數(shù)學(xué)復(fù)習(xí)高考教案最新
數(shù)學(xué)復(fù)習(xí)高考教案如何寫?數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。下面是小編為大家?guī)淼臄?shù)學(xué)復(fù)習(xí)高考教案,希望大家能夠喜歡!
數(shù)學(xué)復(fù)習(xí)高考教案精選篇1
一、教學(xué)內(nèi)容分析
二面角是我們?nèi)粘I钪薪?jīng)常見到的一個圖形,它是在學(xué)生學(xué)過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念.掌握好本節(jié)課的知識,對學(xué)生系統(tǒng)地理解直線和平面的知識、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義.
二、教學(xué)目標(biāo)設(shè)計
理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運(yùn)用它們解決相關(guān)問題.
三、教學(xué)重點及難點
二面角的平面角的概念的形成以及二面角的平面角的作法.
四、教學(xué)流程設(shè)計
五、教學(xué)過程設(shè)計
一、 新課引入
1.復(fù)習(xí)和回顧平面角的有關(guān)知識.
平面中的角
定義 從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角
圖形
結(jié)構(gòu) 射線—點—射線
表示法 ∠AOB,∠O等
2.復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉(zhuǎn)化為平面角)
3.觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個平面所成的角.在實際生活當(dāng)中,能夠轉(zhuǎn)化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關(guān).)從而,引出“二面角”的定義及相關(guān)內(nèi)容.
二、學(xué)習(xí)新課
(一)二面角的定義
平面中的角 二面角
定義 從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角 課本P17
圖形
結(jié)構(gòu) 射線—點—射線 半平面—直線—半平面
表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β
(二)二面角的圖示
1.畫出直立式、平臥式二面角各一個,并分別給予表示.
2.在正方體中認(rèn)識二面角.
(三)二面角的平面角
平面幾何中的“角”可以看作是一條射線繞其端點旋轉(zhuǎn)而成,它有一個旋轉(zhuǎn)量,它的大小可以度量,類似地,"二面角"也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?
1.二面角的平面角的定義(課本P17).
2.∠AOB的大小與點O在棱上的位置無關(guān).
[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對相交平面的相互位置作進(jìn)一步的探討,有必要來研究二面角的度量問題.
②與兩條異面直線所成的角、直線和平面所成的角做類比,用“平面角”去度量.
③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內(nèi);角的兩邊分別與棱垂直.
3.二面角的平面角的范圍:
(四)例題分析
例1 一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個 的二面角,求此時B、C兩點間的距離.
[說明] ①檢查學(xué)生對二面角的平面角的定義的掌握情況.
②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化, 哪些沒變?
例2 如圖,已知邊長為a的等邊三角形 所在平面外有一點P,使PA=PB=PC=a,求二面角 的大小.
[說明] ①求二面角的步驟:作—證—算—答.
②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法).
例3 已知正方體 ,求二面角 的大小.(課本P18例1)
[說明] 使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法.
(五)問題拓展
例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?
[說明]使學(xué)生明白數(shù)學(xué)既來源于實際又服務(wù)于實際.
三、鞏固練習(xí)
1.在棱長為1的正方體 中,求二面角 的大小.
2. 若二面角 的大小為 ,P在平面 上,點P到 的距離為h,求點P到棱l的距離.
四、課堂小結(jié)
1.二面角的定義
2.二面角的平面角的定義及其范圍
3.二面角的平面角的常用作圖方法
4.求二面角的大小(作—證—算—答)
五、作業(yè)布置
1.課本P18練習(xí)14.4(1)
2.在 二面角的一個面內(nèi)有一個點,它到另一個面的距離是10,求它到棱的距離.
3.把邊長為a的正方形ABCD以BD為軸折疊,使二面角A-BD-C成 的二面角,求A、C兩點的距離.
六、教學(xué)設(shè)計說明
本節(jié)課的設(shè)計不是簡單地將概念直接傳受給學(xué)生,而是考慮到知識的形成過程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實出發(fā),調(diào)動學(xué)生積極參與探索、發(fā)現(xiàn)、問題解決全過程.“二面角”及“二面角的平面角”這兩大概念的引出均運(yùn)用了類比的手段和方法.教學(xué)過程中通過教師的層層鋪墊,學(xué)生的主動探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識地加強(qiáng)了知識形成過程的教學(xué).
