(xué).

五、教學(xué)過(guò)程設(shè)計(jì)

(一)感悟數(shù)據(jù)、引入課題

問(wèn)題1:請(qǐng)同學(xué)們看章頭圖中的有關(guān)沙漠化和缺水量的數(shù)據(jù),你有什么感受?

師生活動(dòng):讓學(xué)生充分思考和探討,并逐步引導(dǎo)學(xué)生產(chǎn)生質(zhì)疑:這些數(shù)據(jù)是怎么來(lái)的?

設(shè)計(jì)意圖:通過(guò)一些數(shù)據(jù)讓學(xué)生充分感受我們生活在一個(gè)數(shù)字化時(shí)代,要學(xué)會(huì)與數(shù)據(jù)打交道,養(yǎng)成對(duì)數(shù)據(jù)產(chǎn)生的背景進(jìn)行思考的習(xí)慣.

問(wèn)題2:我發(fā)現(xiàn)我們班級(jí)有很多的同學(xué)都是戴眼鏡的,誰(shuí)能告訴我我們班的近視率?

普查:為了一定的目的而對(duì)考察對(duì)象進(jìn)行的全面調(diào)查稱為普查.

總體:所要考察對(duì)象的全體稱為總體(population)

個(gè)體:組成總體的每一個(gè)考察對(duì)象稱為個(gè)體(individual)

普查是我們進(jìn)行調(diào)查得到全部信息的一種方式,比如我國(guó)10年一次的人口普查等.

設(shè)計(jì)意圖:通過(guò)與學(xué)生比較貼近的案例入手,讓學(xué)生體會(huì)到統(tǒng)計(jì)是從日常生活中產(chǎn)生的.

(二)操作實(shí)踐、展開(kāi)課題

問(wèn)題3:如果我想了解榆次二中所有高一學(xué)生的近視率,你打算怎么做呢?

抽樣調(diào)查:從總體中抽取部分個(gè)體進(jìn)行調(diào)查,這種調(diào)查稱為抽樣調(diào)查(samplinginvestigation).

樣本:從總體中抽取的一部分個(gè)體叫做總體的一個(gè)樣本(sample).

師生活動(dòng):以四人小組為單位進(jìn)行討論,每個(gè)小組派一個(gè)代表匯報(bào)方案.

設(shè)計(jì)意圖:從這個(gè)問(wèn)題中引出抽樣調(diào)查和樣本的概念,使學(xué)生對(duì)于如何產(chǎn)生樣本進(jìn)行一定的思考,同時(shí)也使學(xué)生認(rèn)識(shí)到樣本選擇的好壞對(duì)于用樣本估計(jì)總體的精確度是有所不同的.

列舉:一個(gè)的案例

高二數(shù)學(xué)教案模板下載篇4

一、教學(xué)目標(biāo)

1.把握菱形的判定.

2.通過(guò)運(yùn)用菱形知識(shí)解決具體問(wèn)題,提高分析能力和觀察能力.

3.通過(guò)教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛(ài)好.

4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過(guò)畫(huà)圖向?qū)W生滲透集合思想.

二、教法設(shè)計(jì)

觀察分析討論相結(jié)合的方法

三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

1.教學(xué)重點(diǎn):菱形的判定方法.

2.教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用.

四、課時(shí)安排

1課時(shí)

五、教具學(xué)具預(yù)備

教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫(huà)圖工具

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥

七、教學(xué)步驟

復(fù)習(xí)提問(wèn)

1.敘述菱形的定義與性質(zhì).

2.菱形兩鄰角的比為1:2,較長(zhǎng)對(duì)角線為,則對(duì)角線交點(diǎn)到一邊距離為_(kāi)_______.

引入新課

師問(wèn):要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來(lái)學(xué)習(xí)這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對(duì)角錢互相垂直的&39;平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問(wèn):本定理有幾個(gè)條件?

生答:兩個(gè).

師問(wèn):哪兩個(gè)?

生答:(1)是平行四邊形(2)兩條對(duì)角線互相垂直.

師問(wèn):再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學(xué)生口述證實(shí))

證實(shí)時(shí)讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,

師問(wèn):對(duì)角線互相垂直的四邊形是菱形嗎?為什么?

可畫(huà)出圖,顯然對(duì)角線,但都不是菱形.

菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書(shū)):

注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒(méi)條件都包含有平行四邊形的判定條件.

例4已知:的對(duì)角錢的垂直平分線與邊、分別交于、,如圖.

求證:四邊形是菱形(按教材講解).

總結(jié)、擴(kuò)展

1.小結(jié):

(1)歸納判定菱形的四種常用方法.

(2)說(shuō)明矩形、菱形之間的區(qū)別與聯(lián)系.

2.思考題:已知:如圖4△中,,平分,,,交于.

求證:四邊形為菱形.

八、布置作業(yè)

教材P159中9、10、11、13

高二數(shù)學(xué)教案模板下載篇5

教學(xué)目標(biāo)

(1)掌握?qǐng)A的標(biāo)準(zhǔn)方程,能根據(jù)圓心坐標(biāo)和半徑熟練地寫(xiě)出圓的標(biāo)準(zhǔn)方程,也能根據(jù)圓的標(biāo)準(zhǔn)方程熟練地寫(xiě)出圓的圓心坐標(biāo)和半徑.

(2)掌握?qǐng)A的一般方程,了解圓的一般方程的結(jié)構(gòu)特征,熟練掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程之間的互化.

(3)了解參數(shù)方程的概念,理解圓的參數(shù)方程,能夠進(jìn)行圓的普通方程與參數(shù)方程之間的互化,能應(yīng)用圓的參數(shù)方程解決有關(guān)的簡(jiǎn)單問(wèn)題.

(4)掌握直線和圓的位置關(guān)系,會(huì)求圓的切線.

(5)進(jìn)一步理解曲線方程的概念、熟悉求曲線方程的方法.

教學(xué)建議

教材分析

(1)知識(shí)結(jié)構(gòu)

(2)重點(diǎn)、難點(diǎn)分析

①本節(jié)內(nèi)容教學(xué)的重點(diǎn)是圓的標(biāo)準(zhǔn)方程、一般方程、參數(shù)方程的推導(dǎo),根據(jù)條件求圓的方程,用圓的方程解決相關(guān)問(wèn)題.

②本節(jié)的難點(diǎn)是圓的一般方程的結(jié)構(gòu)特征,以及圓方程的求解和應(yīng)用.

教法建議

(1)圓是最簡(jiǎn)單的曲線.這節(jié)教材安排在學(xué)習(xí)了曲線方程概念和求曲線方程之后,學(xué)習(xí)三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學(xué)習(xí)做好準(zhǔn)備.同時(shí),有關(guān)圓的問(wèn)題,特別是直線與圓的位置關(guān)系問(wèn)題,也是解析幾何中的基本問(wèn)題,這些問(wèn)題的解決為圓錐曲線問(wèn)題的解決提供了基本的思想方法.因此教學(xué)中應(yīng)加強(qiáng)練習(xí),使學(xué)生確實(shí)掌握這一單元的知識(shí)和方法.

(2)在解決有關(guān)圓的問(wèn)題的過(guò)程中多次用到配方法、待定系數(shù)法等思想方法,教學(xué)中應(yīng)多總結(jié).

(3)解決有關(guān)圓的問(wèn)題,要經(jīng)常用到一元二次方程的理論、平面幾何知識(shí)和前邊學(xué)過(guò)的解析幾何的基本知識(shí),教師在教學(xué)中要注意多復(fù)習(xí)、多運(yùn)用,培養(yǎng)學(xué)生運(yùn)算能力和簡(jiǎn)化運(yùn)算過(guò)程的意識(shí).

(4)有關(guān)圓的內(nèi)容非常豐富,有很多有價(jià)值的問(wèn)題.建議適當(dāng)選擇一些內(nèi)容供學(xué)生研究.例如由過(guò)圓上一點(diǎn)的切線方程引申到切點(diǎn)弦方程就是一個(gè)很有價(jià)值的問(wèn)題.類似的還有圓系方程等問(wèn)題.

