教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高考數(shù)學(xué)優(yōu)秀教案

時間: 沐欽 數(shù)學(xué)教案

高考數(shù)學(xué)教案如何寫?在古代,數(shù)學(xué)的主要原理是研究天文學(xué)、土地的合理分配、糧食作物、稅收、貿(mào)易等相關(guān)計算。下面是小編為大家?guī)淼母呖紨?shù)學(xué)優(yōu)秀教案七篇,希望大家能夠喜歡!

高考數(shù)學(xué)優(yōu)秀教案

高考數(shù)學(xué)優(yōu)秀教案精選篇1

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

一、知識與技能

(1)理解并掌握弧度制的定義;(2)領(lǐng)會弧度制定義的合理性;(3)掌握并運用弧度制表示的弧長公式、扇形面積公式;(4)熟練地進行角度制與弧度制的換算;(5)角的集合與實數(shù)集之間建立的一一對應(yīng)關(guān)系.(6)使學(xué)生通過弧度制的學(xué)習(xí),理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.

二、過程與方法

創(chuàng)設(shè)情境,引入弧度制度量角的大小,通過探究理解并掌握弧度制的定義,領(lǐng)會定義的合理性.根據(jù)弧度制的定義推導(dǎo)并運用弧長公式和扇形面積公式.以具體的實例學(xué)習(xí)角度制與弧度制的互化,能正確使用計算器.

三、情態(tài)與價值

通過本節(jié)的學(xué)習(xí),使同學(xué)們掌握另一種度量角的單位制---弧度制,理解并認識到角度制與弧度制都是對角度量的方法,二者是辨證統(tǒng)一的,而不是孤立、割裂的關(guān)系.角的概念推廣以后,在弧度制下,角的集合與實數(shù)集之間建立了一一對應(yīng)關(guān)系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng),為下一節(jié)學(xué)習(xí)三角函數(shù)做好準(zhǔn)備.

教學(xué)重難點

重點:理解并掌握弧度制定義;熟練地進行角度制與弧度制地互化換算;弧度制的運用.

難點:理解弧度制定義,弧度制的運用.

教學(xué)工具

投影儀等

教學(xué)過程

一、創(chuàng)設(shè)情境,引入新課

師:有人問:海口到三亞有多遠時,有人回答約250公里,但也有人回答約160英里,請問那一種回答是正確的?(已知1英里=1.6公里)

顯然,兩種回答都是正確的,但為什么會有不同的數(shù)值呢?那是因為所采用的度量制不同,一個是公里制,一個是英里制.他們的長度單位是不同的,但是,他們之間可以換算:1英里=1.6公里.

在角度的度量里面,也有類似的情況,一個是角度制,我們已經(jīng)不再陌生,另外一個就是我們這節(jié)課要研究的角的另外一種度量制---弧度制.

二、講解新課

1.角度制規(guī)定:將一個圓周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.

弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制與角度制之間如何換算?請看課本,自行解決上述問題.

2.弧度制的定義

長度等于半徑長的圓弧所對的圓心角叫做1弧度角,記作1,或1弧度,或1(單位可以省略不寫).

(師生共同活動)探究:如圖,半徑為的圓的圓心與原點重合,角的終邊與軸的正半軸重合,交圓于點,終邊與圓交于點.請完成表格.

我們知道,角有正負零角之分,它的弧度數(shù)也應(yīng)該有正負零之分,如-π,-2π等等,一般地,正角的弧度數(shù)是一個正數(shù),負角的弧度數(shù)是一個負數(shù),零角的弧度數(shù)是0,角的正負主要由角的旋轉(zhuǎn)方向來決定.

角的概念推廣以后,在弧度制下,角的集合與實數(shù)集R之間建立了一一對應(yīng)關(guān)系:即每一個角都有的一個實數(shù)(即這個角的弧度數(shù))與它對應(yīng);反過來,每一個實數(shù)也都有的一個角(即弧度數(shù)等于這個實數(shù)的角)與它對應(yīng).

四、課堂小結(jié)

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

五、作業(yè)布置

作業(yè):習(xí)題1.1A組第7,8,9題.

課后小結(jié)

度數(shù)與弧度數(shù)的換算也可借助“計算器”《中學(xué)數(shù)學(xué)用表》進行;在具體運算時,“弧度”二字和單位符號“rad”可以省略如:3表示3radsinp表示prad角的正弦應(yīng)確立如下的概念:角的概念推廣之后,無論用角度制還是弧度制都能在角的集合與實數(shù)的集合之間建立一種一一對應(yīng)的關(guān)系。

課后習(xí)題

作業(yè):習(xí)題1.1A組第7,8,9題.

板書

高考數(shù)學(xué)優(yōu)秀教案精選篇2

教學(xué)目標(biāo)

熟練掌握三角函數(shù)式的求值

教學(xué)重難點

熟練掌握三角函數(shù)式的求值

教學(xué)過程

【知識點精講】

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

三角函數(shù)式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

三角函數(shù)式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論

【例題選講】

課堂小結(jié)】

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

三角函數(shù)式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

三角函數(shù)式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數(shù)值的影響,對角的范圍要討論

高考數(shù)學(xué)優(yōu)秀教案精選篇3

教學(xué)設(shè)計

整體設(shè)計

教學(xué)分析

對余弦定理的探究,教材是從直角三角形入手,通過向量知識給予證明的.一是進一步加深學(xué)生對向量工具性的認識,二是感受向量法證明余弦定理的奇妙之處,感受向量法在解決問題中的威力.課后仍鼓勵學(xué)生探究余弦定理的其他證明方法,推出余弦定理后,可讓學(xué)生用自己的語言敘述出來,并讓學(xué)生結(jié)合余弦函數(shù)的性質(zhì)明確:如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.由上可知,余弦定理是勾股定理的推廣.還要啟發(fā)引導(dǎo)學(xué)生注意余弦定理的幾種變形式,并總結(jié)余弦定理的適用題型的特點,在解題時正確選用余弦定理達到求解、化簡的目的.

應(yīng)用余弦定理及其另一種形式,并結(jié)合正弦定理,可以解決以下問題:(1)已知兩邊和它們的夾角解三角形;(2)已知三角形的三邊解三角形.在已知兩邊及其夾角解三角形時,可以用余弦定理求出第三條邊,這樣就把問題轉(zhuǎn)化成已知三邊解三角形的問題.在已知三邊和一個角的情況下,求另一個角既可以應(yīng)用余弦定理的另一種形式,也可以用正弦定理.用余弦定理的另一種形式,可以(根據(jù)角的余弦值)直接判斷角是銳角還是鈍角,但計算比較復(fù)雜.用正弦定理計算相對比較簡單,但仍要根據(jù)已知條件中邊的大小來確定角的大小.

根據(jù)教材特點,本內(nèi)容安排2課時.一節(jié)重在余弦定理的推導(dǎo)及簡單應(yīng)用,一節(jié)重在解三角形中兩個定理的綜合應(yīng)用.

三維目標(biāo)

1.通過對余弦定理的探究與證明,掌握余弦定理的另一種形式及其應(yīng)用;了解余弦定理與勾股定理之間的聯(lián)系;知道解三角形問 題的幾種情形.

2.通過對三角形邊角關(guān)系的探索,提高數(shù)學(xué)語言的表達能力,并進一步理解三角函數(shù)、余弦定理、向量的數(shù)量積等知識間的關(guān)系,加深對數(shù)學(xué)具有廣泛應(yīng)用的認識;同時通過正弦定理、余弦定理數(shù)學(xué)表達式的變換,認識數(shù)學(xué)中的對稱美、簡潔美、統(tǒng)一美.

3.加深對數(shù)學(xué)思想的認識,本節(jié)的主要數(shù)學(xué)思想是量化的數(shù)學(xué)思想、分類討論思想以及數(shù)形結(jié)合思想;這些數(shù)學(xué)思想是對于數(shù)學(xué)知識的理性的、本質(zhì)的、高度抽象的、概括的認識,具有普遍的指導(dǎo)意義,它是我們學(xué)習(xí)數(shù)學(xué)的重要組成部分,有利于加深學(xué)生對具體數(shù)學(xué)知識的理解和掌握.

重點難點

教學(xué)重點:掌握余弦定理;理解余弦定理的推導(dǎo)及其另一種形式,并能應(yīng)用它們解三角形.

教學(xué)難點:余弦定理的證明及其基本應(yīng)用以及結(jié)合正弦定理解三角形.

課時安排

2課時

教學(xué)過程

第1課時

導(dǎo)入新課

思路1.(類比導(dǎo)入)在探究正弦定理的證明過程中,從直角三角形的特殊情形入手,發(fā)現(xiàn)了正弦定理.現(xiàn)在我們?nèi)匀粡闹苯侨切蔚倪@種特殊情形入手,然后將銳角三角形轉(zhuǎn)化為直角三角形,再適當(dāng)運用勾股定理進行探索,這種導(dǎo)入比較自然流暢,易于學(xué)生接受.