數(shù)學(xué)復(fù)習(xí)高考教案精選篇2
一、 知識梳理
1.三種抽樣方法的聯(lián)系與區(qū)別:
類別 共同點 不同點 相互聯(lián)系 適用范圍
簡單隨機(jī)抽樣 都是等概率抽樣 從總體中逐個抽取 總體中個體比較少
系統(tǒng)抽樣 將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取 在起始部分采用簡單隨機(jī)抽樣 總體中個體比較多
分層抽樣 將總體分成若干層,按個體個數(shù)的比例抽取 在各層抽樣時采用簡單隨機(jī)抽樣或系統(tǒng)抽樣 總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統(tǒng)抽樣的步驟: ①將總體中的個體隨機(jī)編號;②將編號分段;③在第1段中用簡單隨機(jī)抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.
(4) 要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數(shù)是矩形的中點的橫坐標(biāo)③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值
2.方差和標(biāo)準(zhǔn)差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù) , ,…, ,其平均數(shù)為 則方差 ,標(biāo)準(zhǔn)差
3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結(jié)果有 個,而且所有結(jié)果都是等可能的,如果事件 包含 個結(jié)果,那么事件 的概率P=
特別提醒:古典概型的兩個共同特點:
○1 ,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;
○2 ,即每個基本事件出現(xiàn)的可能性相等。
4. 幾何概型的概率公式: P(A)=
特別提醒:幾何概型的特點:試驗的結(jié)果是無限不可數(shù)的;○2每個結(jié)果出現(xiàn)的可能性相等。
二、夯實基礎(chǔ)
(1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.
(2)某賽季,甲、乙兩名籃球運(yùn)動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運(yùn)動員得分的中位數(shù)分別為( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)統(tǒng)計某校1000名學(xué)生的數(shù)學(xué)會考成績,
得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為
及格,不低于80分為優(yōu)秀,則及格人數(shù)是 ;
優(yōu)秀率為 。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分?jǐn)?shù)如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一個分和一個最低分后,所剩數(shù)據(jù)的平均值
和方差分別為( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數(shù),則以第一次向上點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點(x,y)在圓x2+y2=27的內(nèi)部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )
三、高考鏈接
07、某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,將測試結(jié)果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒
; 第六組,成績大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設(shè)成績小于17秒
的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為 ,成績大于等于15秒
且小于17秒的學(xué)生人數(shù)為 ,則從頻率分布直方圖中可分析
出 和 分別為( )
08、從某項綜合能力測試中抽取100人的成績,統(tǒng)計如表,則這100人成績的標(biāo)準(zhǔn)差為( )
分?jǐn)?shù) 5 4 3 2 1
人數(shù) 20 10 30 30 10
09、在區(qū)間 上隨機(jī)取一個數(shù)x, 的值介于0到 之間的概率為( ).
08、現(xiàn)有8名奧運(yùn)會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.
數(shù)學(xué)復(fù)習(xí)高考教案精選篇3
教學(xué)目標(biāo)
(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學(xué)生掌握組合數(shù)的計算公式、組合數(shù)的性質(zhì)用組合數(shù)與排列數(shù)之間的關(guān)系;
(3)通過學(xué)習(xí)組合知識,讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;
(4)通過對排列、組合問題求解與剖析,培養(yǎng)學(xué)生學(xué)習(xí)興趣和思維深刻性,學(xué)生具有嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。
教學(xué)建議
一、知識結(jié)構(gòu)
二、重點難點分析
本小節(jié)的重點是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質(zhì)。難點是解組合的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理與乘法原理的掌握和應(yīng)用,并將這兩個原理的基本思想貫穿在解決組合應(yīng)用題當(dāng)中。
組合與組合數(shù),也有上面類似的關(guān)系。從n個不同元素中任取m(m≤n)個元素并成一組,叫做從n個不同元素中任取m個元素的一個組合。所有這些不同的組合的個數(shù)叫做組合數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的一個集合(無序集),相當(dāng)于一個組合,而這種集合的個數(shù),就是相應(yīng)的組合數(shù)。
解排列組合應(yīng)用題時主要應(yīng)抓住是排列問題還是組合問題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無序組合),加乘明確(分類為加、分步為乘).