教學(xué)設(shè)計(jì)示例

圓的一般方程

教學(xué)目標(biāo):

(1)掌握?qǐng)A的一般方程及其特點(diǎn).

(2)能將圓的一般方程轉(zhuǎn)化為圓的標(biāo)準(zhǔn)方程,從而求出圓心和半徑.

(3)能用待定系數(shù)法,由已知條件求出圓的一般方程.

(4)通過(guò)本節(jié)課學(xué)習(xí),進(jìn)一步掌握配方法和待定系數(shù)法.

教學(xué)重點(diǎn):(1)用配方法,把圓的一般方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求出圓心和半徑.

(2)用待定系數(shù)法求圓的方程.

教學(xué)難點(diǎn):圓的一般方程特點(diǎn)的研究.

教學(xué)用具:計(jì)算機(jī).

教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法.

教學(xué)過(guò)程:

【引入】

前邊已經(jīng)學(xué)過(guò)了圓的標(biāo)準(zhǔn)方程

把它展開(kāi)得

任何圓的方程都可以通過(guò)展開(kāi)化成形如

的方程

【問(wèn)題1】

形如①的方程的曲線是否都是圓?

師生共同討論分析:

如果①表示圓,那么它一定是某個(gè)圓的標(biāo)準(zhǔn)方程展開(kāi)整理得到的我們把它再寫(xiě)成原來(lái)的形式不就可以看出來(lái)了嗎?運(yùn)用配方法,得

顯然②是不是圓方程與是什么樣的數(shù)密切相關(guān),具體如下:

(1)當(dāng)時(shí),②表示以為圓心、以為半徑的圓;

(2)當(dāng)時(shí),②表示一個(gè)點(diǎn);

(3)當(dāng)時(shí),②不表示任何曲線.

總結(jié):任意形如①的方程可能表示一個(gè)圓,也可能表示一個(gè)點(diǎn),還有可能什么也不表示.

圓的一般方程的定義:

當(dāng)時(shí),①表示以為圓心、以為半徑的圓,

此時(shí)①稱作圓的一般方程.

即稱形如的方程為圓的一般方程.

【問(wèn)題2】圓的一般方程的特點(diǎn),與圓的標(biāo)準(zhǔn)方程的異同.

(1)和的系數(shù)相同,都不為0.

(2)沒(méi)有形如的二次項(xiàng).

圓的一般方程與一般的二元二次方程

相比較,上述(1)、(2)兩個(gè)條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

圓的一般方程與圓的標(biāo)準(zhǔn)方程各有千秋:

(1)圓的標(biāo)準(zhǔn)方程帶有明顯的幾何的影子,圓心和半徑一目了然.

(2)圓的一般方程表現(xiàn)出明顯的代數(shù)的形式與結(jié)構(gòu),更適合方程理論的運(yùn)用.

【實(shí)例分析】

例1:下列方程各表示什么圖形.

(1);

(2);

一、教學(xué)內(nèi)容分析

向量作為工具在數(shù)學(xué)、物理以及實(shí)際生活中都有著廣泛的應(yīng)用.

本小節(jié)的重點(diǎn)是結(jié)合向量知識(shí)證明數(shù)學(xué)中直線的平行、垂直問(wèn)題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.

二、教學(xué)目標(biāo)設(shè)計(jì)

1、通過(guò)利用向量知識(shí)解決不等式、三角及物理問(wèn)題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會(huì)從不同角度去看待一些數(shù)學(xué)問(wèn)題,使一些數(shù)學(xué)知識(shí)有機(jī)聯(lián)系,拓寬解決問(wèn)題的思路.

2、了解構(gòu)造法在解題中的運(yùn)用.

三、教學(xué)重點(diǎn)及難點(diǎn)

重點(diǎn):平面向量知識(shí)在各個(gè)領(lǐng)域中應(yīng)用.

難點(diǎn):向量的構(gòu)造.

四、教學(xué)流程設(shè)計(jì)

五、教學(xué)過(guò)程設(shè)計(jì)

一、復(fù)習(xí)與回顧

1、提問(wèn):下列哪些量是向量?

(1)力(2)功(3)位移(4)力矩

2、上述四個(gè)量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

[說(shuō)明]復(fù)習(xí)數(shù)量積的有關(guān)知識(shí).

二、學(xué)習(xí)新課

例1(書(shū)中例5)

向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時(shí)它在數(shù)學(xué)學(xué)科中也有許多妙用!請(qǐng)看

例2(書(shū)中例3)

證法(一)原不等式等價(jià)于,由基本不等式知(1)式成立,故原不等式成立.

證法(二)向量法

[說(shuō)明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點(diǎn),構(gòu)造向量,并發(fā)現(xiàn)(等號(hào)成立的充要條件是)

例3(書(shū)中例4)

[說(shuō)明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個(gè)公式得到證明.

二、鞏固練習(xí)

1、如圖,某人在靜水中游泳,速度為km/h.

(1)如果他徑直游向河對(duì)岸,水的流速為4km/h,他實(shí)際沿什么方向前進(jìn)?速度大小為多少?

答案:沿北偏東方向前進(jìn),實(shí)際速度大小是8km/h.

(2)他必須朝哪個(gè)方向游才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度大小為多少?

答案:朝北偏西方向前進(jìn),實(shí)際速度大小為km/h.

三、課堂小結(jié)

1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.

2、要學(xué)會(huì)從不同的角度去看一個(gè)數(shù)學(xué)問(wèn)題,是數(shù)學(xué)知識(shí)有機(jī)聯(lián)系.

四、作業(yè)布置

1、書(shū)面作業(yè):課本P73,練習(xí)8.44

高二數(shù)學(xué)教案模板下載篇6

一、指導(dǎo)思想:

以發(fā)展教育的理念為指引,以學(xué)校教務(wù)處、教研組、年級(jí)組工作計(jì)劃為指南,加強(qiáng)備課組教師的教育教學(xué)理論學(xué)習(xí),更新教學(xué)觀念,落實(shí)教學(xué)常規(guī),全面提高學(xué)生的數(shù)學(xué)能力,尤其是提高創(chuàng)新意識(shí)和實(shí)踐能力,為社會(huì)培養(yǎng)創(chuàng)造型人才

二、學(xué)情分析及相關(guān)措施:

教學(xué)中要從學(xué)生的認(rèn)識(shí)水平和實(shí)際能力出發(fā),及時(shí)糾正不合理學(xué)習(xí)方法,研究學(xué)生的心理特征,做好高二第一學(xué)期與第二學(xué)期的銜接工作。注重培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。具體措施如下:

(1)注意研究學(xué)生,做好高二第一學(xué)期與第二學(xué)期的銜接工作。

(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn)。所列基礎(chǔ)知識(shí)依據(jù)新課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識(shí)與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識(shí)、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過(guò)早的拔高,講難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識(shí)要求,能力要求及新趨勢(shì),這樣才能統(tǒng)籌安排,循序漸進(jìn)。

(3)培養(yǎng)學(xué)生解答考題的能力,通過(guò)例題,從形式和內(nèi)容兩方面對(duì)所學(xué)知識(shí)進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。

(4)讓學(xué)生通過(guò)單元考試,檢測(cè)自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備

(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作。

(6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。

高二數(shù)學(xué)教案模板下載篇7

【教學(xué)目標(biāo)】

知識(shí)目標(biāo):了解中心對(duì)稱的概念,了解平行四邊形是中心對(duì)稱圖形,掌握中心對(duì)稱的性質(zhì)。

能力目標(biāo):靈活運(yùn)用中心對(duì)稱的性質(zhì),會(huì)作關(guān)于已知點(diǎn)對(duì)稱的中心對(duì)稱圖形。

情感目標(biāo):通過(guò)提問(wèn)、討論、動(dòng)手操作等多種教學(xué)活動(dòng),樹(shù)立自信,自強(qiáng),自主感,由此激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心。