思路2.(問題導(dǎo)入)如果已知一個三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判斷方法,這個三角形是大小、形狀完全確定的三角形,能否把這個邊角關(guān)系準(zhǔn)確量化出來呢?也就是從已知的兩邊和它們的夾角能否計算出三角形的另一邊和另兩個角呢?根據(jù)我們掌握的數(shù)學(xué)方法,比如說向量法,坐標(biāo)法,三角法,幾何法等,類比正弦定理的證明,你能推導(dǎo)出余弦定理嗎?

推進新課

新知探究

提出問題

??1?通過對任意三角形中大邊對大角,小邊對小角的邊角量化,我們發(fā)現(xiàn)了正弦定理,解決了兩類解三角形的問題.那么如果已知一個三角形的兩條邊及這兩邊所夾的角,根據(jù)三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.怎樣已知三角形的兩邊及這兩邊夾角的條件下解三角形呢?

?2?能否用平面幾何方法或向量方法或坐標(biāo)方法等探究出計算第三邊長的關(guān)系式或計算公式呢?

?3?余弦定理的內(nèi)容是什么?你能用文字語言敘述它嗎?余弦定理與以前學(xué)過的關(guān)于三角形的什么定理在形式上非常接近?

?4?余弦定理的另一種表達形式是什么?

?5?余弦定理可以解決哪些類型的解三角形問題?怎樣求解?

?6?正弦定理與余弦定理在應(yīng)用上有哪些聯(lián)系和區(qū)別?

活動:根據(jù)學(xué)生的認知特點,結(jié)合課件“余弦定理猜想與驗證”,教師引導(dǎo)學(xué)生仍從特殊情形入手,通過觀察、猜想、證明而推廣到一般.

如下圖,在直角三角形中,根據(jù)兩直角邊及直角可表示斜邊,即勾股定理,那么對于任意三角形,能否根據(jù)已知兩邊及夾角來表示第三邊呢?下面,我們根據(jù)初中所學(xué)的平面幾何的有關(guān)知識來研究這一問題.

如下圖,在△ABC中,設(shè)BC=a,AC=b,AB=c,試根據(jù)b、c、∠A來表示a.

教師引導(dǎo)學(xué)生進行探究.由于初中平面幾何所接觸的是解直角三角形問題,所以應(yīng)添加輔助線構(gòu)成直角三角形.在直角三角形內(nèi)通過邊角關(guān)系作進一步的轉(zhuǎn)化工作,故作CD垂直于AB于點D,那么在Rt△BDC中,邊a可利用勾股定理通過CD、DB表示,而CD可在Rt△ADC中利用邊角關(guān)系表示,DB可利用AB,AD表示,進而在Rt△ADC內(nèi)求解.探究過程如下:

過點C作CD⊥AB,垂足為點D,則在Rt△CDB中,根據(jù)勾股定理,得

a2=CD2+BD2.

∵在Rt△ADC中,CD2=b2-AD2,

又∵BD2=(c-AD)2=c2-2c?AD+AD2,

∴a2=b2-AD2+c2-2c?AD+AD2=b2+c2-2c?AD.

又∵在Rt△ADC中,AD=b?cosA,

∴a2=b2+c2-2bccosA.

類似地可以證明b2=c2+a2-2cacosB.

c2=a2+b2-2abcosC.

另外,當(dāng)A為鈍角時也可證得上述結(jié)論,當(dāng)A為直角時,a2+b2=c2也符合上述結(jié)論.

這就是解三角形中的另一個重要定理——余弦定理.下面類比正弦定理的證明,用向量的方法探究余弦定理,進一步體會向量知識的工具性作用.

教師與學(xué)生一起探究余弦定理中的角是以余弦的形式出現(xiàn)的,又涉及邊長問題,學(xué)生很容易想到向量的數(shù)量積的定義式:a?b=|a||b|cosθ,其中θ為a,b的夾角.

用向量法探究余弦定理的具體過程如下:

如下圖,設(shè)CB→=a,CA→=b,AB→=c,那么c=a-b,

|c|2=c?c=(a-b)?(a-b)

=a?a+b?b-2a?b

=a2+b2-2abcosC.

所以c2=a2+b2-2abcosC.

同理可以證明a2=b2+c2-2bccosA,

b2=c2+a2-2cacosB.

這個定理用坐標(biāo)法證明也比較容易,為了拓展學(xué)生的思路,教師可引導(dǎo)學(xué)生用坐標(biāo)法證明,過程如下:

如下圖,以C為原點,邊CB所在直線為x軸,建立平面直角坐標(biāo)系,設(shè)點B的坐標(biāo)為(a,0),點A的坐標(biāo)為(bcosC,bsinC),根據(jù)兩點間距離公式

AB=?bcosC-a?2+?bsinC-0?2,

∴c2=b2cos2C-2abcosC+a2+b2sin2C,

整理,得c2=a2+b2-2abcosC.

同理可以證明:a2=b2+c2-2bccosA,

b2=c2+a2-2cacosB.

余弦定理:三角形任何一邊的平方等于其他兩邊的平方的和減去這兩邊與它們夾角的余弦的積的兩倍,即

a2=b2+c2-2bccosAb2=c2+a2-2accosBc2=a2+b2-2abcosC

余弦定理指出了三角形的三條邊與其中的一個角之間的關(guān)系,每一個等式中都包含四個不同的量,它們分別是三 角形的三邊和一個角,知道其中的三個量,就可以求得第四個量.從而由三角形的三邊可確定三角形的三個角,得到余弦定理的另一種形式:

cosA=b2+c2-a22bccosB=c2+a2-b22cacosC=a2+b2-c22ab

教師引導(dǎo)學(xué)生進一步觀察、分析余弦定理的結(jié)構(gòu)特征,發(fā)現(xiàn)余弦定理與以前的關(guān)于三角形的勾股定理在形式上非常接近,讓學(xué)生比較并討論它們之間的關(guān)系.學(xué)生容易看出,若△ABC中,C=90°,則cosC=0,這時余弦定理變?yōu)閏2=a2+b2.由此可知,余弦定理是勾股定理的推廣;勾股定理是余弦定理的特例.另外,從余弦定理和余弦函 數(shù)的性質(zhì)可知,在一個三角形中,如果兩邊的平方和 等于第三邊的平方,那么第三邊所對的角是直角;如果兩邊的平方和小于第三邊的平方,那么第三邊所對的角是鈍角;如果兩邊的平方和大于第三邊的平方,那么第三邊所對的角是銳角.從以上可知,余弦定理可以看作是勾股定理的推廣.

應(yīng)用余弦定理,可以解決以下兩類有關(guān)解三角形的問題:

①已知三角形的三邊解三角形,這類問題是三邊確定,故三角也確定,有解;

②已知兩邊和它們的夾角解三角形,這類問題是第三邊確定,因而其他兩個角也確定,故解.不會產(chǎn)生利用正弦定理解三角形所產(chǎn)生的判斷解的取舍的問題.

把正弦定理和余弦定理結(jié)合起來應(yīng)用,能很好地解決解三角形的問題.教師引導(dǎo)學(xué)生觀察兩個定理可解決的問題類型會發(fā)現(xiàn):如果已知的是三角形的三邊和一個角的情況,而求另兩角中的某個角時,既可以用余弦定理也可以用正弦定理,那么這兩種方法哪個會更好些呢?教師與學(xué)生一起探究得到:若用余弦定理的另一種形式,可以根據(jù)余弦值直接判斷角是銳角還是鈍角,但計算比較復(fù)雜.用正弦定理計算相對比較簡單,但仍要根據(jù)已知條件中邊的大小來確定角的大小,所以一般應(yīng)該選擇用正弦定理去計算比較小的邊所對的角.教師要點撥學(xué)生注意總結(jié)這種優(yōu)化解題的技巧.

討論結(jié)果:

(1)、(2)、(3)、(6)見活動.

(4)余弦定理的另一種表達形式是:

cosA=b2+c2-a22bccosB=c2+a2-b22cacosC=a2+b2-c22ab

(5)利用余弦定理可解決兩類解三角形問題:

一類是已知三角形三邊,另一類是已知三角形兩邊及其夾角.

應(yīng)用示例

例1如圖,在△ABC中,已知a=5,b=4,∠C=120°,求c.

活動:本例是利用余弦定理解決的第二類問題,可讓學(xué)生獨立完成.

解:由余弦定理,得

c2=a2+b2-2abcos120°,

因此c=52+42-2×5×4×?-12?=61.

