人教版高一數(shù)學教案設計
高中的數(shù)學教學不同于初中的數(shù)學教學,初中數(shù)學較為形象,教學時運用通俗易懂的方法便可使學生理解,而高中數(shù)學趨于抽象,定義也更為復雜難懂,符號表示多樣,公式變化多樣靈活。今天小編在這給大家整理了一些人教版高一數(shù)學教案設計,我們一起來看看吧!
人教版高一數(shù)學教案設計1
教學目標
1.使學生了解反函數(shù)的概念;
2.使學生會求一些簡單函數(shù)的反函數(shù);
3.培養(yǎng)學生用辯證的觀點觀察、分析解決問題的能力。
教學重點
1.反函數(shù)的概念;
2.反函數(shù)的求法。
教學難點
反函數(shù)的概念。
教學方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數(shù)的定義、記法、習慣記法。(記作A);
第二張:本課時作業(yè)中的預習內容及提綱。
教學過程
(I)講授新課
(檢查預習情況)
師:這節(jié)課我們來學習反函數(shù)(板書課題)§2.4.1反函數(shù)的概念。
同學們已經進行了預習,對反函數(shù)的概念有了初步的了解,誰來復述一下反函數(shù)的定義、記法、習慣記法?
生:(略)
(學生回答之后,打出幻燈片A)。
師:反函數(shù)的定義著重強調兩點:
(1)根據(jù)y=f(x)中x與y的關系,用y把x表示出來,得到x=φ(y);
(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應。
師:應該注意習慣記法是由記法改寫過來的。
師:由反函數(shù)的定義,同學們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?
生:一一映射確定的函數(shù)才有反函數(shù)。
(學生作答后,教師板書,若學生答不來,教師再予以必要的啟示)。
師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)
在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請同學們談一下,函數(shù)y=f(x)與它的反函數(shù)y=f–1(x)兩者之間,定義域、值域存在什么關系呢?
生:(學生作答,教師板書)函數(shù)的定義域,值域分別是它的反函數(shù)的值域、定義域。
師:從反函數(shù)的概念可知:函數(shù)y=f(x)與y=f–1(x)互為反函數(shù)。
從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)將x=f–1(y)改寫成y=f–1(x),即對調x=f–1(y)中的x、y。
(3)指出反函數(shù)的定義域。
下面請同學自看例1
(II)課堂練習課本P68練習1、2、3、4。
(III)課時小結
本節(jié)課我們學習了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。
(IV)課后作業(yè)
一、課本P69習題2.41、2。
二、預習:互為反函數(shù)的函數(shù)圖象間的關系,親自動手作題中要求作的圖象。
板書設計
課題:求反函數(shù)的方法步驟:
定義:(幻燈片)
注意:小結
一一映射確定的
函數(shù)才有反函數(shù)
函數(shù)與它的反函
數(shù)定義域、值域的關系。
人教版高一數(shù)學教案設計2
目標:
(1)使學生初步理解集合的概念,知道常用數(shù)集的概念及其記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
重點:集合的基本概念
教學過程:
1.引入
(1)章頭導言
(2)集合論與集合論的-----康托爾(有關介紹可引用附錄中的內容)
2.講授新課
閱讀教材,并思考下列問題:
(1)有那些概念?
(2)有那些符號?
(3)集合中元素的特性是什么?
(4)如何給集合分類?
(一)有關概念:
1、集合的概念
(1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,都可以稱作對象.
(2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合.
(3)元素:集合中每個對象叫做這個集合的元素.
集合通常用大寫的拉丁字母表示,如A、B、C、……元素通常用小寫的拉丁字母表示,如a、b、c、……
2、元素與集合的關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
要注意“∈”的方向,不能把a∈A顛倒過來寫.
3、集合中元素的特性
(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.
(2)互異性:集合中的元素一定是不同的.
(3)無序性:集合中的元素沒有固定的順序.
4、集合分類
根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限個元素的集合叫做有限集
(3)含有無窮個元素的集合叫做無限集
注:應區(qū)分,0等符號的含義
5、常用數(shù)集及其表示方法
(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合.記作N
(2)正整數(shù)集:非負整數(shù)集內排除0的集.記作N_或N+
(3)整數(shù)集:全體整數(shù)的集合.記作Z
(4)有理數(shù)集:全體有理數(shù)的集合.記作Q
(5)實數(shù)集:全體實數(shù)的集合.記作R
注:(1)自然數(shù)集包括數(shù)0.
(2)非負整數(shù)集內排除0的集.記作N_或N+,Q、Z、R等其它數(shù)集內排除0的集,也這樣表示,例如,整數(shù)集內排除0的集,表示成Z_
課堂練習:教材第5頁練習A、B
小結:本節(jié)課我們了解集合論的發(fā)展,學習了集合的概念及有關性質
課后作業(yè):第十頁習題1-1B第3題
人教版高一數(shù)學教案設計3
一、教學過程
1.復習
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關系。
求出函數(shù)y=x3的反函數(shù)。
2.新課
先讓學生用幾何畫板畫出y=x3的圖象,學生紛紛動手,很快畫出了函數(shù)的圖象。有部分學生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象:
教師在畫出上述圖象的學生中選定生1,將他的屏幕內容通過教學系統(tǒng)放到其他同學的屏幕上,很快有學生作出反應。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對,但是怎么會得到這個圖象,請大家討論。
(學生展開討論,但找不出原因。)
師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>
(生1將他的制作過程重新重復了一次。)
生3:問題出在他選擇的次序不對。
師:哪個次序?