【教學(xué)重點(diǎn)、難點(diǎn)】

重點(diǎn):中心對(duì)稱圖形的概念和性質(zhì)。

難點(diǎn):范例中既有新概念,分析又要仔細(xì)、透徹,是教學(xué)的難點(diǎn)。

關(guān)鍵:已知點(diǎn)A和點(diǎn)O,會(huì)作點(diǎn)Aˊ,使點(diǎn)Aˊ與點(diǎn)A關(guān)于點(diǎn)O成中心對(duì)稱。

【課前準(zhǔn)備】

叫一位剪紙愛(ài)好的學(xué)生,剪一幅類似書(shū)本第108頁(yè)哪樣的圖案。

【教學(xué)過(guò)程】

一.復(fù)習(xí)

回顧七下學(xué)過(guò)的軸對(duì)稱變換、平移變換、旋轉(zhuǎn)變換、相似變換。

二.創(chuàng)設(shè)情境

用剪好的圖案,讓學(xué)生欣賞。師:這剪紙有哪些變換?生:軸對(duì)稱變換。師:指出對(duì)稱軸。生:(能結(jié)合圖案講)。生:還有旋轉(zhuǎn)變換。師:指出旋轉(zhuǎn)中心、旋轉(zhuǎn)的角度?生:90°、180°、270°。

三、合作學(xué)習(xí)

1、把圖1、圖2發(fā)給每個(gè)學(xué)生,先探索圖1:同桌的兩位同學(xué),把兩個(gè)正三角形重合,然后把上面的正三角形繞點(diǎn)O旋轉(zhuǎn)180°,觀察旋轉(zhuǎn)180°前后原圖形和像的位置情況,請(qǐng)學(xué)生說(shuō)出發(fā)現(xiàn)什么?生(討論后):等邊三角形旋轉(zhuǎn)180°后所得的像與原圖形不重合。

探索圖形2:把兩個(gè)平形四邊形重合,然后把上面一個(gè)平形四邊形繞點(diǎn)O旋轉(zhuǎn)180°,學(xué)生動(dòng)手后發(fā)現(xiàn):平行四邊形ABCD旋轉(zhuǎn)180°后所得的像與原圖形重合。師:為什么重合?師:作適當(dāng)解釋或?qū)W生自己發(fā)現(xiàn):∵OA=OC,∴點(diǎn)A繞點(diǎn)O旋轉(zhuǎn)180°與點(diǎn)C重合。同理可得,點(diǎn)C繞點(diǎn)O旋轉(zhuǎn)180°與點(diǎn)A重合。點(diǎn)B繞點(diǎn)O旋轉(zhuǎn)180°與點(diǎn)D重合。點(diǎn)D繞點(diǎn)O旋轉(zhuǎn)180°與點(diǎn)B重合。

2、中心對(duì)稱圖形的概念:如果一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180°后,所得到的圖形能夠和原來(lái)的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱(pointsymmetry)圖形,這個(gè)點(diǎn)叫對(duì)稱中心。

師:等邊三角形是中心對(duì)稱圖形嗎?生:不是。

3、想一想:等邊三角形是軸對(duì)稱圖形嗎?答:是軸對(duì)稱圖形。

平形四邊形是軸對(duì)稱圖形嗎?答:不是軸對(duì)稱圖形。

4、兩個(gè)圖形關(guān)于點(diǎn)O成中心對(duì)稱的概念:如果一個(gè)圖形繞著一個(gè)點(diǎn)O旋轉(zhuǎn)180°后,能夠和另外一個(gè)圖形互相重合,我們就稱這兩個(gè)圖形關(guān)于點(diǎn)O成中心對(duì)稱。

中心對(duì)稱圖形與兩個(gè)圖形成中心對(duì)稱的不同點(diǎn):前者是一個(gè)圖形,后者是兩個(gè)圖形。

相同點(diǎn):都有旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后都會(huì)重合。

做一做:P109

5、根據(jù)中心對(duì)稱圖形的定義,得出中心對(duì)稱圖形的性質(zhì):

對(duì)稱中心平分連結(jié)兩個(gè)對(duì)稱點(diǎn)的線段

通過(guò)中心對(duì)稱的概念,得到P109性質(zhì)后,主要是理解與應(yīng)用。如右圖,若A、B關(guān)于點(diǎn)O的成中心對(duì)稱,∴點(diǎn)O是A、B的對(duì)稱中心。

反之,已知點(diǎn)A、點(diǎn)O,作點(diǎn)B,使點(diǎn)A、B關(guān)于以O(shè)為對(duì)稱中心的對(duì)稱點(diǎn)。讓學(xué)生練習(xí),多數(shù)學(xué)生會(huì)做,若不會(huì)做,教師作適當(dāng)?shù)膯l(fā)。

做P106例2,讓學(xué)生思考1~2分鐘,然后師生共同解答。

(P106)例2解:∵平行四邊形是中心對(duì)稱圖形,O是對(duì)稱中心,

EF經(jīng)過(guò)點(diǎn)O,分別交AB、CD于E、F。

∴點(diǎn)E、F是關(guān)于點(diǎn)O的對(duì)稱點(diǎn)。

∴OE=OF。

四、應(yīng)用新知,拓展提高

例如圖,已知△ABC和點(diǎn)O,作△A′B′C′,使△A′B′C′與△ABC關(guān)于點(diǎn)O成中心對(duì)稱。

分析:先讓學(xué)生作點(diǎn)A關(guān)于以點(diǎn)O為對(duì)稱中心的對(duì)稱點(diǎn)Aˊ,

同理:作點(diǎn)B關(guān)于以點(diǎn)O為對(duì)稱中心的對(duì)稱點(diǎn)Bˊ,

作點(diǎn)C關(guān)于以點(diǎn)O為對(duì)稱中心的對(duì)稱點(diǎn)Cˊ。

∴△AˊBˊCˊ與△ABC關(guān)于點(diǎn)O成中心對(duì)稱也會(huì)作。解:略。

課內(nèi)練習(xí)P110

小結(jié)

今天我們學(xué)習(xí)了些什么?

1、中心對(duì)稱圖形的概念,兩個(gè)圖形成中心對(duì)稱的概念,知道它們的相同點(diǎn)與不同點(diǎn)。

2、會(huì)作中心對(duì)稱圖形,關(guān)鍵是會(huì)作點(diǎn)A關(guān)于以O(shè)為對(duì)稱中心的對(duì)稱點(diǎn)Aˊ。

3、我們已學(xué)過(guò)的中心對(duì)稱圖形有哪些?

作業(yè)

P110A組1、2、3、4,B組5、6必做C組7選做。

高二數(shù)學(xué)教案模板下載篇8

教材分析

因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒(méi)有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來(lái)的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡(jiǎn)、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見(jiàn)、解決問(wèn)題的能力。

學(xué)情分析

通過(guò)探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

教學(xué)目標(biāo)

1、在分解因式的過(guò)程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

2、通過(guò)公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語(yǔ)言表達(dá)能力。

3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

4、通過(guò)活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):靈活運(yùn)用平方差公式進(jìn)行分解因式。

難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

高二數(shù)學(xué)教案模板下載篇9

教學(xué)目標(biāo):

使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系.

教學(xué)重點(diǎn):

函數(shù)的概念,函數(shù)定義域的求法.

教學(xué)難點(diǎn):

函數(shù)概念的理解.

教學(xué)過(guò)程:

Ⅰ.課題導(dǎo)入

[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?

(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).

設(shè)在一個(gè)變化的過(guò)程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說(shuō)y是x的函數(shù),x叫做自變量.

[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問(wèn)題:

問(wèn)題一:y=1(x∈R)是函數(shù)嗎?

問(wèn)題二:y=x與y=x2x是同一個(gè)函數(shù)嗎?