例2如圖,在△ABC中,已知a=3,b=2,c=19,求此三角形各個角的大小及其面積.(精確到0.1)

活動:本例中已知三角形三邊,可利用余弦定理先求出邊所對的角,然后利用正弦定理再求出另一角,進而求得第三角.教材中 這樣安排是為了讓學(xué)生充分熟悉正弦定理和余弦定理.實際教學(xué)時可讓學(xué)生自己探求解題思路,比如學(xué)生可能會三次利用余弦定理分別求出三個角,或先求出最小邊所對的角再用正弦定理求其他角,這些教師都要給予鼓勵,然后讓學(xué)生自己比較這些方法的不同或優(yōu)劣,從而深刻理解兩個定理的.

解:由余弦定理,得

cos∠BCA=a2+b2-c22ab=32+22-?19?22×3×2=9+4-1912=-12,

因此∠BCA=120°,

再由正弦定理,得

sinA=asin∠BCAc=3×3219=33219≈0.596 0,

因此∠A≈36.6°或∠A≈143.4°(不合題意,舍去).

因此∠B=180°-∠A-∠BCA≈23.4°.

設(shè)BC邊上的高為AD,則

AD=csinB=19sin23.4°≈1.73.

所以△ABC的面積≈12×3×1.73≈2.6.

點評:在既可應(yīng)用正弦定理又可應(yīng)用余弦定理時,體會兩種方法存在的差異.當(dāng)所求的 角是鈍角時,用余弦定理可以立即判定所求的角,但用正弦定理則不能直接判定.

變式訓(xùn)練

在△ABC中,已知a=14,b=20,c=12,求A、B和C.(精確到1°)

解:∵cosA=b2+c2-a22bc=202+122-1422×20×12=0.725 0,

∴A≈44°.

∵cosC=a2+b2-c22ab=142+202-1222×14×20=113140≈0.807 1,

∴C≈36°.

∴B=180°-(A+C)≈180°-(44°+36°)=100°.

例3如圖,△ABC的頂點為A(6,5),B(-2,8)和C(4,1),求∠A.(精確到0.1°)

活動:本例中三角形的三點是以坐標(biāo)的形式給出的,點撥學(xué)生利用兩點間距離公式先求出三邊,然后利用余弦定理求出∠A.可由學(xué)生自己解決,教師給予適當(dāng)?shù)闹笇?dǎo).

解:根據(jù)兩點間距離公式,得

AB=[6-?-2?]2+?5-8?2=73,

BC=?-2-4?2+?8-1?2=85,

AC=?6-4?2+?5-1?2=25.

在△ABC中,由余弦定理,得

cosA=AB2+AC2-BC22AB?AC=2365≈0.104 7,

因此∠A≈84.0°.

點評:三角形三邊的長作為中間過程,不必算出精確數(shù)值.

變式訓(xùn)練

用向量的數(shù)量積運算重做本例.

解:如例3題圖,AB→=(-8,3),AC→=(-2,-4),

∴|AB→|=73,|AC→|=20.

∴cosA=AB→?AC→|AB→||AC→|

=-8×?-2?+3×?-4?73×20

=2365≈0.104 7.

因此∠A≈84.0°.

例4在△ABC中,已知a=8,b=7,B=60°,求c及S△ABC.

活動:根據(jù)已知條件可以先由正弦定理求出角A,再結(jié)合三角形內(nèi)角和定理求出角C,再利用正弦定理求出邊c,而三角形面積由公式S△ABC=12acsinB可以求出.若用余弦定理求c,可利用余弦定理b2=c2+a2-2cacosB建立關(guān)于c的方程,亦能達到求c的目的.

解法一:由正弦定理,得8sinA=7sin60°,

∴A1=81.8°,A2=98.2°.

∴C1=38.2°,C2=21.8°.

由7sin60°=csinC,得c1=3,c2=5,

∴S△ABC=12ac1sinB=63或S△ABC=12ac2sinB=103.

解法二:由余弦定理,得b2=c2+a2-2cacosB,

∴72=c2+82-2×8×ccos60°.

整理,得c2-8c+15=0,

解之,得c1=3,c2=5.∴S△ABC=12ac1sinB=63或S△ABC=12ac2sinB=103.

點評:在解法一的思路里,應(yīng)注意用正弦定理應(yīng)有兩種結(jié)果,避免遺漏;而解法二更有耐人尋味之處,體現(xiàn)出余弦定理作為公式而直接應(yīng)用的另外用處,即可以用之建立方程,從而運用方程的觀點去解決,故解法二應(yīng)引起學(xué)生的注意.

綜合上述例題,要求學(xué)生總結(jié)余弦定理在求解三角形時的適用范圍;已知三邊求角或已知兩邊及其夾角解三角形,同時注意余弦定理在求角時的優(yōu)勢以及利用余弦定理建立方程的解法,即已知兩邊及一角解三角形可用余弦定理解之.

變式訓(xùn)練

在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c.已知c=2,C=60°.

(1)若△ABC的面積等于3,求a,b;

(2)若sinB=2sinA,求△ABC的面積.

解:(1)由余弦定理及已知條件,得a2+b2-2abcos60°=c2,即a2+b2-ab=4,

又因為△ABC的面積等于3,所以12absinC=3,ab=4.

聯(lián)立方程組a2+b2-ab=4,ab=4,解得a=2,b=2.

(2)由正弦定理及已知條件,得b=2a,

聯(lián)立方程組a2+b2-ab=4,b=2a,解得a=233,b=433.

所以△ABC的面積S=12absinC=233.

知能訓(xùn)練

1.在△ABC中,已知C=120°,兩邊a與b是方程x2-3x+2=0的兩根,則c的值為…

(  )

A.3 B.7 C.3 D.7

2.已知三角形的三邊長分別為x2+x+1,x2-1,2x+1(x>1),求三角形的角.

答案:

1.D 解析:由題意,知a+b=3,ab=2.

在△ABC中,由余弦定理,知

c2=a2+b2-2abcosC=a2+b2+ab

=(a+b)2-ab

=7,

∴c=7.

2.解:比較得知,x2+x+1為三角形的邊,設(shè)其對角為A.

由余弦定理,得

cosA=?x2-1?2+?2x+1?2-?x2+x+1?22?x2-1??2x+1?

=-12.

∵0

即三角形的角為120°.

課堂小結(jié)

1.教師先讓學(xué)生回顧本節(jié)課的探究過程,然后再讓學(xué)生用文字語言敘述余弦定理,準(zhǔn)確理解其實質(zhì),并由學(xué)生回顧可用余弦定理解決哪些解三角形的問題.

2.教師指出:從方程的觀點來分析,余弦定理的每一個等式都包含了四個不同的量,知道其中三個量,便可求得第四個量.要通過課下作業(yè),從方程的角度進行各種變形,達到辨明余弦定理作用的目的.

3.思考本節(jié)學(xué)到的探究方法,定性發(fā)現(xiàn)→定量探討→得到定理.

作業(yè)

課本習(xí)題1—1A組4、5、6;習(xí)題1—1B組1~5.

設(shè)計感想

本教案的設(shè)計充分體現(xiàn)了“民主教學(xué)思想”,教師不主觀、不武斷、不包辦,讓學(xué)生充分發(fā)現(xiàn)問題,合作探究,使學(xué)生真正成為學(xué)習(xí)的主體,力求在課堂上人人都會有“令你自己滿意”的探究成果.這樣能夠不同程度地開發(fā)學(xué)生的潛能,且使教學(xué)內(nèi)容得以鞏固和延伸.“發(fā)現(xiàn)法”是常用的一種教學(xué)方法,本教案設(shè)計是從直角三角形出發(fā),以歸納——猜想——證明——應(yīng)用為線索,用恰當(dāng)?shù)膯栴}通過啟發(fā)和點撥,使學(xué)生把規(guī)律和方法在愉快的氣氛中探究出來,而展現(xiàn)的過程合情合理,自然流暢,學(xué)生的主體地位得到了充分的發(fā)揮.

縱觀本教案設(shè)計流程,引入自然,學(xué)生探究到位,體現(xiàn)新課程理念,能較好地完成三維目標(biāo),課程內(nèi)容及重點難點也把握得恰到好處.環(huán)環(huán)相扣的設(shè)計流程會強烈地感染著學(xué)生積極主動地獲取知識,使學(xué)生的探究欲望及精神狀態(tài)始終處于狀態(tài).在整個教案設(shè)計中學(xué)生的思維活動量大,這是貫穿整個教案始終的一條主線,也應(yīng)是實際課堂教學(xué)中的一條主線.

備課資料

一、與解三角形有關(guān)的幾個問題

1.向量方法證明三角形中的射影定理

如圖,在△ABC中,設(shè)三內(nèi)角A、B、C的對邊分別是a、b、c.

∵AC→+CB→=AB→,

∴AC→?(AC→+CB→)=AC→?AB→.

∴AC→?AC→+AC→?CB→=AC→?AB→.

∴|AC→|2+|AC→||CB→|cos(180°-C)=|AB→||AC→|cosA.

∴|AC→|-|CB→|cosC=|AB→|cosA.

∴b-acosC=ccosA,

即b=ccosA+acosC.