三、教法設(shè)計
1.對于基礎(chǔ)較好的學(xué)生,建議把排列與組合的概念進(jìn)行對比的進(jìn)行學(xué)習(xí),這樣有利于搞請這兩組概念的區(qū)別與聯(lián)系.
2.學(xué)生與老師可以合編一些排列組合問題,如“45人中選出5人當(dāng)班干部有多少種選法?”與“45人中選出5人分別擔(dān)任班長、副班長、體委、學(xué)委、生委有多少種選法?”這是兩個相近問題,同學(xué)們會根據(jù)自己身邊的實際可以編出各種各樣的具有特色的問題,教師要引導(dǎo)學(xué)生辨認(rèn)哪個是排列問題,哪個是組合問題.這樣既調(diào)動了學(xué)生學(xué)習(xí)的積極性,又在編題辨題中澄清了概念.
為了理解排列與組合的概念,建議大家學(xué)會畫排列與組合的樹圖.如,從a,b,c,d 4個元素中取出3個元素的排列樹圖與組合樹圖分別為:
排列樹圖
由排列樹圖得到,從a,b,c,d 取出3個元素的所有排列有24個,它們分別是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.
組合樹圖
由組合樹圖可得,從a,b,c,d中取出3個元素的組合有4個,它們是(abc),(abd),(acd),(bcd).
從以上兩組樹圖清楚的告訴我們,排列樹圖是對稱的,組合圖式不是對稱的,之所以排列樹圖具有對稱性,是因為對于a,b,c,d四個字母哪一個都有在第一位的機(jī)會,哪一個都有在第二位的機(jī)會,哪一個都有在第三位的機(jī)會,而組合只考慮字母不考慮順序,為實現(xiàn)無順序的要求,我們可以限定a,b,c,d的順序是從前至后,固定了死順序等于無順序,這樣組合就有了自己的樹圖.
學(xué)會畫組合樹圖,不僅有利于理解排列與組合的概念,還有助于推導(dǎo)組合數(shù)的計算公式.
3.排列組合的應(yīng)用問題,教師應(yīng)從簡單問題問題入手,逐步到有一個附加條件的單純排列問題或組合問題,最后在設(shè)及排列與組合的綜合問題.
對于每一道題目,教師必須先讓學(xué)生獨(dú)立思考,在進(jìn)行全班討論,對于學(xué)生的每一種解法,教師要先讓學(xué)生判斷正誤,在給予點播.對于排列、組合應(yīng)用問題的解決我們提倡一題多解,這樣有利于培養(yǎng)學(xué)生的分析問題解決問題的能力,在學(xué)生的多種解法基礎(chǔ)上教師要引導(dǎo)學(xué)生選擇方案,總結(jié)解題規(guī)律.對于學(xué)生解題中的常見錯誤,教師一定要講明道理,認(rèn)真分析錯誤原因,使學(xué)生在是非的判斷得以提高.
4.兩個性質(zhì)定理教學(xué)時,對定理1,可以用下例來說明:從4個不同的元素a,b,c,d里每次取出3個元素的組合及每次取出1個元素的組合分別是
這就說明從4個不同的元素里每次取出3個元素的組合與從4個元素里每次取出1個元素的組合是—一對應(yīng)的.
對定理2,可啟發(fā)學(xué)生從下面問題的討論得出.從n個不同元素 , ,…, 里每次取出m個不同的元素( ),問:(1)可以組成多少個組合;(2)在這些組合里,有多少個是不含有 的; (3)在這些組合里,有多少個是含有 的;(4)從上面的結(jié)果,可以得出一個怎樣的公式.在此基礎(chǔ)上引出定理2.
對于 ,和 一樣,是一種規(guī)定.而學(xué)生常常誤以為是推算出來的,因此,教學(xué)時要講清楚.
教學(xué)設(shè)計示例
教學(xué)目標(biāo)
(1)使學(xué)生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學(xué)生掌握組合數(shù)的計算公式;
(3)通過學(xué)習(xí)組合知識,讓學(xué)生掌握類比的學(xué)習(xí)方法,并提高學(xué)生分析問題和解決問題的能力;
教學(xué)重點難點
重點是組合的定義、組合數(shù)及組合數(shù)的公式;
難點是解組合的應(yīng)用題.