(學(xué)生思考,很難回答)

[師]顯然,僅用上述函數(shù)概念很難回答這些問(wèn)題,因此,需要從新的高度來(lái)認(rèn)識(shí)函數(shù)概念(板書(shū)課題).

Ⅱ.講授新課

[師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.

在(1)中,對(duì)應(yīng)關(guān)系是“乘2”,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).

在(2)中,對(duì)應(yīng)關(guān)系是“求平方”,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).

在(3)中,對(duì)應(yīng)關(guān)系是“求倒數(shù)”,即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù)1x和它對(duì)應(yīng).

請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?

[生]一對(duì)一、二對(duì)一、一對(duì)一.

[師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?

[生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).

[師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的關(guān)系對(duì)應(yīng)的,這是不能忽略的.實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.

現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書(shū))

設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰A→B為從集合A到集合B的一個(gè)函數(shù).

記作:y=f(x),x∈A

其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{yy=f(x),x∈A}叫函數(shù)的值域.

一次函數(shù)f(x)=ax+b(a≠0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a≠0)和它對(duì)應(yīng).

反比例函數(shù)f(x)=kx(k≠0)的定義域是A={--≠0},值域是B={f(x)f(x)≠0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)=kx(k≠0)和它對(duì)應(yīng).

二次函數(shù)f(x)=ax2+bx+c(a≠0)的定義域是R,值域是當(dāng)a>0時(shí)B={f(x)f(x)≥4ac-b24a};當(dāng)a<0時(shí),B={f(x)f(x)≤4ac-b24a},它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a≠0)對(duì)應(yīng).

函數(shù)概念用集合、對(duì)應(yīng)的語(yǔ)言敘述后,我們就很容易回答前面所提出的兩個(gè)問(wèn)題.

y=1(x∈R)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系“函數(shù)值是1”,在R中y都有惟一確定的值1與它對(duì)應(yīng),所以說(shuō)y是x的函數(shù).

Y=x與y=x2x不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x的定義域是{--≠0}.所以y=x與y=x2x不是同一個(gè)函數(shù).

[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?(教師提出問(wèn)題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))

注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).

②符號(hào)“f:A→B”表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.

③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.

④f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.

⑤f(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.

[師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x)、F(x)、G(x)等符號(hào)來(lái)表示

Ⅲ.例題分析

[例1]求下列函數(shù)的定義域.

(1)f(x)=1x-2(2)f(x)=3x+2(3)f(x)=x+1+12-x

分析:函數(shù)的定義域通常由問(wèn)題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒(méi)有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.

解:(1)x-2≠0,即x≠2時(shí),1x-2有意義

∴這個(gè)函數(shù)的定義域是{--≠2}

(2)3x+2≥0,即x≥-23時(shí)3x+2有意義

∴函數(shù)y=3x+2的定義域是[-23,+∞)

(3)x+1≥02-x≠0x≥-1x≠2

∴這個(gè)函數(shù)的定義域是{--≥-1}∩{--≠2}=[-1,2)∪(2,+∞).

注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.

從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:

(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;

(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;

(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的實(shí)數(shù)的集合;

(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的集合(即使每個(gè)部分有意義的實(shí)數(shù)的集合的交集);

(5)如果f(x)是由實(shí)際問(wèn)題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.

例如:一矩形的寬為xm,長(zhǎng)是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤>0而不是全體實(shí)數(shù).

由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問(wèn)題的實(shí)際意義決定.

[師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來(lái)表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+3?2+1=11

注意:f(a)是常量,f(x)是變量,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.

下面我們來(lái)看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?

[生甲]求函數(shù)式的值,嚴(yán)格地說(shuō)是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.

[師]回答正確,不過(guò)要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬(wàn)萬(wàn)不可粗心大意噢!

[生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.

[師]生乙的回答完整嗎?

[生]完整!(課本上就是如生乙所述那樣寫(xiě)的).

[師]大家說(shuō),判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?

[生]函數(shù)的定義.

[師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?

(學(xué)生竊竊私語(yǔ):是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)

(無(wú)人回答)

[師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問(wèn)題都要多問(wèn)幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!

(生恍然大悟,我們?cè)趺淳蜎](méi)想到呢?)

[例2]求下列函數(shù)的值域

(1)y=1-2x(x∈R)(2)y=x-1x∈{-2,-1,0,1,2}

(3)y=x2+4x+3(-3≤x≤1)

分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.

對(duì)于(1)(2)可用“直接法”根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.

對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即“圖象法”.

解:(1)y∈R

(2)y∈{1,0,-1}

(3)畫(huà)出y=x2+4x+3(-3≤x≤1)的圖象,如圖所示,

當(dāng)x∈[-3,1]時(shí),得y∈[-1,8]

Ⅳ.課堂練習(xí)

課本P24練習(xí)1—7.

Ⅴ.課時(shí)小結(jié)

本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問(wèn)題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來(lái)歸納)

Ⅵ.課后作業(yè)

課本P28,習(xí)題1、2.

高二數(shù)學(xué)教案模板下載篇10

一、設(shè)計(jì)構(gòu)思

1、設(shè)計(jì)理念

注重發(fā)展學(xué)生的創(chuàng)新意識(shí)。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)不應(yīng)只限于接受、記憶、模仿和練習(xí),倡導(dǎo)學(xué)生積極主動(dòng)探索、動(dòng)手實(shí)踐與相互合作交流的數(shù)學(xué)學(xué)習(xí)方式。這種方式有助于發(fā)揮學(xué)生學(xué)習(xí)主動(dòng)性,使學(xué)生的學(xué)習(xí)過(guò)程成為在教師引導(dǎo)下的“再創(chuàng)造”過(guò)程。我們應(yīng)積極創(chuàng)設(shè)條件,讓學(xué)生體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,發(fā)展他們的創(chuàng)新意識(shí)。

注重提高學(xué)生數(shù)學(xué)思維能力。課堂教學(xué)是促進(jìn)學(xué)生數(shù)學(xué)思維能力發(fā)展的主陣地。問(wèn)題解決是培養(yǎng)學(xué)生思維能力的主要途徑。所設(shè)計(jì)的問(wèn)題應(yīng)有利于學(xué)生主動(dòng)地進(jìn)行觀察、實(shí)驗(yàn)、猜測(cè)、驗(yàn)證、推理與交流等教學(xué)活動(dòng)。內(nèi)容的呈現(xiàn)應(yīng)采用不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。伴隨新的問(wèn)題發(fā)現(xiàn)和問(wèn)題解決后成功感的滿足,由此刺激學(xué)生非認(rèn)知深層系統(tǒng)的良性運(yùn)行,使其產(chǎn)生“樂(lè)學(xué)”的余味,學(xué)生學(xué)習(xí)的積極性與主動(dòng)性在教學(xué)中便自發(fā)生成。本節(jié)主要安排應(yīng)用類比法進(jìn)行探討,加深學(xué)生對(duì)類比法的體會(huì)與應(yīng)用。

注重學(xué)生多層次的發(fā)展。在問(wèn)題解決的探究過(guò)程中應(yīng)體現(xiàn)“以人為本”,充分體現(xiàn)“人人學(xué)有價(jià)值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué)”,“不同的人在數(shù)學(xué)上得到不同的發(fā)展”的教學(xué)理念。有意義的數(shù)學(xué)學(xué)習(xí)必須建立在學(xué)生的主觀愿望和知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,而學(xué)生的基礎(chǔ)知識(shí)和學(xué)習(xí)能力是多層次的,所以設(shè)計(jì)的問(wèn)題也應(yīng)有層次性,使各層次學(xué)生都得到發(fā)展。

注重信息技術(shù)與數(shù)學(xué)課程的整合。高中數(shù)學(xué)課程應(yīng)盡量使用科學(xué)型計(jì)算器,各種數(shù)學(xué)教育技術(shù)平臺(tái),加強(qiáng)數(shù)學(xué)教學(xué)與信息技術(shù)的結(jié)合,鼓勵(lì)學(xué)生運(yùn)用計(jì)算機(jī)、計(jì)算器等進(jìn)行探索和發(fā)現(xiàn)。