同理,得a=bcosC+ccosB,c=bcosA+acosB.

上述三式稱為三角形中的射影定理.

2.解斜三角形題型分析

正弦定理和余弦定理的每一個等式中都包含三角形的四個元素,如果其中三個元素是已知的(其中至少有一個元素是邊),那么這個三角形一定可解.

關(guān)于斜三角形的解法,根據(jù)所給的條件及適用的定理可以歸納為下面四種類型:

(1)已知兩角及其中一個角的對邊,如A、B、a,解△ABC.

解:①根據(jù)A+B+C=π,求出角C;

②根據(jù)asinA=bsinB及asinA=csinC,求b、c.

如果已知的是兩角和它們的夾邊,如A、B、c,那么先求出第三角C,然后按照②來求解.求解過程中盡可能應(yīng)用已知元素.

(2)已知兩邊和它們的夾角,如a、b、C,解△ABC.

解:①根據(jù)c2=a2+b2-2abcosC,求出邊c;

②根據(jù)cosA=b2+c2-a22bc,求出角A;

③由B=180°-A-C,求出角B.

求出第三邊c后,往往為了計算上的方便,應(yīng)用正弦定理求角,但為了避免討論角是鈍角還是銳角,應(yīng)先求較小邊所對的角(它一定是銳角),當(dāng)然也可以用余弦定理求解.

(3)已知兩邊及其中一條邊所對的角,如a、b、A,解△ABC.

解:①asinA=bsinB,經(jīng)過討論求出B;

②求出B后,由A+B+C=180°,求出角C;

③再根據(jù)asinA=csinC,求出邊c.

(4)已知三邊a、b、c,解△ABC.

解:一般應(yīng)用余弦定理求出兩角后,再由A+B+C=180°,求出第三個角.

另外,和第二種情形完全一樣,當(dāng)?shù)谝粋€角求出后,可以根據(jù)正弦定理求出第二個角,但仍然需注意要先求較小邊所對的銳角.

(5)已知三角,解△ABC.

解:滿足條件的三角形可以作出無窮多個,故此類問題解不.

3.“可解三角形”與“需解三角形”

解斜三角形是三角函數(shù)這章中的一個重要內(nèi)容,也是求解立體幾何和解析幾何問題的一個重要工具.但在具體解題時,有些同學(xué)面對較為復(fù)雜(即圖中三角形不止一個)的斜三角形問題,往往不知如何下手.至于何時用正弦定理或余弦定理也是心中無數(shù),這既延長了思考時間,更影響了解題的速度和質(zhì)量.但若明確了“可解三角形”和“需解三角形”這兩個概念,則情形就不一樣了.

所謂“可解三角形”,是指已經(jīng)具有三個元素(至少有一邊)的三角形;而“需解三角形”則是指需求邊或角所在的三角形.當(dāng)一個題目的圖形中三角形個數(shù)不少于兩個時,一般來說其中必有一個三角形是可解的,我們就可先求出這個“可解三角形”的某些邊和角,從而使“需解三角形”可解.在確定了“可解三角形”和“需解三角形”后,就要正確地判斷它們的類型,合理地選擇正弦定理或余弦定理作為解題工具,求出需求元素,并確定解的情況.

“可解三角形”和“需解三角形”的引入,能縮短求解斜三角形問 題的思考時間.一題到手后,先做什么,再做什么,心里便有了底.分析問題的思路也從“試試看”“做做看”等不大確定的狀態(tài)而變?yōu)椤坝械姆攀浮钡厝ネ诰颍ヌ骄?

二、備用習(xí)題

1.△ABC中,已知b2-bc-2c2=0,a=6,cosA=78,則△ABC的面積S為(  )

A.152 B.15 C.2 D.3

2.已知一個三角形的三邊為a、b和a2+b2+ab,則這個三角形的角是(  )

A.75° B.90° C.120° D.150°

3.已知銳角三角形的兩邊長為2和3,那么第三邊長x的取值范圍是(  )

A.(1,5) B.(1,5) C.(5,5) D.(5,13)

4.如果把直角三角形的三邊都增加同樣的長度,則這個新三角形的形狀為(  )

A.銳角三角形 B.直角三角形

C.鈍角三角形 D.由增加的長度確定

5.(1)在△ABC中,a,b,c分別是角A,B,C所對的邊,已知a=3,b=3,C=30°,則A=__________.

(2)在△ABC中,三個角A,B,C的對邊邊長分別為a=3,b=4,c=6,則bccosA+cacosB+abcosC的值為__________.

6.在△ABC中,若(a+b+c)(a+b-c)=3ab,并且sinC=2sinBcosA,試判斷△ABC的形狀.

7.在△ABC中,設(shè)三角形面積為S,若S=a2-(b -c)2,求tanA2的值.

參考答案:

1.A 解析:由b2-bc-2c2=0,即(b+c)(b-2c)=0,得b=2c;①

由余弦定理,得a2=b2+c2-2bccosA,即6=b2+c2-74bc.②

解①②,得b=4,c=2.

由cosA=78,得sinA=158,

∴S△ABC=12bcsinA=12×4×2×158=152.

2.C 解析:設(shè)角為θ,由余弦定理,得a2+b2+ab=a2+b2-2abcosθ,

∴cosθ=-12.∴θ=120°.

3.D 解析:若x為邊,由余弦定理,知4+9-x22×2×3>0,即x2<13,∴0

若x為最小邊,則由余弦定理知4+x2-9>0,即x2>5,

∴x>5.綜上,知x的取值范圍是5

4.A 解析:設(shè)直角三角形的三邊為a,b,c,其中c為斜邊,增加長度為x.

則c+x為新三角形的最長邊.設(shè)其所對的角為θ,由余弦定理知,

cosθ=?a+x?2+?b+x?2-?c+x?22?a+x??b+x?=2?a+b-c?x+x22?a+x??b+x?>0.

∴θ為銳角,即新三角形為銳角三角形.

5.(1)30° (2)612 解析:(1)∵a=3,b=3,C=30°,由余弦定理,有

c2=a2+b2-2abcosC=3+9-2×3×3×32=3,

∴a=c,則A=C=30°.

(2)∵bccosA+cacosB+abcosC=b2+c2-a22+c2+a2-b22+a2+b2-c22

=a2+b2+c22=32+42+622=612.

6.解:由正弦定理,得sinCsinB=cb,

由sinC=2sinBcosA,得cosA=sinC2sinB=c2b,

又根據(jù)余弦定理,得cosA=b2+c2-a22bc,

故c2b=b2+c2-a22bc,即c2=b2+c2-a2.

于是,得b2=a2,故b=a.

又因為(a +b+c)(a+b-c)=3ab,

故(a+b)2-c2=3ab.由a=b,得4b2-c2=3b2,

所以b2=c2,即b=c.故a=b=c.

因此△ABC為正三角形.

7.解:S=a2-(b-c)2,又S=12bcsinA,

∴12bcsinA=a2-(b-c)2,

有14sinA=-?b2+c2-a2?2bc+1,

即14?2sinA2?cosA2=1-cosA.

∴12?sinA2?cosA2=2sin2A2.

∵sinA2≠0,故12cosA2=2 sinA2,∴tanA2=14.

第2課時

導(dǎo)入新課

思路1.(復(fù)習(xí)導(dǎo)入)讓學(xué)生回顧正弦定理、余弦定理的內(nèi)容及表達式,回顧上兩節(jié)課所解決的解三角形問題,那么把正弦定理、余弦定理放在一起并結(jié)合三角、向量、幾何等知識我們會探究出什么樣的解題規(guī)律呢?由此展開新課.

思路2.(問題導(dǎo)入)我們在應(yīng)用正弦定理解三角形時,已知三角形的兩邊及其一邊的對角往往得出不同情形的解,有時有一解,有時有兩解,有時又無解,這究竟是怎么回事呢?本節(jié)課我們從一般情形入手,結(jié)合圖形對這一問題進行進一步的探究,由此展開新課.

推進新課

新知探究

提出問題

?1?回憶正弦定理、余弦定理及其另一種形式的表達式,并用文字語言敘述其內(nèi)容.能寫出定理的哪些變式?

?2?正、余弦定理各適合解決哪類解三角形問題?

?3?解三角形常用的有關(guān)三角形的定理、性質(zhì)還有哪些?

?4?為什么有時解三角形會出現(xiàn)矛盾,即無解呢?比如:,①已知在△ABC中,a=22 cm,b=25 cm,A=135°,解三角形;,②已知三條邊分別是3 cm,4 cm,7 cm,解三角形.