教學(xué)過程設(shè)計
(-)導(dǎo)入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準(zhǔn)備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學(xué)生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.
設(shè)計意圖:組合與排列所研究的問題幾乎是平行的.上面設(shè)計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.
(二)新課講授
[提出問題 創(chuàng)設(shè)情境]
(教師活動)指導(dǎo)學(xué)生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區(qū)別?
(學(xué)生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設(shè)計意圖:激活學(xué)生的思維,使其將所學(xué)的知識遷移過渡,并盡快適應(yīng)新的環(huán)境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .
[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當(dāng)取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學(xué)生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關(guān)系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;
第2步,求每一個組合中 個元素的全排列數(shù)為 .
根據(jù)分步計數(shù)原理,得到
[字幕]公式1:
公式2:
(學(xué)生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設(shè)計意圖:本著以認(rèn)識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學(xué)生思維層層被激活、逐漸深入到問題當(dāng)中去.
【例題示范 探求方法】
(教師活動)打出字幕,給出示范,指導(dǎo)訓(xùn)練.
[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.
例2 計算:(1) ;(2) .
(學(xué)生活動)板演、示范.
(教師活動)講評并指出用兩種方法計算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學(xué)生活動)思考分析.
解 首先,根據(jù)組合的定義,有
①
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點評]這是組合數(shù)公式的應(yīng)用,關(guān)鍵是公式的選擇.
設(shè)計意圖:例題教學(xué)循序漸進(jìn),讓學(xué)生鞏固知識,強(qiáng)化公式的應(yīng)用,從而培養(yǎng)學(xué)生的綜合分析能力.
【反饋練習(xí) 學(xué)會應(yīng)用】
(教師活動)給出練習(xí),學(xué)生解答,教師點評.
[課堂練習(xí)]課本P99練習(xí)第2,5,6題.
[補(bǔ)充練習(xí)]
[字幕]1.計算:
2.已知 ,求 .
(學(xué)生活動)板演、解答.
設(shè)計意圖:課堂教學(xué)體現(xiàn)以學(xué)生為本,讓全體學(xué)生參與訓(xùn)練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應(yīng)用.
【點評矯正 交流提高】
(教師活動)依照學(xué)生的板演,給予指正并總結(jié).
補(bǔ)充練習(xí)答案:
1.解:原式:
2.解:由題設(shè)得
整理化簡得 ,
解之,得 或 (因 ,舍去),
所以 ,所求
[字幕]小結(jié):
1.前一個公式主要用于計算具體的組合數(shù),而后一個公式則主要用于對含有字母的式子進(jìn)行化簡和論證.
2.在解含組合數(shù)的方程或不等式時,一定要注意組合數(shù)的上、下標(biāo)的限制條件.
(學(xué)生活動)交流討論,總結(jié)記錄.
設(shè)計意圖:由“實踐——認(rèn)識——一實踐”的認(rèn)識論,教學(xué)時抓住“學(xué)習(xí)—一練習(xí)——反饋———小結(jié)”這些環(huán)節(jié),使教學(xué)目標(biāo)得以強(qiáng)化和落實.
(三)小結(jié)
(師生活動)共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計算的兩個公式.
(四)布置作業(yè)
1.課本作業(yè):習(xí)題10 3第1(1)、(4),3題.
2.思考題:某學(xué)習(xí)小組有8個同學(xué),從男生中選2人,女生中選1人參加數(shù)學(xué)、物理、化學(xué)三種學(xué)科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學(xué)各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學(xué)習(xí)了排列知識的基礎(chǔ)上,本節(jié)課引進(jìn)了組合概念,并推導(dǎo)出組合數(shù)公式,同時調(diào)控進(jìn)行訓(xùn)練,從而培養(yǎng)學(xué)生分析問題、解決問題的能力.
作業(yè)參考答案
2.解;設(shè)有男同學(xué) 人,則有女同學(xué) 人,依題意有 ,由此解得 或 或2.即男同學(xué)有5人或6人,女同學(xué)相應(yīng)為3人或2人.