另外,在數(shù)學(xué)教學(xué)中,強(qiáng)調(diào)數(shù)學(xué)本質(zhì)的同時(shí),也讓學(xué)生通過(guò)適度的形式化,較好的理解和使用數(shù)學(xué)概念、性質(zhì)。

2、教材分析

冪函數(shù)是江蘇教育出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(必修1)第二章第四節(jié)的內(nèi)容。該教學(xué)內(nèi)容在人教版試驗(yàn)修訂本(必修)中已被刪去。標(biāo)準(zhǔn)將該內(nèi)容重新提出,正是考慮到冪函數(shù)在實(shí)際生活的應(yīng)用。故在教學(xué)過(guò)程及后繼學(xué)習(xí)過(guò)程中,應(yīng)能夠讓學(xué)生體會(huì)其實(shí)際應(yīng)用。《標(biāo)準(zhǔn)》將冪函數(shù)限定為五個(gè)具體函數(shù),通過(guò)研究它們來(lái)了解冪函數(shù)的性質(zhì)。其中,學(xué)生在初中已經(jīng)學(xué)習(xí)了y=x、y=x2、y=x-1等三個(gè)簡(jiǎn)單的冪函數(shù),對(duì)它們的圖象和性質(zhì)已經(jīng)有了一定的感性認(rèn)識(shí)。現(xiàn)在明確提出冪函數(shù)的概念,有助于學(xué)生形成完整的知識(shí)結(jié)構(gòu)。學(xué)生已經(jīng)了解了函數(shù)的基本概念、性質(zhì)和圖象,研究了兩個(gè)特殊函數(shù):指數(shù)函數(shù)和對(duì)數(shù)函數(shù),對(duì)研究函數(shù)已經(jīng)有了基本思路和方法。因此,教材安排學(xué)習(xí)冪函數(shù),除內(nèi)容本身外,掌握研究函數(shù)的一般思想方法是另一目的,另外應(yīng)讓學(xué)生了解利用信息技術(shù)來(lái)探索函數(shù)圖象及性質(zhì)是一個(gè)重要途徑。該內(nèi)容安排一課時(shí)。

3、教學(xué)目標(biāo)的確定

鑒于上述對(duì)教材的分析和新課程的理念確定如下教學(xué)目標(biāo):

⑴掌握冪函數(shù)的形式特征,掌握具體冪函數(shù)的圖象和性質(zhì)。

⑵能應(yīng)用冪函數(shù)的圖象和性質(zhì)解決有關(guān)簡(jiǎn)單問(wèn)題。

⑶加深學(xué)生對(duì)研究函數(shù)性質(zhì)的基本方法和流程的經(jīng)驗(yàn)。

⑷培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問(wèn)題中的作用。

⑸滲透辨證唯物主義觀點(diǎn)和方法論,培養(yǎng)學(xué)生運(yùn)用具體問(wèn)題具體分析的方法分析問(wèn)題、解決問(wèn)題的能力。

4、教學(xué)方法和教具的選擇

基于對(duì)課程理念的理解和對(duì)教材的分析,運(yùn)用問(wèn)題情境可以使學(xué)生較快的進(jìn)入數(shù)學(xué)知識(shí)情景,使學(xué)生對(duì)數(shù)學(xué)知識(shí)結(jié)構(gòu)作主動(dòng)性的擴(kuò)展,通過(guò)問(wèn)題的導(dǎo)引,學(xué)生對(duì)數(shù)學(xué)問(wèn)題探究,進(jìn)行數(shù)學(xué)建構(gòu),并能運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題,讓學(xué)生有運(yùn)用數(shù)學(xué)成功的體驗(yàn)。本課采用教師在學(xué)生原有的知識(shí)經(jīng)驗(yàn)和方法上,引導(dǎo)學(xué)生提出問(wèn)題、解決問(wèn)題的教學(xué)方法,體現(xiàn)以學(xué)生為主體,教師主導(dǎo)作用的教學(xué)思想。

教具:多媒體。制作多媒體課件以提高教學(xué)效率。

5、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn)是從具體冪函數(shù)歸納認(rèn)識(shí)冪函數(shù)的一些性質(zhì)并作簡(jiǎn)單應(yīng)用。

難點(diǎn)是引導(dǎo)學(xué)生概括出冪函數(shù)性質(zhì)。

6、教學(xué)流程

基于新課程理念在教學(xué)過(guò)程中的體現(xiàn),教學(xué)流程的基線為:

考慮到學(xué)生已經(jīng)學(xué)習(xí)了指數(shù)函數(shù)與對(duì)數(shù)函數(shù),對(duì)函數(shù)的學(xué)習(xí)、研究有了一定的經(jīng)驗(yàn)和基本方法,所以教學(xué)流程又分兩條線,一條以內(nèi)容為明線,另一條以研究函數(shù)的基本內(nèi)容和方法為暗線,教學(xué)過(guò)程中同時(shí)展開(kāi)。

明線:

暗線:

二、實(shí)施方案

問(wèn)題導(dǎo)引師生活動(dòng)設(shè)計(jì)意圖

問(wèn)題情境⑴寫(xiě)出下列y關(guān)于x的函數(shù)解析式:

①正方形邊長(zhǎng)x、面積y

②正方體棱長(zhǎng)x、體積y

③正方形面積x、邊長(zhǎng)y

④某人騎車x秒內(nèi)勻速前進(jìn)了1km,騎車速度為y

⑤一物體位移y與位移時(shí)間x,速度1m/s

學(xué)生口答,教師板書(shū)答案。幻燈片演示問(wèn)題。

由具體問(wèn)題入手,從熟悉的情景引入,提高學(xué)生的參與程度。符合學(xué)生認(rèn)識(shí)特點(diǎn)。

⑵上述函數(shù)解析式有什么共同特征?是否為指數(shù)函數(shù)?學(xué)生相互討論,必要時(shí),教師將解析式寫(xiě)成指數(shù)冪形式,以啟發(fā)學(xué)生歸納。投影演示定義。引導(dǎo)學(xué)生觀察,訓(xùn)練學(xué)生歸納能力。并與前面知識(shí)進(jìn)行區(qū)分,以進(jìn)一步幫助學(xué)生明晰概念。

⑶判別下列函數(shù)中有幾個(gè)冪函數(shù)?

①y=②y=2x2③y=x④y=x2+x⑤y=-x3

學(xué)生獨(dú)立思考,回答。學(xué)生鑒別。幻燈片演示題目。

鞏固概念,強(qiáng)化學(xué)生對(duì)概念形式特征的把握。

⑷冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對(duì)數(shù)函數(shù)研究了哪些內(nèi)容?

學(xué)生討論,教師引導(dǎo)。學(xué)生回答。

引導(dǎo)學(xué)生回想前面學(xué)習(xí)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的研究?jī)?nèi)容和過(guò)程。啟發(fā)學(xué)生用類比思想進(jìn)行研究?jī)绾瘮?shù)。

⑸冪函數(shù)的定義域是否與對(duì)數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù)不同,定義域并不完全相同,應(yīng)區(qū)別對(duì)待。

激發(fā)學(xué)生探討的欲望,提高學(xué)生主動(dòng)參與程度。

⑹寫(xiě)出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x②y=③y=x④y=x

學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)對(duì)照比較。(幻燈片演示)引導(dǎo)學(xué)生具體問(wèn)題具體分析,并作簡(jiǎn)單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫(xiě)成正數(shù)指數(shù)再寫(xiě)出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。

⑺上述函數(shù)的單調(diào)性如何?如何判斷?