生3:作點B前,選擇xA和xA3為B的坐標時,他先選擇xA3,后選擇xA,作出來的點的坐標為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來問題確實是出在這個地方,那么請同學再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
(學生再次陷入思考,一會兒有學生舉手。)
師:我們請生4來告訴大家。
生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標x與縱坐標y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進一步研究y=x3的圖象及其反函數(shù)y=的圖象的關系,同學們能不能看出這兩個函數(shù)的圖象有什么樣的關系?
(多數(shù)學生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進一步追問。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點的橫坐標與縱坐標交換,可得到y(tǒng)=的圖象。
師:將橫坐標與縱坐標互換?怎么換?
(學生一時未能明白教師的意思,場面一下子冷了下來,教師不得不將問題進一步明確。)
師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關系,有的話,是什么樣的對稱關系?
(學生重新開始觀察這兩個函數(shù)的圖象,一會兒有學生舉手。)
生6:我發(fā)現(xiàn)這兩個圖象應是關于某條直線對稱。
師:能說說是關于哪條直線對稱嗎?
生6:我還沒找出來。
(接下來,教師引導學生利用幾何畫板找出兩函數(shù)圖象的對稱軸,畫出如下圖形,如圖2所示:)
學生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關于直線y=x對稱。
師:這個結論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關系嗎?請同學們用其他函數(shù)來試一試。
(學生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進行驗證,最后大家一致得出結論:函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。)
教師巡視全班時已經發(fā)現(xiàn)這個問題,將這個圖象傳給全班學生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),②也不是函數(shù)的圖象。
最后教師與學生一起總結:
點(x,y)與點(y,x)關于直線y=x對稱;
函數(shù)及其反函數(shù)的圖象關于直線y=x對稱。
二、反思與點評
1.在開學初,我就教學幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當中,發(fā)現(xiàn)學生根據(jù)選定坐標作點時,不太注意選擇橫坐標與縱坐標的順序,本課設計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質,所以本節(jié)課教學中,我有意選擇了幾何畫板4。0進行教學。
2.荷蘭數(shù)學教育家弗賴登塔爾認為,數(shù)學學習過程當中,可借助于生動直觀的形象來引導人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學生正確理解比較抽象的概念。
計算機作為一種現(xiàn)代信息技術工具,在直觀化方面有很強的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機,但不能達到更好地理解抽象概念,促進學生思維的目的的話,這樣的教學中,計算機最多只是一種普通的直觀工具而已。
在本節(jié)課的教學中,計算機更多的是作為學生探索發(fā)現(xiàn)的工具,學生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當前計算機用于中學數(shù)學的主要形式還是以輔助為主,更多的是把計算機作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應是:將計算機作為學生的認知工具,讓學生通過計算機發(fā)現(xiàn)探索,甚至利用計算機來做數(shù)學,在此過程當中更好地理解數(shù)學概念,促進數(shù)學思維,發(fā)展數(shù)學創(chuàng)新能力。
3.在引出兩個函數(shù)圖象對稱關系的時候,問題設計不甚妥當,本來是想要學生回答兩個函數(shù)圖象對稱的關系,但學生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學生引入歧途。這樣的問題在今后的教學中是必須力求避免的。
人教版高一數(shù)學教案設計4
教學目標:
(1)知識與技能:了解集合的含義,理解并掌握元素與集合的“屬于”關系、集合中元素的三個特性,識記數(shù)學中一些常用的的數(shù)集及其記法,能選擇自然語言、列舉法和描述法表示集合。
(2)過程與方法:從圓、線段的垂直平分線的定義引出“集合”一詞,通過探討一系列的例子形成集合的概念,舉例剖析集合中元素的三個特性,探討元素與集合的關系,比較用自然語言、列舉法和描述法表示集合。
(3)情感態(tài)度與價值觀:感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴密謹慎的集合語言描述問題的習慣。
教學重難點:
(1)重點:了解集合的含義與表示、集合中元素的特性。
(2)難點:區(qū)別集合與元素的概念及其相應的符號,理解集合與元素的關系,表示具體的集合時,如何從列舉法與描述法中做出選擇。
教學過程:
【問題1】在初中我們已經學習了圓、線段的垂直平分線,大家回憶一下教材中是如何對它們進行定義的?
[設計意圖]引出“集合”一詞。
【問題2】同學們知道什么是集合嗎?請大家思考討論課本第2頁的思考題。
[設計意圖]探討并形成集合的含義。
【問題3】請同學們舉出認為是集合的例子。
[設計意圖]點評學生舉出的例子,剖析并強調集合中元素的三大特性:確定性、互異性、無序性。
【問題4】同學們知道用什么來表示一個集合,一個元素嗎?集合與元素之間有怎樣的關系?
[設計意圖]區(qū)別表示集合與元素的的符號,介紹集合中一些常用的的數(shù)集及其記法。理解集合與元素的關系。
【問題5】“地球上的四大洋”組成的集合可以表示為{太平洋、大西洋、印度洋、北冰洋},“方程(x-1)(x+2)=0的所有實數(shù)根”組成的集
[設計意圖]引出并介紹列舉法。
【問題6】例1的講解。同學們能用列舉法表示不等式x-7<3的解集嗎?
【問題7】例2的講解。請同學們思考課本第6頁的思考題。
[設計意圖]幫助學生在表示具體的集合時,如何從列舉法與描述法中做出選擇。
【問題8】請同學們總結這節(jié)課我們主要學習了那些內容?有什么學習體會?
[設計意圖]學習小結。對本節(jié)課所學知識進行回顧。
布置作業(yè)。