教育巴巴 > 高中教案 > 數學教案 >

高二數學教案(2023)大全

時間: 沐欽 數學教案

高二數學教案都有哪些?中國古代把數學叫做算術,也叫算術,最后改成了數學。中國古代的算術是六藝之一(六藝中稱“數”)。下面是小編為大家帶來的高二數學教案(2023)七篇,希望大家能夠喜歡!

高二數學教案(2023)大全

高二數學教案(2023)精選篇1

一、教學目標

1.把握菱形的判定.

2.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養學生的學習愛好.

4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.

二、教法設計

觀察分析討論相結合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的判定方法.

2.教學難點:菱形判定方法的綜合應用.

四、課時安排

1課時

五、教具學具預備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

復習提問

1.敘述菱形的定義與性質.

2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.

引入新課

師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學習這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對角錢互相垂直的'平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個條件?

生答:兩個.

師問:哪兩個?

生答:(1)是平行四邊形(2)兩條對角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學生口述證實)

證實時讓學生注重線段垂直平分線在這里的應用,

師問:對角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對角線,但都不是菱形.

菱形常用的判定方法歸納為(學生討論歸納后,由教師板書):

注重:(2)與(4)的題設也是從四邊形出發,和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.

求證:四邊形是菱形(按教材講解).

總結、擴展

1.小結:

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區別與聯系.

2.思考題:已知:如圖4△中,,平分,,,交于.

求證:四邊形為菱形.

八、布置作業

教材P159中9、10、11、13

高二數學教案(2023)精選篇2

教學目標

1.掌握平面向量的數量積及其幾何意義;

2.掌握平面向量數量積的重要性質及運算律;

3.了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;

4.掌握向量垂直的條件.

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學工具

投影儀

教學過程

一、復習引入:

1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ

五,課堂小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

六、課后作業

P107習題2.4A組2、7題

課后小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

課后習題

作業

P107習題2.4A組2、7題

高二數學教案(2023)精選篇3

一、說教材:

1、地位、作用和特點:

《__》是高中數學課本第__冊(x修)的第__章“__”的第__節內容。

本節是在學習了之后編排的。通過本節課的學習,既可以對的知識進一步鞏固和深化,又可以為后面學習打下基礎,所以是本章的重要內容。此外,《__》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。本節的特點之一是__;特點之二是:__。

教學目標:

根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

(1)知識目標:A、B、C

(2)能力目標:A、B、C

(3)德育目標:A、B

教學的重點和難點:

(1)教學重點:

(2)教學難點:

二、說教法:

基于上面的教材分析,我根據自己對研究性學習“啟發式”教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創設問題情景,充分調動學生求知欲,并以此來激發學生的探究心理。二是運用啟發式教學方法,就是把教和學的各種方法綜合起來統一組織運用于教學過程,以求獲得效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規律,觸發學生的思維,使教學__真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數學思考方法(聯想法、類比法、數形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數學思想方法,培養學生的探索能力和創造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內容時能夠做到葉老師所說“教就是為了不教”。因此,擬對本節課設計如下教學程序:

導入新課新課教學反饋發展

三、說學法:

學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優化教學程序來增強學法指導的目的性和實效性。在本節課的教學中主要滲透以下幾個方面的學法指導。

1、培養學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

本節教師通過列舉具體事例來進行分析,歸納出,并依據此知識與具體事例結合、推導出,這正是一個分析和推理的全過程。

2、讓學生親自經歷運用科學方法探索的過程。主要是努力創設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授時,可通過演示,創設探索規律的情境,引導學生以可靠的事實為基礎,經過抽象思維揭示內在規律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

3、讓學生在探索性實驗中自己摸索方法,觀察和分析現象,從而發現“新”的問題或探索出“新”的規律。從而培養學生的發散思維和收斂思維能力,激發學生的創造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發現等探究環節選擇合適的概念、規律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養成認真分析過程、善于比較的好習慣,又有利于培養學生通過現象發掘知識內在本質的能力。

四、教學過程:

(一)、課題引入:

教師創設問題情景(創設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數學科學的有關情況。)激發學生的探究__,引導學生提出接下去要研究的問題。

(二)、新課教學:

1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

2、組織學生進行新問題的實驗方法設計—這時在設計上是有對比性、數學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數據,模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

(三)、實施反饋:

1、課堂反饋,遷移知識(遷移到與生活有關的例子)。讓學生分析有關的問題,實現知識的升華、實現學生的再次創新。

2、課后反饋,延續創新。通過課后練習,學生互改作業,課后研實驗,實現課堂內外的綜合,實現創新精神的延續。

五、板書設計:

在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

六、說課綜述:

以上是我對《__》這節教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的知識,并把它運用到對的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創造能力為指導思想。并且能從各種實際出發,充分利用各種教學手段來激發學生的學習興趣,體現了對學生創新意識的培養。

高二數學教案(2023)精選篇4

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象、恰當地利用定義__題,許多時候能以簡馭繁、因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情、在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率、

四、教學目標

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用__解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3、借助多媒體輔助教學,激發學習數學的興趣、

五、教學重點與難點:

教學重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義__

高二數學教案(2023)精選篇5

教學目標

1、知識與技能

(1)理解并掌握正弦函數的定義域、值域、周期性、(小)值、單調性、奇偶性;

(2)能熟練運用正弦函數的性質解題。

2、過程與方法

通過正弦函數在R上的圖像,讓學生探索出正弦函數的性質;講解例題,總結方法,鞏固練習。

3、情感態度與價值觀

通過本節的學習,培養學生創新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養學生的自信心;使學生認識到轉化“矛盾”是解決問題的有效途經;培養學生形成實事求是的科學態度和鍥而不舍的鉆研精神。

教學重難點

重點:正弦函數的性質。

難點:正弦函數的性質應用。

教學工具

投影儀

教學過程

【創設情境,揭示課題】

同學們,我們在數學一中已經學過函數,并掌握了討論一個函數性質的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經學習了正弦函數的y=sinx在R上圖像,下面請同學們根據圖像一起討論一下它具有哪些性質?

【探究新知】

讓學生一邊看投影,一邊仔細觀察正弦曲線的圖像,并思考以下幾個問題:

(1)正弦函數的定義域是什么?

(2)正弦函數的值域是什么?

(3)它的最值情況如何?

(4)它的正負值區間如何分?

(5)?(x)=0的解集是多少?

師生一起歸納得出:

1.定義域:y=sinx的定義域為R

2.值域:引導回憶單位圓中的正弦函數線,結論:|sinx|≤1(有界性)

再看正弦函數線(圖象)驗證上述結論,所以y=sinx的值域為[-1,1]

高二數學教案(2023)精選篇6

教學目標:

1.進一步理解和掌握數列的有關概念和性質;

2.在對一個數列的探究過程中,提高提出問題、分析問題和解決問題的能力;

3.進一步提高問題探究意識、知識應用意識和同伴合作意識。

教學重點:

問題的提出與解決

教學難點:

如何進行問題的探究

教學方法:

啟發探究式

教學過程:

問題:已知{an}是首項為1,公比為的無窮等比數列。對于數列{an},提出你的問題,并進行研究,你能得到一些什么樣的結論?

研究方向提示:

1.數列{an}是一個等比數列,可以從等比數列角度來進行研究;

2.研究所給數列的項之間的關系;

3.研究所給數列的子數列;

4.研究所給數列能構造的新數列;

5.數列是一種特殊的函數,可以從函數性質角度來進行研究;

6.研究所給數列與其它知識的聯系(組合數、復數、圖形、實際意義等)。

針對學生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。

課堂小結:

1.研究一個數列可以從哪些方面提出問題并進行研究?

2.你最喜歡哪位同學的研究?為什么?

高二數學教案(2023)精選篇7

一、教學目標:

掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

二、教學重點:

向量的性質及相關知識的綜合應用。

三、教學過程:

(一)主要知識:

1、掌握向量的概念、坐標表示、運算性質,做到融會貫通,能應用向量的有關性質解決諸如平面幾何、解析幾何等的問題。

(二)例題分析:

四、小結:

1、進一步熟練有關向量的運算和證明;能運用解三角形的知識解決有關應用問題,

2、滲透數學建模的思想,切實培養分析和解決問題的能力。

35093 主站蜘蛛池模板: 孟村| 安平县| 鄂托克前旗| 南和县| 林西县| 清涧县| 岑溪市| 阜阳市| 云南省| 喀喇沁旗| 黔南| 左权县| 青冈县| 乌兰县| 治多县| 乌鲁木齐市| 上高县| 潮州市| 云安县| 泗水县| 昆明市| 蕲春县| 周口市| 霞浦县| 新营市| 剑阁县| 万州区| 上饶县| 离岛区| 潍坊市| 旅游| 荣昌县| 女性| 淮阳县| 迁西县| 镇江市| 康乐县| 黄骅市| 婺源县| 和平县| 资兴市|