學(xué)生思考:作圖引發(fā)學(xué)生作圖研究函數(shù)性質(zhì)的興趣。函數(shù)單調(diào)性的判斷,既可以使用定義,也可以通過(guò)圖象解決,直觀,易理解。

⑻在同一坐標(biāo)系內(nèi)作出上述函數(shù)的圖象。學(xué)生作圖,教師巡視。將學(xué)生作圖用實(shí)物投影儀演示,指出優(yōu)點(diǎn)和錯(cuò)誤之處。教師利用幾何畫(huà)板演示(附圖1)通過(guò)超級(jí)鏈接幾何畫(huà)板演示。訓(xùn)練學(xué)生作圖的基本功,加強(qiáng)學(xué)生的實(shí)踐,讓學(xué)生在自己的經(jīng)驗(yàn)中認(rèn)識(shí)冪函數(shù)的圖象。避免教師直接使用計(jì)算機(jī)演示圖象,剝奪學(xué)生動(dòng)手的機(jī)會(huì)。

⑼上述函數(shù)圖象有哪些共同點(diǎn)?學(xué)生討論,總結(jié)。教師引導(dǎo)。可將學(xué)生已熟悉的函數(shù)y=,y=x一同投影,幫助學(xué)生觀察。(投影演示結(jié)論)

訓(xùn)練學(xué)生觀察分析能力。

⑽回答第7個(gè)問(wèn)題。

學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密。訓(xùn)練學(xué)生的語(yǔ)言敘述能力。再次體會(huì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)性質(zhì)的區(qū)別。體會(huì)冪指數(shù)的不同情況對(duì)函數(shù)單調(diào)性的影響。

⑾圖象之間有什么區(qū)別?特別是在分布上。與常數(shù)有什么聯(lián)系?

教師通過(guò)幾何畫(huà)板演示圖象在第一象限內(nèi)的變化規(guī)律,以驗(yàn)證學(xué)生猜想。通過(guò)超級(jí)鏈接幾何畫(huà)板演示。(附圖2)

這是較高要求,可以讓學(xué)生自由猜想和發(fā)言。進(jìn)一步提高學(xué)生觀察,歸納能力。

⑿鞏固練習(xí)寫(xiě)出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x②y=x③y=x。

學(xué)生獨(dú)立思考并回答。

訓(xùn)練學(xué)生自覺(jué)運(yùn)用冪函數(shù)圖象性質(zhì)的基本規(guī)律。

⒀簡(jiǎn)單應(yīng)用1:比較下列各組中兩個(gè)值的大小,并說(shuō)明理由:

①0.75,0.76;

②(-0.95),(-0.96);

③0.23,0.24;

④0.31,0.31

學(xué)生思考,作答,教師引導(dǎo)學(xué)生敘述語(yǔ)言的邏輯性。

訓(xùn)練學(xué)生用函數(shù)性質(zhì)進(jìn)行解釋,強(qiáng)化學(xué)生邏輯意識(shí)。其中第④小題是利用指數(shù)函數(shù)性質(zhì)解決,注意區(qū)別。

⒁請(qǐng)學(xué)生考慮可以如何驗(yàn)證上述答案的正確。

學(xué)生實(shí)踐。使用計(jì)算器驗(yàn)證,提高學(xué)生使用學(xué)習(xí)工具的意識(shí)。

⒂簡(jiǎn)單應(yīng)用2:冪函數(shù)y=(m-3m-3)x在區(qū)間上是減函數(shù),求m的值。

學(xué)生思考,作答。教師板演。對(duì)冪函數(shù)定義進(jìn)一步鞏固,對(duì)函數(shù)性質(zhì)作初步應(yīng)用。同時(shí)訓(xùn)練學(xué)生對(duì)初步答案進(jìn)行篩選。

⒃簡(jiǎn)單應(yīng)用2:

已知(a+1)<(3-2a),試求a的取值范圍。

學(xué)生思考,作答。教師板演。

訓(xùn)練學(xué)生靈活使用性質(zhì)解題。

數(shù)學(xué)交流⒄小結(jié):今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?學(xué)生思考、小組討論,教師引導(dǎo)。讓學(xué)生回顧,小結(jié),將對(duì)學(xué)生形成知識(shí)系統(tǒng)產(chǎn)生積極影響。

數(shù)學(xué)再現(xiàn)

⒅布置作業(yè):

課本p.732、3、4、思考5思考5作為訓(xùn)練學(xué)生應(yīng)用數(shù)學(xué)于實(shí)際的較好例子,應(yīng)讓能力較好學(xué)生得到充分發(fā)展。

幾點(diǎn)說(shuō)明:

⑴本節(jié)課開(kāi)始時(shí)要注意用相關(guān)熟悉例子引入新課。

⑵畫(huà)函數(shù)圖象時(shí),如果學(xué)生已能夠運(yùn)用計(jì)算器或相關(guān)計(jì)算機(jī)軟件作圖,可以讓學(xué)生自己操作,以提高學(xué)生探索問(wèn)題的興趣和能力,并提高教學(xué)效率。

⑶由于課程標(biāo)準(zhǔn)對(duì)冪函數(shù)的研究范圍有相對(duì)限制,故第11個(gè)問(wèn)題要求較高,建議視具體情況選擇教學(xué)。

⑷本設(shè)計(jì)相關(guān)課件采用PowerPoint演示文稿,其中部分使用超級(jí)鏈接至幾何畫(huà)板(4.06版本)進(jìn)行演示。

高二數(shù)學(xué)教案模板下載篇11

教學(xué)目的:掌握?qǐng)A的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的.問(wèn)題

教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用

教學(xué)難點(diǎn):標(biāo)準(zhǔn)方程的靈活運(yùn)用

教學(xué)過(guò)程:

一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程

二、掌握知識(shí),鞏固練習(xí)

練習(xí):

1說(shuō)出下列圓的方程

⑴圓心(3,-2)半徑為5

⑵圓心(0,3)半徑為3

2指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

3判斷3x-4y-10=0和x2+y2=4的位置關(guān)系

4圓心為(1,3),并與3x-4y-7=0相切,求這個(gè)圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過(guò)p(2,-1)且與x-y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)

練習(xí):

1、某圓過(guò)(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過(guò)A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時(shí)每隔4米加一個(gè)支柱支撐,求A2P2的長(zhǎng)度。

例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過(guò)M的圓的切線方程(一題多解,訓(xùn)練思維)

四、小結(jié)練習(xí)P771,2,3,4

五、作業(yè)P811,2,3,4

高二數(shù)學(xué)教案模板下載篇12

教學(xué)目標(biāo)

1、知識(shí)與技能

(1)理解并掌握正弦函數(shù)的定義域、值域、周期性、(小)值、單調(diào)性、奇偶性;

(2)能熟練運(yùn)用正弦函數(shù)的性質(zhì)解題。

2、過(guò)程與方法

通過(guò)正弦函數(shù)在R上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。

3、情感態(tài)度與價(jià)值觀

通過(guò)本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗(yàn)自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識(shí)到轉(zhuǎn)化“矛盾”是解決問(wèn)題的有效途經(jīng);培養(yǎng)學(xué)生形成實(shí)事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。

教學(xué)重難點(diǎn)

重點(diǎn):正弦函數(shù)的&39;性質(zhì)。

難點(diǎn):正弦函數(shù)的性質(zhì)應(yīng)用。

教學(xué)工具

投影儀

教學(xué)過(guò)程

【創(chuàng)設(shè)情境,揭示課題】

同學(xué)們,我們?cè)跀?shù)學(xué)一中已經(jīng)學(xué)過(guò)函數(shù),并掌握了討論一個(gè)函數(shù)性質(zhì)的幾個(gè)角度,你還記得有哪些嗎?在上一次課中,我們已經(jīng)學(xué)習(xí)了正弦函數(shù)的y=sinx在R上圖像,下面請(qǐng)同學(xué)們根據(jù)圖像一起討論一下它具有哪些性質(zhì)?

【探究新知】

讓學(xué)生一邊看投影,一邊仔細(xì)觀察正弦曲線的圖像,并思考以下幾個(gè)問(wèn)題:

(1)正弦函數(shù)的定義域是什么?

(2)正弦函數(shù)的值域是什么?

(3)它的最值情況如何?