活動:結(jié)合課件、幻燈片等,教師可把學(xué)生分成幾組互相提問正弦定理、余弦定理的內(nèi)容是什么?各式中有幾個量?有什么作用?用方程的思想寫出所有的變形(包括文字?jǐn)⑹?,讓學(xué)生回答正、余弦定理各適合解決的解三角形類型問題、三角形內(nèi)角和定理、三角形面積定理等.可讓學(xué)生填寫下表中的相關(guān)內(nèi)容:

解斜三角形時可

用的定理和公式 適用類型 備注

余弦定理

a2=b2+c2-2bccosA

b2=a2+c2-2accosB

c2=b2+a2-2bacosC (1)已知三邊

(2)已知兩邊及其夾角

類型(1)(2)有解時只有一解

正弦定理

asinA=bsinB=csinC=2R

(3)已知兩角和一邊

(4)已知兩邊及其中一邊的對角 類型(3)在有解時只有一解,類型(4)可有兩解、一解或無解

三角形面積公式

S=12bcsinA

=12acsinB

=12absinC

(5)已知兩邊及其夾角

對于正弦定理,教師引導(dǎo)學(xué)生寫出其變式:a=2RsinA,b=2RsinB,c=2RsinC,利用幻燈片更能直觀地看出解三角形時的邊角互化.對于余弦定理,教師要引導(dǎo)學(xué)生寫出其變式(然后教師打出幻燈片):∠A>90°?a2>b2+c2;∠A=90°?a2=b2+c2;∠A<90°?a2

以上內(nèi)容的復(fù)習(xí)回顧如不加以整理,學(xué)生將有雜亂無章、無規(guī)碰撞之感,覺得好像更難以把握了,要的就是這個效果,在看似學(xué)生亂提亂問亂說亂寫的時候,教師適時地打出幻燈片(1張),立即收到耳目一新,主線立現(xiàn)、心中明朗的感覺,幻燈片除以上2張外,還有:

asinA=bsinB=csinC=2R;a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC;cosA=b2+c2-a22bc,cosB=a2+c2-b22ac,cosC=a2+b2-c22ab.

出示幻燈片后,必要時教師可根據(jù)學(xué)生的實際情況略作點評.

與學(xué)生一起討論解三角形有時會出現(xiàn)無解的情況.如問題(4)中的①會出現(xiàn)如下解法:

根據(jù)正弦定理,sinB=bsinAa=25sin133°22≈0.831 1.

∵0°

于是C=180°-(A+B)≈180°-(133°+56.21°)=-9.21°或C=180°-(A+B)≈180°-(133°+123.79°)=-76.79°.

到這里我們發(fā)現(xiàn)解三角形竟然解出負角來,顯然是錯誤的.問題出在哪里呢?在檢驗以上計算無誤的前提下,教師引導(dǎo)學(xué)生分析已知條件.由a=22 cm,b=25 cm,這里a

討論結(jié)果:

(1)、(3)、(4)略.

(2)利用正弦定理和余弦定理可解決以下四類解三角形問題:

①已知兩角和任一邊,求其他兩邊和一角.

②已知兩邊和其中一邊的對角,求另一邊的對角(從而進一步求出其他的邊和角).

③已知三邊,求三個角.

④已知兩邊和夾角,求第三邊和其他兩角.

應(yīng)用示例

例1在△ABC中,角A、B、C所對的邊分別為a、b、c,b=acosC且△ABC的邊長為12,最小角的正弦值為13.

(1)判斷△ABC的形狀;

(2)求△ABC的面積.

活動:教師與學(xué)生一起共同探究本例,通過本例帶動正弦定理、余弦定理的知識串聯(lián),引導(dǎo)學(xué)生觀察條件b=acosC,這是本例中的關(guān)鍵條件.很顯然,如果利用正弦定理實現(xiàn)邊角轉(zhuǎn)化,則有2RsinB=2RsinA?cosC.若利用余弦定理實現(xiàn)邊角轉(zhuǎn)化,則有b=a?a2+b2-c22ab,兩種轉(zhuǎn)化策略都是我們常用的.引導(dǎo)學(xué)生注意對于涉及三角形的三角函數(shù)變換.內(nèi)角和定理A+B+C=180°非常重要,常變的角有A2+B2=π2-C2,2A+2B+2C=2π,sinA=sin(B+C),cosA=-cos(B+C),sinA2=cosB+C2,cosA2=sinB+C2等,三個內(nèi)角的大小范圍都不能超出(0°,180°).

解:(1)方法一:∵b=acosC,

∴由正弦定理,得sinB=sinA?cosC.

又∵sinB=sin(A+C),∴sin(A+C)=sinA?cosC,

即cosA?sinC=0.

又∵A、C∈(0,π),∴cosA=0,即A=π2.

∴△ABC是A=90°的直角三角形.

方法二:∵b=acosC,

∴由余弦定理,得b=a?a2+b2-c22ab,

2b2=a2+b2-c2,即a2=b2+c2.

由勾股定理逆定理,知△ABC是A=90°的直角三角形.

(2)∵△ABC的邊長為12,由(1)知斜邊a=12.

又∵△ABC最小角的正弦值為13,

∴Rt△ABC的最短直角邊長為12×13=4.

另一條直角邊長為122-42=82,

∴S△ABC=12×4×82=162.

點評:以三角形為載體,以三角變換為核心,結(jié)合正弦定理和余弦定理綜合考查邏輯分析和計算推理能力是高考命題的一個重要方向.因此要特別關(guān)注三角函數(shù)在解三角形中的靈活運用,及正、余弦定理的靈活運用.

變式訓(xùn)練

在△ABC中,角A、B、C所對的邊分別是a、b、c,且cosA=45.

(1)求sin2B+C2+cos2A的值;

(2)若b=2,△ABC的面積S=3,求a.

解:(1)sin2B+C2+cos2A=1-cos?B+C?2+cos2A

=1+cosA2+2cos2A-1=5950.

(2)∵cosA=45,∴sinA=35.

由S△ABC=12bcsinA得3=12×2c×35,解得c=5.

由余弦定理a2=b2+c2-2bccosA,可得a2=4+25-2×2×5×45=13,

∴a=13.

例2已知a,b,c是△ABC中∠A,∠B,∠C的對邊,若a=7,c=5,∠A=120°,求邊長b及△ABC外接圓半徑R.

活動:教師引導(dǎo)學(xué)生觀察已知條件,有邊有角,可由余弦定理先求出邊b,然后利用正弦定理再求其他.點撥學(xué)生注意體會邊角的互化,以及正弦定理和余弦定理各自的作用.

解:由余弦定理,知a2=b2+c2-2bccosA,即b2+52-2×5×bcos120°=49,

∴b2+5b-24=0.

解得b=3.(負值舍去).

由正弦定理:asinA=2R,即7sin120°=2R,解得R=733.

∴△ABC中,b=3,R=733.

點評:本題直接利用余弦定理,借助方程思想求解邊b,讓學(xué)生體會這種解題方法,并探究其他的解題思路.

變式訓(xùn)練

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知b2+c2=a2+3bc,求:

(1)A的大小;

(2)2sinB?cosC-sin(B-C)的值.

解:(1)由余弦定理,得cosA=b2+c2-a22bc=3bc2bc=32,

∴∠A=30°.

(2)2sinBcosC-sin(B-C)

=2sinBcosC-(sinB?cosC-cosBsinC)

=sinBcosC+cosBsinC

=sin(B+C)

=sinA

=12.

例3如圖,在四邊形ABCD中,∠ADB=∠BCD=75°,∠ACB=∠BDC=45°,DC=3,求:

(1)AB的長;

(2)四邊形ABCD的面積.

活動:本例是正弦定理、余弦定理的靈活應(yīng)用,結(jié)合三角形面積求解,難度不大,可讓學(xué)生自己獨立解決,體會正、余弦定理結(jié)合三角形面積的綜合應(yīng)用.

解:(1)因為∠BCD=75°,∠ACB=45°,所以∠ACD=30°.

又因為∠BDC=45°,

所以∠DAC=180°-(75°+ 45°+ 30°)=30°.所以AD=DC=3.

在△BCD中,∠CBD=180°-(75°+ 45°)=60°,

所以BDsin75°=DCsin60°,BD =3sin75°sin60°=6+22.

在△ABD中,AB2=AD2+ BD2-2×AD×BD×cos75°=(3)2+(6+22)2-2×3×6+22×6-24= 5,所以AB=5.

(2)S△ABD=12×AD×BD×sin75°=12×3×6+22×6+24=3+234.

同理, S△BCD=3+34.

所以四邊形ABCD的面積S=6+334.

點評:本例解答對運算能力提出了較高要求,教師應(yīng)要求學(xué)生“列式工整、算法簡潔、運算正確”,養(yǎng)成規(guī)范答題的良好習(xí)慣.

變式訓(xùn)練

如圖,△ACD是等邊三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2.

(1)求cos∠CBE的值;

(2)求AE.

解:(1)因為∠BCD=90°+60°=150°,

CB=AC=CD,

所以∠CBE=15°.

所以cos∠CBE=cos(45°-30°)=6+24.