3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.
探究活動
同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?
解 設(shè)四人分別為甲、乙、丙、丁,可從多種角度來解.
解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:
甲拿乙制作的賀卡時,則賀卡有3種分配方法.
甲拿丙制作的賀卡時,則賀卡有3種分配方法.
甲拿丁制作的賀卡時,則賀卡有3種分配方法.
由加法原理得,賀卡分配方法有3+3+3=9種.
解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時還存在正向與逆向兩種思考途徑.
正向思考,即從滿足題設(shè)條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).
逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設(shè)條件的取法.不滿足題設(shè)條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設(shè)要求的取法共有 (種).
說明(1)對一類元素不太多而利用排列或組合計算公式計算比較復(fù)雜,且容易重復(fù)遺漏計算的排列組合問題,常可采用直接分類后用加法原理進(jìn)行計算,如本例采用解法一的做法.
(2)設(shè)集合 ,如果S中元素的一個排列 滿足
數(shù)學(xué)復(fù)習(xí)高考教案精選篇4
一 教材分析
本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時常考一些解答題。因此,正弦定理和余弦定理的知識非常重要。
根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):
認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。
能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。
情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。
教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。
教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。
二 教法
根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進(jìn)。另外,抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點
三 學(xué)法:
指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。
四 教學(xué)過程
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實踐探究,形成概念,大約用25分鐘
第三:應(yīng)用概念,拓展反思,大約用13分鐘
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。
(二)探尋特例,提出猜想
1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。
2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進(jìn)行驗證。
3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:
在三角形中,角與所對的邊滿足關(guān)系
這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。
(三)邏輯推理,證明猜想
1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。
2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。
3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明
(四)歸納總結(jié),簡單應(yīng)用
1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。
2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。
(五)講解例題,鞏固定理
1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1簡單,結(jié)果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。
(六)課堂練習(xí),提高鞏固
1.在△ABC中,已知下列條件,解三角形.
(1)A=45°,C=30°,c=10cm
(2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列條件,解三角形.
(1)a=20cm,b=11cm,B=30°
(2)c=54cm,b=39cm,C=115°
學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(七)小結(jié)反思,提高認(rèn)識
通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?
1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。
2.它表述了三角形的邊與對角的正弦值的關(guān)系。
3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。
(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)
(八)任務(wù)后延,自主探究
如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。
五 板書設(shè)計
板書設(shè)計可以讓學(xué)生一目了然本節(jié)課所學(xué)的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。
數(shù)學(xué)復(fù)習(xí)高考教案精選篇5
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.
(2)進(jìn)一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.
教學(xué)重點、難點:求曲線的方程.
教學(xué)用具:計算機(jī).
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.
教學(xué)過程:
【引入】
1.提問:什么是曲線的方程和方程的曲線.
學(xué)生思考并回答.教師強(qiáng)調(diào).
2.坐標(biāo)法和解析幾何的意義、基本問題.
對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質(zhì).
事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
【問題】
如何根據(jù)已知條件,求出曲線的方程.
【實例分析】
例1:設(shè) 、 兩點的坐標(biāo)是 、(3,7),求線段 的垂直平分線 的方程.
首先由學(xué)生分析:根據(jù)直線方程的知識,運(yùn)用點斜式即可解決.
解法一:易求線段 的中點坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?
(通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線上的點的坐標(biāo)都是這個方程的解.
設(shè) 是線段 的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點 的坐標(biāo) 是方程 的解.
(2)以這個方程的解為坐標(biāo)的點都是曲線上的點.
設(shè)點 的坐標(biāo) 是方程①的任意一解,則
到 、 的距離分別為
所以 ,即點 在直線 上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè) 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標(biāo),這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設(shè) 是線段 的垂直平分線上任意一點,也就是點 屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.
讓我們用這個方法試解如下問題:
例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.
分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.
求解過程略.
【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):
分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如 表示曲線上任意一點 的坐標(biāo);
(2)寫出適合條件 的點 的集合
;
(3)用坐標(biāo)表示條件 ,列出方程 ;
(4)化方程 為最簡形式;
(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點.
一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.
上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.
下面再看一個問題:
例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.