(4)它的正負(fù)值區(qū)間如何分?

(5)?(x)=0的解集是多少?

師生一起歸納得出:

1.定義域:y=sinx的定義域?yàn)镽

2.值域:引導(dǎo)回憶單位圓中的正弦函數(shù)線,結(jié)論:sinx≤1(有界性)

再看正弦函數(shù)線(圖象)驗(yàn)證上述結(jié)論,所以y=sinx的值域?yàn)閇-1,1]

高二數(shù)學(xué)教案模板下載篇13

教學(xué)目標(biāo):使學(xué)生初步理解集合的基本概念,了解“屬于”關(guān)系的意義、常用數(shù)集的記法和集合中元素的特性.了解有限集、無(wú)限集、空集概念,

教學(xué)重點(diǎn):集合概念、性質(zhì);“∈”,“?”的使用

教學(xué)難點(diǎn):集合概念的理解;

課型:新授課

教學(xué)手段:

教學(xué)過(guò)程:

一、引入課題

軍訓(xùn)前學(xué)校通知:8月15日8點(diǎn),高一年級(jí)在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問(wèn)這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

在這里,集合是我們常用的一個(gè)詞語(yǔ),我們感興趣的是問(wèn)題中某些特定(是高一而不是高二)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。

研究集合的數(shù)學(xué)理論在現(xiàn)代數(shù)學(xué)中稱為集合論,它不僅是數(shù)學(xué)的一個(gè)基本分支,在數(shù)學(xué)中占據(jù)一個(gè)極其獨(dú)特的地位,如果把數(shù)學(xué)比作一座宏偉大廈,那么集合論就是這座宏偉大廈的基石。集合理論是由德國(guó)數(shù)學(xué)家康托爾,他創(chuàng)造的集合論是近代許多數(shù)學(xué)分支的基礎(chǔ)。(參看閱教材中讀材料P17)。

下面幾節(jié)課中,我們共同學(xué)習(xí)有關(guān)集合的一些基礎(chǔ)知識(shí),為以后數(shù)學(xué)的學(xué)習(xí)打下基礎(chǔ)。

二、新課教學(xué)

“物以類聚,人以群分”數(shù)學(xué)中也有類似的分類。

如:自然數(shù)的集合0,1,2,3,……

如:2x-1>3,即x>2所有大于2的實(shí)數(shù)組成的集合稱為這個(gè)不等式的解集。

如:幾何中,圓是到定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合。

1、一般地,指定的某些對(duì)象的全體稱為集合,標(biāo)記:A,B,C,D,…

集合中的每個(gè)對(duì)象叫做這個(gè)集合的元素,標(biāo)記:a,b,c,d,…

2、元素與集合的關(guān)系

a是集合A的元素,就說(shuō)a屬于集合A,記作a∈A,

a不是集合A的元素,就說(shuō)a不屬于集合A,記作a?A

思考1:列舉一些集合例子和不能構(gòu)成集合的例子,對(duì)學(xué)生的例子予以討論、點(diǎn)評(píng),進(jìn)而講解下面的問(wèn)題。

例1:判斷下列一組對(duì)象是否屬于一個(gè)集合呢?

(1)小于10的質(zhì)數(shù)(2)數(shù)學(xué)家(3)中國(guó)的直轄市(4)maths中的字母

(5)book中的字母(6)所有的偶數(shù)(7)所有直角三角形(8)滿足3x-2>x+3的全體實(shí)數(shù)

(9)方程的實(shí)數(shù)解

評(píng)注:判斷集合要注意有三點(diǎn):范圍是否確定;元素是否明確;能不能指出它的屬性。

3、集合的中元素的三個(gè)特性:

1.元素的確定性:對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

2.元素的互異性:任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。比如:book中的字母構(gòu)成的集合

3.元素的無(wú)序性:集合中的元素是平等的,沒(méi)有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

4、數(shù)的集簡(jiǎn)稱數(shù)集,下面是一些常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:N有理數(shù)集Q

正整數(shù)集N_或N+實(shí)數(shù)集R

整數(shù)集Z注:實(shí)數(shù)的分類

5、集合的分類原則:集合中所含元素的多少

①有限集含有限個(gè)元素,如A={-2,3}

②無(wú)限集含無(wú)限個(gè)元素,如自然數(shù)集N,有理數(shù)

③空集不含任何元素,如方程x2+1=0實(shí)數(shù)解集。專用標(biāo)記:Φ

三、課堂練習(xí)

1、用符合“∈”或“?”填空:課本P15練習(xí)慣1

2、判斷下面說(shuō)法是否正確、正確的在()內(nèi)填“√”,錯(cuò)誤的填“×”

(1)所有在N中的元素都在N_中()

(2)所有在N中的元素都在Z中()

(3)所有不在N_中的數(shù)都不在Z中()

(4)所有不在Q中的實(shí)數(shù)都在R中()

(5)由既在R中又在N_中的數(shù)組成的集合中一定包含數(shù)0()

(6)不在N中的數(shù)不能使方程4x=8成立()

四、回顧反思

1、集合的概念

2、集合元素的三個(gè)特征

其中“集合中的元素必須是確定的”應(yīng)理解為:對(duì)于一個(gè)給定的集合,它的元素的意義是明確的.

“集合中的元素必須是互異的”應(yīng)理解為:對(duì)于給定的集合,它的任何兩個(gè)元素都是不同的.

3、常見(jiàn)數(shù)集的專用符號(hào).

五、作業(yè)布置

1.下列各組對(duì)象能確定一個(gè)集合嗎?

(1)所有很大的實(shí)數(shù)

(2)好心的人

(3)1,2,2,3,4,5.

2.設(shè)a,b是非零實(shí)數(shù),那么可能取的值組成集合的元素是

3.由實(shí)數(shù)x,-x,x,所組成的集合,最多含()

(A)2個(gè)元素(B)3個(gè)元素(C)4個(gè)元素(D)5個(gè)元素

4.下列結(jié)論不正確的是()

A.O∈NB.QC.OQD.-1∈Z

5.下列結(jié)論中,不正確的是()

A.若a∈N,則-aNB.若a∈Z,則a2∈Z

C.若a∈Q,則a∈QD.若a∈R,則

6.求數(shù)集{1,x,x2-x}中的元素x應(yīng)滿足的條件;

板書(shū)設(shè)計(jì)(略)

高二數(shù)學(xué)教案模板下載篇14

學(xué)習(xí)目標(biāo)

1.回顧在平面直角坐標(biāo)系中刻畫(huà)點(diǎn)的位置的方法.

2.能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問(wèn)題.

學(xué)習(xí)過(guò)程

一、學(xué)前準(zhǔn)備

1、通過(guò)直角坐標(biāo)系,平面上的與(),曲線與建立了聯(lián)系,實(shí)現(xiàn)了。

2、閱讀P3思考得出在直角坐標(biāo)系中解決實(shí)際問(wèn)題的過(guò)程是:

二、新課導(dǎo)學(xué)

◆探究新知(預(yù)習(xí)教材P1~P4,找出疑惑之處)

問(wèn)題1:如何刻畫(huà)一個(gè)幾何圖形的位置?

問(wèn)題2:如何創(chuàng)建坐標(biāo)系?

問(wèn)題3:(1).如何把平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)(x,y)建立聯(lián)系?(2).平面直角坐標(biāo)系中點(diǎn)和有序?qū)崝?shù)對(duì)(x,y)是怎樣的關(guān)系?

問(wèn)題4:如何研究曲線與方程間的關(guān)系?結(jié)合課本例子說(shuō)明曲線與方程的關(guān)系?

問(wèn)題5:如何刻畫(huà)一個(gè)幾何圖形的位置?

需要設(shè)定一個(gè)參照系

(1)、數(shù)軸它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定

(2)、平面直角坐標(biāo)系:在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定

(3)、空間直角坐標(biāo)系:在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y,z)確定

(4)、抽象概括:在平面直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:A.曲線C上的點(diǎn)坐標(biāo)都是方程f(x,y)=0的解;B.以方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上。那么,方程f(x,y)=0叫作曲線C的方程,曲線C叫作方程f(x,y)=0的曲線。

問(wèn)題6:如何建系?