(2)在△ABE中,AB=2,

由正弦定理,得AEsin?45°-15°?=2sin?90°+15°?,

故AE=2sin30°cos15°=2×126+24=6-2.

例4在△ABC中,求證:a2sin2B+b2sin2A=2absinC.

活動:此題所證結(jié)論包含關(guān)于△ABC的邊角關(guān)系,證明時可以考慮兩種途徑:一是把角的關(guān)系通過正弦定理轉(zhuǎn)化為邊的關(guān)系,若是余弦形式則通過余弦定理;二是把邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,一般是通過正弦定理.另外,此題要求學(xué)生熟悉相關(guān)的三角函數(shù)的有關(guān)公式,如sin2B=2sinBcosB等,以便在化為角的關(guān)系時進行三角函數(shù)式的恒等變形.

證法一: (化為三角函數(shù))

a2sin2B+b2sin2A=(2RsinA)2?2sinB?cosB+(2RsinB)2?2sinA?cosA=8R2sinA?sinB(sinAcosB+cosAsinB)=8R2sinAsinBsinC=2?2RsinA?2RsinB?sinC=2absinC.

所以原式得證.

證法二: (化為邊的等式)

左邊=a2?2sinBcosB+b2?2sinAcosA=a2?2b2R?a2+c2-b22ac+b2?2a2R?b2+c2-a22bc=ab2Rc(a2+c2-b2+b2+c2-a2)=ab2Rc?2c2=2ab?c2R=2absinC.

點評:由邊向角轉(zhuǎn)化,通常利用正弦定理的變形式:a=2RsinA,b=2RsinB,c=2RsinC,在轉(zhuǎn)化為角的關(guān)系式后,要注意三角函數(shù)公式的運用,在此題用到了正弦二倍角公式sin2A=2sinA?cosA,正弦兩角和公式sin(A+B)=sinA?cosB+cosA?sinB;由角向邊轉(zhuǎn)化,要結(jié)合正弦定理變形式以及余弦定理形式二.

高考數(shù)學(xué)優(yōu)秀教案精選篇4

變 式訓(xùn)練

在△ABC中,求證:

(1)a2+b2c2=sin2A+sin2Bsin2C;

(2)a2+b2+c2=2(bccosA+cacosB+abcosC).

證明:(1)根據(jù)正弦定理,可設(shè)

asinA=bsinB= csinC= k,

顯然 k≠0,所以

左邊=a2+b2c2=k2sin2A+k2sin2Bk2sin2C=sin2A+sin2Bsin2C=右邊.

(2)根據(jù)余弦定理,得

右邊=2(bcb2+c2-a22bc+cac2+a2-b22ca+aba2+b2-c22ab)

=(b2+c2- a2)+(c2+a2-b2)+(a2+b2-c2)

=a2+b2+c2=左邊.

知能訓(xùn)練

1.已知△ABC的三個內(nèi)角A、B、C所對的三邊分別為a、b、c.若△ABC的面積S=c2-(a-b)2,則tanC2等于(  )

A.12 B.14 C.18 D.1

2.在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足4sin2A+C2-cos2B=72.

(1)求角B的度數(shù);

(2)若b=3,a+c=3,且a>c,求a、c的值.

答案:

1.B 解析:由余弦定理及面積公式,得

S=c2-a2-b2+2ab=-2abcosC+2ab=12absinC,

∴1-cosCsinC=14.

∴tanC2=1-cosCsinC=14.

2.解:(1)由題意,知4cos2B-4cosB+1=0,∴cosB=12.

∵0

(2)由余弦定理,知3=a2+c2-ac=(a+c)2-3ac=9-3ac,

∴ac=2.①

又∵a+c=3,②

解①②聯(lián)立的方程組,得a=2,c=1或a=1,c=2.

∵a>c,∴a=2,c=1.

課堂小結(jié)

教師與學(xué)生一起回顧本節(jié)課我們共同探究的解三角形問題,特別是已知兩邊及其一邊的對角時解的情況,通過例題及變式訓(xùn)練,掌握了三角形中邊角互化的問題以及聯(lián)系其他知識的小綜合問題.學(xué)到了具體問題具體分析的良好思維習(xí)慣.

教師進一步點出,解三角形問題是確定線段 的長度和角度的大小,解三角形需要利用邊角關(guān)系,三角形中,有六個元素:三條邊、三個角;解三角形通常是給出三個獨立的條件(元素),求出其他的元素,如果是特殊的三角形,如直角三角形,兩個條件(元素)就夠了.正弦定理與余弦定理是刻畫三角形邊角關(guān)系的重要定理,正弦定理適用于已知兩角一邊,求其他要素;余弦定理適用于已知兩邊和夾角,或者已知三邊求其他要素.

作業(yè)

課本本節(jié)習(xí)題1—1B組6、7.

補充作業(yè)

1.在△ABC中,若tanAtanB=a2b2,試判斷△ABC的形狀.

2.在△ABC中,a、b、c分別是角A、B、C的對邊,A=60°,B>C,b、c是方程x2-23x+m=0的兩個實數(shù)根,△ABC的面積為32,求△ABC的三邊長.

解答:1.由tanAtanB=a2b2,得sinA?cosBcosA?sinB=a2b2,

由正弦定理,得a=2RsinA,b=2RsinB,

∴sinA?cosBcosA?sinB=4R2sin2A4R2sin2B.

∴sinA?cosA=sinB?cosB,

即sin2A=sin2B.

∴A+B=90°或A=B,

即△ABC為等腰三角形或直角三角形.

2.由韋達定理,得bc=m,S△ABC=12bcsinA=12msin60°=34m=32,

∴m=2.

則原方程變?yōu)閤2-23x+2=0,

解得兩根為x=3±1.

又B>C,∴b>c.

故b=3+1,c=3-1.

由余弦定理a2=b2+c2-2bccosA=6,得a=6.

∴所求三角形的三邊長分別為a=6,b=3+1,c=3-1.

設(shè)計感想

本教案設(shè)計的思路是:通過一些典型 的實例來拓展關(guān)于解三角形的各種題型及其解決方法,具體解三角形時,所選例題突出了函數(shù)與方程的思想,將正弦定理、余弦定理視作方程或方程組,處理已知量與未知量之間的關(guān)系.

本教案的設(shè)計注重了一題多解的訓(xùn)練,如例4給出了兩種解法,目的是讓學(xué)生對換個角度看問題有所感悟,使學(xué)生經(jīng)常自覺地從一個思維過程轉(zhuǎn)換到另一個思維過程,逐步培養(yǎng)出創(chuàng)新意識.換一個角度看問題,變通一下,也許會有意想不到的效果.

備課資料

一、正弦定理、余弦定理課外探究

1.正、余弦定理的邊角互換功能

對于正、余弦定理,同學(xué)們已經(jīng)開始熟悉,在解三角形的問題中常會用到它,其實,在涉及到三角形的其他問題中,也常會用到它們.兩個定理的特殊功能是邊角互換,即利用它們可以把邊的關(guān)系轉(zhuǎn)化為角的關(guān)系,也可以把角的關(guān)系轉(zhuǎn)化為邊的關(guān)系,從而使許多問題得以解決.

【例1】 已知a、b為△ABC的邊,A、B分別是a、b的對角,且sinAsinB=32,求a+bb的值.

解:∵asinA=bsinB,∴sinAsinB=ab.又sinAsinB=32(這是角的關(guān)系),

∴ab=32(這是邊的關(guān)系).于是,由合比定理,得a+bb=3+22=52.

【例2】 已知△ABC中,三邊a、b、c所對的角分別是A、B、C,且2b=a+c.

求證:sinA+sinC=2sinB.

證明:∵a+c=2b(這是邊的關(guān)系),①

又asinA=bsinB=csinC,∴a=bsinAsinB,②

c=bsinCsinB.③

將②③代入①,得bsinAsinB+bsinCsinB=2b.整理,得sinA+sinC=2sinB(這是角的關(guān)系).

2.正、余弦定理的巧用

某些三角習(xí)題的化簡和求解,若能巧用正、余弦定理,則可避免許多繁雜的運算,從而使問題較輕松地獲得解決,現(xiàn)舉例說明如下:

【例3】 求sin220°+cos280°+3sin20°cos80°的值.

解:原式=sin220°+sin210°-2sin20°sin10°cos150°,

∵20°+10°+150°=180°,∴20°、10°、150°可看作一個三角形的三個內(nèi)角.

設(shè)這三個內(nèi)角所對的邊依次是a、b、c,由余弦定理,得a2+b2-2abcos150°=c2.(_

而由正弦定理,知a=2Rsin20°,b=2Rsin10°,c=2Rsin150°,代入(_式,得sin220°+sin210°-2sin20°sin10°cos150°=sin2150°=14.∴原式=14.