【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運(yùn)動變化的過程中尋找關(guān)系.
解:設(shè)點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合
由距離公式,點 適合的條件可表示為
①
將①式 移項后再兩邊平方,得
化簡得
由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.
【練習(xí)鞏固】
題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè) 、 的坐標(biāo)為 、 ,則 的坐標(biāo)為 , 的坐標(biāo)為 .
根據(jù)條件 ,代入坐標(biāo)可得
化簡得
①
由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進(jìn)一步求出 、 的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進(jìn)行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁練習(xí)1,2,3;
數(shù)學(xué)復(fù)習(xí)高考教案精選篇6
一、 知識梳理
1.三種抽樣方法的聯(lián)系與區(qū)別:
類別 共同點 不同點 相互聯(lián)系 適用范圍
簡單隨機(jī)抽樣 都是等概率抽樣 從總體中逐個抽取 總體中個體比較少
系統(tǒng)抽樣 將總體均勻分成若干部分;按事先確定的規(guī)則在各部分抽取 在起始部分采用簡單隨機(jī)抽樣 總體中個體比較多
分層抽樣 將總體分成若干層,按個體個數(shù)的比例抽取 在各層抽樣時采用簡單隨機(jī)抽樣或系統(tǒng)抽樣 總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統(tǒng)抽樣的步驟: ①將總體中的個體隨機(jī)編號;②將編號分段;③在第1段中用簡單隨機(jī)抽樣確定起始的個體編號;④按照事先研究的規(guī)則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數(shù);③各層抽樣;④匯合成樣本.
(4) 要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數(shù)是矩形的中點的橫坐標(biāo)③中位數(shù)的左邊與右邊的直方圖的面積相等,可以由此估計中位數(shù)的值
2.方差和標(biāo)準(zhǔn)差都是刻畫數(shù)據(jù)波動大小的數(shù)字特征,一般地,設(shè)一組樣本數(shù)據(jù) , ,…, ,其平均數(shù)為 則方差 ,標(biāo)準(zhǔn)差
3.古典概型的概率公式:如果一次試驗中可能出現(xiàn)的結(jié)果有 個,而且所有結(jié)果都是等可能的,如果事件 包含 個結(jié)果,那么事件 的概率P=
特別提醒:古典概型的兩個共同特點:
○1 ,即試中有可能出現(xiàn)的基本事件只有有限個,即樣本空間Ω中的元素個數(shù)是有限的;
○2 ,即每個基本事件出現(xiàn)的可能性相等。
4. 幾何概型的概率公式: P(A)=
特別提醒:幾何概型的特點:試驗的結(jié)果是無限不可數(shù)的;○2每個結(jié)果出現(xiàn)的可能性相等。
二、夯實基礎(chǔ)
(1)某單位有職工160名,其中業(yè)務(wù)人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業(yè)務(wù)人員、管理人員、后勤人員的人數(shù)應(yīng)分別為____________.
(2)某賽季,甲、乙兩名籃球運(yùn)動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運(yùn)動員得分的中位數(shù)分別為( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)統(tǒng)計某校1000名學(xué)生的數(shù)學(xué)會考成績,
得到樣本頻率分布直方圖如右圖示,規(guī)定不低于60分為
及格,不低于80分為優(yōu)秀,則及格人數(shù)是 ;優(yōu)秀率為。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分?jǐn)?shù)如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一個分和一個最低分后,所剩數(shù)據(jù)的平均值和方差分別為()
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數(shù),則以第一次向上點數(shù)為橫坐標(biāo)x,第二次向上的點數(shù)為縱坐標(biāo)y的點(x,y)在圓x2+y2=27的內(nèi)部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )
三、高考鏈接
07、某班50名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與19秒之間,將測試結(jié)果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒;第六組,成績大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設(shè)成績小于17秒的學(xué)生人數(shù)占全班總?cè)藬?shù)的百分比為,成績大于等于15秒且小于17秒的學(xué)生人數(shù)為,則從頻率分布直方圖中可分析出和分別為()
08、從某項綜合能力測試中抽取100人的成績,統(tǒng)計如表,則這100人成績的標(biāo)準(zhǔn)差為( )
分?jǐn)?shù)54321
人數(shù) 20 10 30 30 10
09、在區(qū)間 上隨機(jī)取一個數(shù)x, 的值介于0到 之間的概率為( ).