根據(jù)幾何特點(diǎn)選擇適當(dāng)?shù)闹苯亲鴺?biāo)系。

(1)如果圖形有對(duì)稱中心,可以選對(duì)稱中心為坐標(biāo)原點(diǎn);

(2)如果圖形有對(duì)稱軸,可以選擇對(duì)稱軸為坐標(biāo)軸;

(3)使圖形上的特殊點(diǎn)盡可能多的在坐標(biāo)軸上。

高二數(shù)學(xué)教案模板下載篇15

1.認(rèn)真閱讀教材

想只憑借課堂聽(tīng)講就學(xué)好高中數(shù)學(xué),這對(duì)大多數(shù)同學(xué)來(lái)說(shuō)是不太可能的。要求我們?cè)谡n下認(rèn)真閱讀教材,在閱讀的同時(shí)還要勒于思考,只有這樣才能深入理解知識(shí)及知識(shí)的聯(lián)系。

2.理解、掌握、運(yùn)用數(shù)學(xué)思想方法

數(shù)學(xué)思想方法是數(shù)學(xué)知識(shí)的精髓。初中階段同學(xué)們對(duì)綜合分析法、反證法等有了一些體會(huì)。與之相比,高中所涉及的數(shù)學(xué)思想方法要豐富得多。如:集合思想、函數(shù)思想、類比法、數(shù)學(xué)歸納法、分析法等常用的數(shù)學(xué)思想方法滲透于各部分知識(shí)中,都需要大家認(rèn)真體會(huì)。

3.注意知識(shí)之間的聯(lián)系

在日常的學(xué)習(xí)中要做到:

①注意思考不同數(shù)學(xué)知識(shí)之間的聯(lián)系;

②注意例題與習(xí)題間的聯(lián)系。弄清知識(shí)之間的邏輯關(guān)系,從而系統(tǒng)、靈活地掌握高中數(shù)學(xué)。

高二數(shù)學(xué)教案模板下載篇16

【學(xué)習(xí)目標(biāo)】

1、進(jìn)一步體會(huì)數(shù)形結(jié)合的思想,提高分析問(wèn)題解決問(wèn)題的能力;

2、能借助正余弦函數(shù)的誘導(dǎo)公式推導(dǎo)出正切函數(shù)的誘導(dǎo)公式;

3、掌握誘導(dǎo)公式在求值和化簡(jiǎn)中的應(yīng)用.

【學(xué)習(xí)重點(diǎn)】正切函數(shù)的誘導(dǎo)公式及應(yīng)用

【學(xué)習(xí)難點(diǎn)】正切函數(shù)誘導(dǎo)公式的推導(dǎo)

【學(xué)習(xí)過(guò)程】

一、預(yù)習(xí)自學(xué)

1.觀察課本38頁(yè)圖1-46,當(dāng)-414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式<414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式<414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式時(shí),角414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式與角2414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式的正切函數(shù)值有什么關(guān)系?

我們可以歸納出以下公式:

tan(2414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=tan(-414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=tan(2414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=

tan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式=tan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式=

2.我們可以利用誘導(dǎo)公式,將任意角的三角函數(shù)問(wèn)題轉(zhuǎn)化為銳角三角函數(shù)的問(wèn)題,參考下面的框圖,想想每次變換應(yīng)該運(yùn)用哪些公式。

414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

給上述箭頭上填上相應(yīng)的文字

二、合作探究

探究1試運(yùn)用414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式,414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式的正、余弦函數(shù)的誘導(dǎo)公式推證公式tan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式和tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式.

探究2若tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式,借助三角函數(shù)定義求角414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式的正弦函數(shù)值和余弦函數(shù)值.

探究3求414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式的值.

三、達(dá)標(biāo)檢測(cè)

1下列各式成立的是()

Atan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式=-tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式Btan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式=tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

Ctan(-414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=-tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式Dtan(2414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

2求下列三角函數(shù)數(shù)值

(1)tan(-414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式(2)tan240414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式(3)tan(-1574414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)

3化簡(jiǎn)求值

tan675414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式+tan765414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式+tan(-300414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)+tan(-690414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)+tan1080414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

四、課后延伸

求值:414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

高二數(shù)學(xué)教案模板下載篇17

教學(xué)目標(biāo)

1.掌握平面向量的數(shù)量積及其幾何意義;

2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

3.了解用平面向量的數(shù)量積可以處理垂直的問(wèn)題;

4.掌握向量垂直的條件.

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):平面向量的數(shù)量積定義

教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)過(guò)程

平面向量數(shù)量積(內(nèi)積)的定義:已知兩個(gè)非零向量a與b,它們的夾角是θ,

則數(shù)量abcosq叫a與b的數(shù)量積,記作a×b,即有a×b=abcosq,(0≤θ≤π).

并規(guī)定0向量與任何向量的數(shù)量積為0.

1、向量數(shù)量積是一個(gè)向量還是一個(gè)數(shù)量?它的符號(hào)什么時(shí)候?yàn)檎?什么時(shí)候?yàn)樨?fù)?

2、兩個(gè)向量的數(shù)量積與實(shí)數(shù)乘向量的積有什么區(qū)別?

(1)兩個(gè)向量的數(shù)量積是一個(gè)實(shí)數(shù),不是向量,符號(hào)由cosq的符號(hào)所決定.

(2)兩個(gè)向量的數(shù)量積稱為內(nèi)積,寫(xiě)成a×b;今后要學(xué)到兩個(gè)向量的外積a×b,而a×b是兩個(gè)向量的數(shù)量的積,書(shū)寫(xiě)時(shí)要嚴(yán)格區(qū)分.符號(hào)“·”在向量運(yùn)算中不是乘號(hào),既不能省略,也不能用“×”代替.

(3)在實(shí)數(shù)中,若a?0,且a×b=0,則b=0;但是在數(shù)量積中,若a?0,且a×b=0,不能推出b=0.因?yàn)槠渲衏osq有可能為0.

高二數(shù)學(xué)教案模板下載篇18

教學(xué)目標(biāo)

1.掌握平面向量的數(shù)量積及其幾何意義;

2.掌握平面向量數(shù)量積的重要性質(zhì)及運(yùn)算律;

3.了解用平面向量的數(shù)量積可以處理有關(guān)長(zhǎng)度、角度和垂直的問(wèn)題;

4.掌握向量垂直的條件.

教學(xué)重難點(diǎn)

教學(xué)重點(diǎn):平面向量的數(shù)量積定義

教學(xué)難點(diǎn):平面向量數(shù)量積的定義及運(yùn)算律的理解和平面向量數(shù)量積的應(yīng)用

教學(xué)工具

投影儀

教學(xué)過(guò)程

復(fù)習(xí)引入:

向量共線定理向量與非零向量共線的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ

課堂小結(jié)

(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

課后作業(yè)

P107習(xí)題2.4A組2、7題

課后小結(jié)

(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過(guò)的知識(shí)內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?

(2)在本節(jié)課的學(xué)習(xí)過(guò)程中,還有那些不太明白的地方,請(qǐng)向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

68201 主站蜘蛛池模板: 勐海县| 斗六市| 巴马| 寿光市| 绥化市| 许昌县| 龙泉市| 汉沽区| 琼海市| 讷河市| 陆丰市| 陈巴尔虎旗| 五寨县| 凭祥市| 红河县| 和顺县| 霍林郭勒市| 盐池县| 尼勒克县| 滨海县| 阳信县| 衡阳县| 陕西省| 宝山区| 石台县| 定南县| 辽源市| 盘山县| 高清| 炉霍县| 长沙市| 临汾市| 湟中县| 仪陇县| 兰考县| 察隅县| 寿宁县| 永新县| 什邡市| 新竹县| 明光市|