二、備用習(xí)題

1.在△ABC中,已知a=11,b=20,A=130°,則此三角形(  )

A.無解 B.只有一解

C.有兩解 D.解的個數(shù)不確定

2.△ABC中,已知(a+c)(a-c)=b2+bc,則A等于(  )

A.30° B.60° C.120° D.150°

3.△ABC中,若acosB=bcosA,則該三角形一定是(  )

A.等腰三角形但不是直角三角形

B.直角三角形但不是等腰三角形

C.等腰直角三角形

D.等腰三角形或直角三角形

4.△ABC中,tanA?tanB<1,則該三角形一定是(  )

A.銳角三角形 B.鈍角三角形

C.直角三角形 D.以上都有可能

5.在△ABC中,若∠B=30°,AB=23,AC=2,則△ABC的面積是__________.

6.在△ABC中,已知A=120°,b=3,c=5,求:

(1)sinBsinC;

(2)sinB+sinC.

7.在△ABC中,角A、B、C所對邊的長分別是a、b、c,且cos〈AB→,AC→〉=14.

(1)求sin2B+C2+cos2A的值;

(2)若a=4,b+c=6,且b

參考答案:

1.A 解析:∵a90°,因此無解.

2.C 解析:由已知,得a2-c2=b2+bc,∴b2+c2-a2=-bc.

由余弦定理,得

cosA=b2+c2-a22bc=-bc2bc=-12.

∴A=120°.

3.D 解析:由已知條件結(jié)合正弦定理,得

sinAcosB=sinBcosA,即sinA?cosA=sinB?cosB,

∴sin2A=sin2B.

∴2A=2B或2A=180°-2B,

即A=B或A+B= 90°.

因此三角形為等腰三角形或直角三角形.

4.B 解析:由已知條件,得sinAcosA?sinBcosB<1,即cos?A+B?cosA?cosB>0,cosCcosAcosB<0.

說明cosA,cosB,cosC中有且只有一個為負.

因此三角形為鈍角三角形.

5.23或3 解析:由ACsin30°=ABsinC,知sinC=32.

若∠C=60°,則△ABC是直角三角形,S△ABC=12AB×AC=23.

若∠C=120°,則∠A=30°,S△ABC=12AC×AB?sin30°=3.

6.解法一:(1)∵b=3,c=5,A=120°,

∴由余弦定理,得a2=b2+c2-2bccosA=9+25-2×3×5×(-12)=49.∴a=7.

由正弦定理,得sinB=bsinAa=3×327=3314,sinC=csinAa=5314,

∴sinBsinC=45196.

(2)由(1)知,sinB+sinC=8314=437.

解法二:(1)由余弦定理,得a=7,

由正弦定理a=2RsinA,得R=a2sinA=733,

∴sinB=b2R=32×733=3314,sinC=c2R=5314.

∴sinBsinC=45196.

(2)由(1)知,sinB+sinC=8314=437.

7.解:(1)sin2B+C2+cos2A=12[1-cos(B+C)]+(2cos2A-1)=12(1+cosA)+(2cos2A-1)=12(1+14)+(18-1)=-14.

(2)由余弦定理,得a2=b2+c2-2bccosA,

即a2=(b+c)2-2bc-2bccosA

高考數(shù)學(xué)優(yōu)秀教案精選篇5

教學(xué)目標(biāo)

(1)掌握一元二次不等式的解法;

(2)知道一元二次不等式可以轉(zhuǎn)化為一元一次不等式組;

(3)了解簡單的分式不等式的解法;

(4)能利用二次函數(shù)與一元二次方程來求解一元二次不等式,理解它們?nèi)咧g的內(nèi)在聯(lián)系;

(5)能夠進行較簡單的分類討論,借助于數(shù)軸的直觀,求解簡單的含字母的一元二次不等式;

(6)通過利用二次函數(shù)的圖象來求解一元二次不等式的解集,培養(yǎng)學(xué)生的數(shù)形結(jié)合的數(shù)學(xué)思想;

(7)通過研究函數(shù)、方程與不等式之間的內(nèi)在聯(lián)系,使學(xué)生認識到事物是相互聯(lián)系、相互轉(zhuǎn)化的,樹立辨證的世界觀.

教學(xué)重點:一元二次不等式的解法;

教學(xué)難點:弄清一元二次不等式與一元二次方程、二次函數(shù)的關(guān)系.

教與學(xué)過程設(shè)計

第一課時

Ⅰ.設(shè)置情境

問題:

①解方程

②作函數(shù) 的圖像

③解不等式

【置疑】在解決上述三問題的基礎(chǔ)上分析,一元一次函數(shù)、一元一次方程、一元一次不等式之間的關(guān)系。能通過觀察一次函數(shù)的圖像求得一元一次不等式的解集嗎?

【回答】函數(shù)圖像與x軸的交點橫坐標(biāo)為方程的根,不等式 的解集為函數(shù)圖像落在x軸上方部分對應(yīng)的橫坐標(biāo)。能。

通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數(shù)的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運用

在這里我們發(fā)現(xiàn)一元一次方程,一次不等式與一次函數(shù)三者之間有著密切的聯(lián)系。利用這種聯(lián)系(集中反映在相應(yīng)一次函數(shù)的圖像上!)我們可以快速準(zhǔn)確地求出一元一次不等式的解集,類似地,我們能不能將現(xiàn)在要求解的一元二次不等式與二次函數(shù)聯(lián)系起來討論找到其求解方法呢?

Ⅱ.探索與研究

我們現(xiàn)在就結(jié)合不等式 的求解來試一試。(師生共同活動用“特殊點法”而非課本上的“列表描點”的方法作出 的圖像,然后請一位程度中下的同學(xué)寫出相應(yīng)一元二次方程及一元二次不等式的解集。)

【答】方程 的解集為

不等式 的解集為

【置疑】哪位同學(xué)還能寫出 的解法?(請一程度差的同學(xué)回答)

【答】不等式 的解集為

我們通過二次函數(shù) 的圖像,不僅求得了開始上課時我們還不知如何求解的那個第(5)小題 的解集,還求出了 的解集,可見利用二次函數(shù)的圖像來解一元二次不等式是個十分有效的方法。

下面我們再對一般的一元二次不等式 與 來進行討論。為簡便起見,暫只考慮 的情形。請同學(xué)們思考下列問題:

如果相應(yīng)的一元二次方程 分別有兩實根、惟一實根,無實根的話,其對應(yīng)的二次函數(shù) 的圖像與x軸的位置關(guān)系如何?(提問程度較好的學(xué)生)

【答】二次函數(shù) 的圖像開口向上且分別與x軸交于兩點,一點及無交點。

現(xiàn)在請同學(xué)們觀察表中的二次函數(shù)圖,并寫出相應(yīng)一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)

【答】 的解集依次是

的解集依次是

它是我們今后求解一元二次不等式的主要工具。應(yīng)盡快將表中的結(jié)果記住。其關(guān)鍵就是抓住相應(yīng)二次函數(shù) 的圖像。

課本第19頁上的例1.例2.例3.它們均是求解二次項系數(shù) 的一元二次不等式,卻都沒有給出相應(yīng)二次函數(shù)的圖像。其解答過程雖很簡練,卻不太直觀。現(xiàn)在我們在課本預(yù)留的位置上分別給它們補上相應(yīng)二次函數(shù)圖像。

(教師巡視,重點關(guān)注程度稍差的同學(xué)。)

Ⅲ.演練反饋

1.解下列不等式:

(1) (2)

(3) (4)

2.若代數(shù)式 的值恒取非負實數(shù),則實數(shù)x的取值范圍是 。

3.解不等式

(1) (2)

參考答案:

1.(1) ;(2) ;(3) ;(4)R

2.

3.(1)

(2)當(dāng) 或 時, ,當(dāng) 時,

當(dāng) 或 時, 。

Ⅳ.總結(jié)提煉

這節(jié)課我們學(xué)習(xí)了二次項系數(shù) 的一元二次不等式的解法,其關(guān)鍵是抓住相應(yīng)二次函數(shù)的圖像與x軸的交點,再對照課本第39頁上表格中的結(jié)論給出所求一元二次不等式的解集。

(五)、課時作業(yè)

(P20.練習(xí)等3、4兩題)

(六)、板書設(shè)計

第二課時

Ⅰ.設(shè)置情境

(通過講評上一節(jié)課課后作業(yè)中出現(xiàn)的問題,復(fù)習(xí)利用“三個二次”間的關(guān)系求解一元二次不等式的主要操作過程。)

上節(jié)課我們只討論了二次項系數(shù) 的一元二次不等式的求解問題。肯定有同學(xué)會問,那么二次項系數(shù) 的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?

Ⅱ.探索研究

(學(xué)生議論紛紛.有的說仍然利用二次函數(shù)的圖像,有的說將二次項的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請持上述見解的學(xué)生代表進一步說明各自的見解.)

生甲:只要將課本第39頁上表中的二次函數(shù)圖像次依關(guān)于x軸翻轉(zhuǎn)變成開口向下的拋物線,再根據(jù)可得的圖像便可求得二次項系數(shù) 的一元二次不等式的解集.