08、現(xiàn)有8名奧運(yùn)會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.
數(shù)學(xué)復(fù)習(xí)高考教案精選篇7
一、教材分析
1.教材所處的地位和作用
在學(xué)習(xí)了隨機(jī)事件、頻率、概率的意義和性質(zhì)及用概率解決實際問題和古典概型的概念后,進(jìn)一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現(xiàn)信息技術(shù)的優(yōu)越性而新增的內(nèi)容。
2.教學(xué)的重點和難點
重點:正確理解隨機(jī)數(shù)的概念,并能應(yīng)用計算器或計算機(jī)產(chǎn)生隨機(jī)數(shù)。
難點:建立概率模型,應(yīng)用計算器或計算機(jī)來模擬試驗的方法近似計算概率,解決一些較簡單的現(xiàn)實問題。
二、教學(xué)目標(biāo)分析
1、知識與技能:
(1)了解隨機(jī)數(shù)的概念;
(2)利用計算機(jī)產(chǎn)生隨機(jī)數(shù),并能直接統(tǒng)計出頻數(shù)與頻率。
2、過程與方法:
(1)通過對現(xiàn)實生活中具體的概率問題的探究,感知應(yīng)用數(shù)學(xué)解決問題的方法,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力;
(2)通過模擬試驗,感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習(xí)慣
3、情感態(tài)度與價值觀:
通過數(shù)學(xué)與探究活動,體會理論來源于實踐并應(yīng)用于實踐的辯證唯物主義觀點.
三、教學(xué)方法與手段分析
1、教學(xué)方法:本節(jié)課我主要采用啟發(fā)探究式的教學(xué)模式。
2、教學(xué)手段:利用多媒體技術(shù)優(yōu)化課堂教學(xué)
四、教學(xué)過程分析
㈠創(chuàng)設(shè)情境、引入新課
情境1:假設(shè)你作為一名食品衛(wèi)生工作人員,要對某超市內(nèi)的80袋小包裝餅干中抽取10袋進(jìn)行衛(wèi)生達(dá)標(biāo)檢驗,你打算如何操作?
預(yù)設(shè)學(xué)生回答:
⑴采用簡單隨機(jī)抽樣方法(抽簽法)
⑵采用簡單隨機(jī)抽樣方法(隨機(jī)數(shù)表法)
教師總結(jié)得出:隨機(jī)數(shù)就是在一定范圍內(nèi)隨機(jī)產(chǎn)生的數(shù),并且得到這個范圍內(nèi)每一數(shù)的機(jī)會一樣。(引入課題)
「設(shè)計意圖」(1)回憶統(tǒng)計知識中利用隨機(jī)抽樣方法如抽簽法、隨機(jī)數(shù)表法等進(jìn)行抽樣的步驟和特征;(2)從具體試驗中了解隨機(jī)數(shù)的含義。
情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現(xiàn)在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費(fèi)時間太多了,有沒有其他方法可以代替試驗?zāi)?
「設(shè)計意圖」當(dāng)需要隨機(jī)數(shù)的量很大時,用手工試驗產(chǎn)生隨機(jī)數(shù)速度太慢,從而說明利用現(xiàn)代信息技術(shù)的重要性,體現(xiàn)利用計算器或計算機(jī)產(chǎn)生隨機(jī)數(shù)的必要性。
㈡操作實踐、了解新知
教師:向?qū)W生介紹計算器的操作,讓他們了解隨機(jī)函數(shù)的原理。可事先編制幾個小問題,在課堂上帶著學(xué)生用計算器(科學(xué)計算器或圖形計算器)操作一遍,讓學(xué)生熟悉如何用計算器產(chǎn)生隨機(jī)數(shù)。
「設(shè)計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學(xué)生自己按照規(guī)則操作,熟悉計算器產(chǎn)生隨機(jī)數(shù)的操作流程,了解隨機(jī)數(shù)。
問題1:拋一枚質(zhì)地均勻的硬幣出現(xiàn)正面向上的概率是50,你能設(shè)計一種利用計算器模擬擲硬幣的試驗來驗證這個結(jié)論嗎?