生乙:我覺得先在不等式兩邊同乘以-1將二次項系數(shù)變?yōu)檎龜?shù)后直接運用上節(jié)課所學(xué)的方法求解就可以了.

師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學(xué)們則需再記住一張類似于第39頁上的表格中的各結(jié)論.這不但加重了記憶負擔(dān),而且兩表中的結(jié)論容易搞混導(dǎo)致錯誤.而按后一種見解來操作時則不存在這個問題,請同學(xué)們閱讀第19頁例4.

(待學(xué)生閱讀完畢,教師再簡要講解一遍.)

[知識運用與解題研究]

由此例可知,對于二次項系數(shù)的一元二次不等式是將其通過同解變形化為 的一元二次不等式來求解的,因此只要掌握了上一節(jié)課所學(xué)過的方法。我們就能求

解任意一個一元二次不等式了,請同學(xué)們求解以下兩不等式.(調(diào)兩位程度中等的學(xué)生演板)

(1) (2)

(分別為課本P21習(xí)題1.5中1大題(2)、(4)兩小題.教師講評兩位同學(xué)的解答,注意糾正表述方面存在的問題.)

訓(xùn)練二 可化為一元一次不等式組來求解的不等式.

目前我們熟悉了利用“三個二次”間的關(guān)系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如 (或 )的一元二次不等式時則根據(jù)(有理數(shù))乘(除)運算的“符號法則”化為同學(xué)們更加熟悉的一元一次不等式組來求解.現(xiàn)在清同學(xué)們閱讀課本P20上關(guān)于不等式 求解的內(nèi)容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學(xué)生閱讀完畢,請一程度較好,表達能力較強的學(xué)生回答該問題.)

【答】因為滿足不等式組 或 的x都能使原不等式 成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.

這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關(guān)系,故它們必相等,現(xiàn)在請同學(xué)們求解以下各不等式.(調(diào)三位程度各異的學(xué)生演板.教師巡視,重點關(guān)注程度較差的學(xué)生).

(1) [P20練習(xí)中第1大題]

(2) [P20練習(xí)中第1大題]

(3) [P20練習(xí)中第2大題]

(老師扼要講評三位同學(xué)的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).

例5 解不等式

因為(有理數(shù))積與商運算的“符號法則”是一致的,故求解此類不等式時,也可像求解 (或 )之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。

解:(略)

現(xiàn)在請同學(xué)們完成課本P21練習(xí)中第3、4兩大題。

(等學(xué)生完成后教師給出答案,如有學(xué)生對不上答案,由其本人追查原因,自行糾正。)

[訓(xùn)練三]用“符號法則”解不等式的復(fù)式訓(xùn)練。

(通過多媒體或其他載體給出下列各題)

1.不等式 與 的解集相同此說法對嗎?為什么[補充]

2.解下列不等式:

(1) [課本P22第8大題(2)小題]

(2)   [補充]

(3) [課本P43第4大題(1)小題]

(4) [課本P43第5大題(1)小題]

(5) [補充]

(每題均先由學(xué)生說出解題思路,教師扼要板書求解過程)

參考答案:

1.不對。同 時前者無意義而后者卻能成立,所以它們的解集是不同的。

2.(1)

(2)原不等式可化為: ,即

解集為 。

(3)原不等式可化為

解集為

(4)原不等式可化為 或

解集為

(5)原不等式可化為: 或 解集為

Ⅲ.總結(jié)提煉

這節(jié)課我們重點講解了利用(有理數(shù))乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學(xué)們應(yīng)掌握好這一方法。

(五)布置作業(yè)

(P22.2(2)、(4);4;5;6。)

(六)板書設(shè)計

高考數(shù)學(xué)優(yōu)秀教案精選篇6

一、教材分析

1.《指數(shù)函數(shù)》在教材中的地位、作用和特點

《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。

此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。

2.教學(xué)目標(biāo)、重點和難點

通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認知結(jié)構(gòu),主要體現(xiàn)在三個方面:

知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認識函數(shù)。

技能維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。

素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。

鑒于對學(xué)生已有的知識基礎(chǔ)和認知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點和難點如下:

(1)知識目標(biāo):①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實際問題;

(2)技能目標(biāo):①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;

(3)情感目標(biāo):①體驗從特殊到一般的學(xué)習(xí)規(guī)律,認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題②通過教學(xué)互動促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力③領(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。

(4)教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。

(5)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

二、教法設(shè)計

由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結(jié)合起來,主要突出了幾個方面:

1.創(chuàng)設(shè)問題情景.按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。

2.強化“指數(shù)函數(shù)”概念.引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

教師活動:①引導(dǎo)學(xué)生對課堂知識進行歸納,完成對分類討論、數(shù)形結(jié)合等數(shù)學(xué)方法的歸納;②布置課后及拓展作業(yè)

學(xué)生活動:完成對指數(shù)函數(shù)的概念和性質(zhì)的課內(nèi)小結(jié)并通過課后作業(yè)進一步深化學(xué)習(xí)目標(biāo),有能力的同學(xué)完成網(wǎng)上調(diào)研并在下節(jié)課與同學(xué)交流我國在利用14C進行考古所取得的成果。

設(shè)計意圖:教師在本環(huán)節(jié)引導(dǎo)學(xué)生對指數(shù)函數(shù)的知識進行梳理,深化知識與技能目標(biāo),并通過作業(yè)實現(xiàn)目標(biāo)的鞏固。

5.板書設(shè)計

考慮到板書在教學(xué)過程中發(fā)揮的功能,本節(jié)課我設(shè)計了由三個板塊構(gòu)成的板書,板面分配比例為2:1:1,第一大板塊包含了兩部分,一是指數(shù)函數(shù)的定義,二是課前準(zhǔn)備的畫有坐標(biāo)系和表格的小黑板;第二板塊書寫了例1和例2的第一問;第三板塊由學(xué)生完成例2的后兩問、練習(xí)和課堂小結(jié)組成。

五、教學(xué)評價

教學(xué)評價的及時有效能調(diào)動課堂的氣氛、感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極的推動作用,因此,我將教學(xué)評價將貫穿于本節(jié)課的每個教學(xué)環(huán)節(jié)中。例如情景導(dǎo)入的表達式評價、回憶指數(shù)知識的記憶評價、得出指數(shù)函數(shù)概念的歸納評價、作圖時的準(zhǔn)確性評價、解題時的規(guī)范性評價、小結(jié)時的表述性評價等。在學(xué)生交流、討論、探究等環(huán)節(jié)注意啟發(fā)學(xué)生完成知識互評、能力互評,通過多種評價方式讓更多的學(xué)生獲得學(xué)習(xí)的自信,在輕松融洽的課堂評價氛圍中完成本節(jié)課的教學(xué)和學(xué)習(xí)任務(wù)。

當(dāng)然教師會通過對學(xué)生作業(yè)的批改獲得更全面的對學(xué)生知識掌握的評價和課堂效果的反思,并在后續(xù)的時間里修訂課堂設(shè)計方案,達到預(yù)期的教學(xué)效果,實現(xiàn)學(xué)生的能力發(fā)展。以上是我對指數(shù)函數(shù)這節(jié)課的設(shè)計和思考,敬請批評指正!

高考數(shù)學(xué)優(yōu)秀教案精選篇7

一、教材分析

1、教材的地位和作用:

數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。

2、教學(xué)目標(biāo)

根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)

a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運用。

b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習(xí)慣。

3、教學(xué)重點和難點

根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:

①等差數(shù)列的概念。

②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。

二、學(xué)情分析對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

二、教法分析

針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

三、學(xué)法指導(dǎo)在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

四、教學(xué)程序

本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。

(一)復(fù)習(xí)引入:

1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______ 。(N﹡;解析式)

通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。

2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②

通過練習(xí)2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認知能力。

(二) 新課探究

1、由引入自然的給出等差數(shù)列的概念:

如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

① “從第二項起”滿足條件;

②公差d一定是由后項減前項所得;

③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達式:

an+1-an=d (n≥1)

同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一個數(shù)列公差<0, 第二個數(shù)列公差>0,第三個數(shù)列公差=0

由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

34370 主站蜘蛛池模板: 邹城市| 富阳市| 彝良县| 富裕县| 塔河县| 盐边县| 土默特左旗| 保康县| 河北省| 利辛县| 万年县| 庄浪县| 扎鲁特旗| 正安县| 五峰| 松桃| 塔城市| 北辰区| 广安市| 高唐县| 定远县| 沽源县| 库车县| 桂阳县| 镶黄旗| 藁城市| 德昌县| 博兴县| 宜兰县| 瑞金市| 疏勒县| 潜山县| 大邑县| 宣汉县| 天水市| 赤水市| 成都市| 焦作市| 茶陵县| 泰州市| 柳林县|