思考:隨著模擬次數(shù)的不同,結(jié)果是否有區(qū)別,為什么?
「設(shè)計意圖」⑴設(shè)計概率模型是解決概率問題的難點,也是能解決概率問題的關(guān)鍵,是數(shù)學(xué)建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基本事件用兩個隨機(jī)數(shù)來代替。(題目讓學(xué)生通過熟悉50想到用隨機(jī)數(shù)0,1來模擬,為后面問題4每天下雨的概率為40的概率建模作第一次小鋪墊。)⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。
問題2:(1)剛才我們利用了計算器來產(chǎn)生隨機(jī)數(shù),我們知道計算機(jī)有許多軟件有統(tǒng)計功能,你知道哪些軟件具有隨機(jī)函數(shù)這個功能?
(2)你會利用統(tǒng)計軟件Excel來產(chǎn)生隨機(jī)數(shù)0,1嗎?你能設(shè)計一種利用計算機(jī)模擬擲硬幣的試驗嗎?
「設(shè)計意圖」⑴了解有許多統(tǒng)計軟件都有隨機(jī)函數(shù)這個功能,并與前面第一章所學(xué)的用程序語言編寫程序相聯(lián)系;⑵Excel是學(xué)生比較熟悉的統(tǒng)計軟件,也可讓學(xué)生回顧初中用Excel畫統(tǒng)計圖的一些功能和知識,其次讓學(xué)生掌握多種隨機(jī)模擬試驗方法。
問題3:(1)你能在Excel軟件中畫試驗次數(shù)從1到100次的頻率分布折線圖嗎?
(2)當(dāng)試驗次數(shù)為1000,1500時,你能說說出現(xiàn)正面向上的頻率有些什么變化?
「設(shè)計意圖」⑴應(yīng)用隨機(jī)模擬方法估計古典概型中隨機(jī)事件的概率值;
⑵體會頻率的隨機(jī)性與相對穩(wěn)定性,經(jīng)歷用計算機(jī)產(chǎn)生數(shù)據(jù),整理數(shù)據(jù),分析數(shù)據(jù),畫統(tǒng)計圖的全過程,使學(xué)生相信統(tǒng)計結(jié)果的真實性、隨機(jī)性及規(guī)律性。
㈢講練結(jié)合、鞏固新知
問題4:天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?
問1:能用古典概型的計算公式求解嗎?
你能說明一下這為什么不是古典概型嗎?
問2:你如何模擬每一天下雨的概率為40?
「設(shè)計意圖」⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關(guān)鍵,是隨機(jī)模擬方法應(yīng)用的重點,也是難點之一。
⑵鞏固用隨機(jī)模擬方法估計未知量的基本思想,明確利用隨機(jī)模擬方法也可解決不是古典概型而比較復(fù)雜的概率應(yīng)用題。
歸納步驟:第一步,設(shè)計概率模型;
第二步,進(jìn)行模擬試驗;
方法一:(隨機(jī)模擬方法--計算器模擬)利用計算器隨機(jī)函數(shù);
方法二:(隨機(jī)模擬方法--計算機(jī)模擬)
第三步,統(tǒng)計試驗的結(jié)果。
課堂檢測將一枚質(zhì)地均勻的硬幣連擲三次,出現(xiàn)"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機(jī)模擬的方法做100次試驗,計算各自的頻數(shù)。
「設(shè)計意圖」通過練習(xí),進(jìn)一步鞏固學(xué)生對本節(jié)課知識的掌握。
㈣歸納小結(jié)
(1)你能歸納利用隨機(jī)模擬方法估計概率的步驟嗎?
(2)你能體會到隨機(jī)模擬的優(yōu)勢嗎?請舉例說說。
「設(shè)計意圖」⑴通過問題的思考和解決,使學(xué)生理解模擬方法的優(yōu)點,并充分利用信息技術(shù)的優(yōu)勢;⑵是對知識的進(jìn)一步理解與思考,又是對本節(jié)內(nèi)容的回顧與總結(jié)。
㈤布置練習(xí):
課本練習(xí)3、4
「設(shè)計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。
[內(nèi)容結(jié)束]