教育巴巴 > 高中教案 > 數學教案 >

2021高一數學公開課教案

時間: 曉晴2 數學教案

高一數學是中學階段一個重要的時期,是良好數學行為習慣養成的關鍵時期。高一階段要求既要加強學生的基礎學習能力,又要提高學生的發展性學習能力,從而培養學生終身學習習慣。今天小編在這給大家整理了一些2021高一數學公開課教案,我們一起來看看吧!

2021高一數學公開課教案

2021高一數學公開課教案1

一元二次不等式的解法

教學目標

(1)掌握一元二次不等式的解法;

(2)知道一元二次不等式可以轉化為一元一次不等式組;

(3)了解簡單的分式不等式的解法;

(4)能利用二次函數與一元二次方程來求解一元二次不等式,理解它們三者之間的內在聯系;

(5)能夠進行較簡單的分類討論,借助于數軸的直觀,求解簡單的含字母的一元二次不等式;

(6)通過利用二次函數的圖象來求解一元二次不等式的解集,培養學生的數形結合的數學思想;

(7)通過研究函數、方程與不等式之間的內在聯系,使學生認識到事物是相互聯系、相互轉化的,樹立辨證的世界觀.

教學重點:一元二次不等式的解法;

教學難點:弄清一元二次不等式與一元二次方程、二次函數的關系.

教與學過程設計

第一課時

Ⅰ.設置情境

問題:

①解方程

②作函數 的圖像

③解不等式

【置疑】在解決上述三問題的基礎上分析,一元一次函數、一元一次方程、一元一次不等式之間的關系。能通過觀察一次函數的圖像求得一元一次不等式的解集嗎?

【回答】函數圖像與x軸的交點橫坐標為方程的根,不等式 的解集為函數圖像落在x軸上方部分對應的橫坐標。能。

通過多媒體或其他載體給出下列表格。扼要講解怎樣通過觀察一次函數的圖像求得一元一次不等式的解集。注意色彩或彩色粉筆的運用

在這里我們發現一元一次方程,一次不等式與一次函數三者之間有著密切的聯系。利用這種聯系(集中反映在相應一次函數的圖像上!)我們可以快速準確地求出一元一次不等式的解集,類似地,我們能不能將現在要求解的一元二次不等式與二次函數聯系起來討論找到其求解方法呢?

Ⅱ.探索與研究

我們現在就結合不等式 的求解來試一試。(師生共同活動用“特殊點法”而非課本上的“列表描點”的方法作出 的圖像,然后請一位程度中下的同學寫出相應一元二次方程及一元二次不等式的解集。)

【答】方程 的解集為

不等式 的解集為

【置疑】哪位同學還能寫出 的解法?(請一程度差的同學回答)

【答】不等式 的解集為

我們通過二次函數 的圖像,不僅求得了開始上課時我們還不知如何求解的那個第(5)小題 的解集,還求出了 的解集,可見利用二次函數的圖像來解一元二次不等式是個十分有效的方法。

下面我們再對一般的一元二次不等式 與 來進行討論。為簡便起見,暫只考慮 的情形。請同學們思考下列問題:

如果相應的一元二次方程 分別有兩實根、惟一實根,無實根的話,其對應的二次函數 的圖像與x軸的位置關系如何?(提問程度較好的學生)

【答】二次函數 的圖像開口向上且分別與x軸交于兩點,一點及無交點。

現在請同學們觀察表中的二次函數圖,并寫出相應一元二次不等式的解集。(通過多媒體或其他載體給出以下表格)

【答】 的解集依次是

的解集依次是

它是我們今后求解一元二次不等式的主要工具。應盡快將表中的結果記住。其關鍵就是抓住相應二次函數 的圖像。

課本第19頁上的例1.例2.例3.它們均是求解二次項系數 的一元二次不等式,卻都沒有給出相應二次函數的圖像。其解答過程雖很簡練,卻不太直觀?,F在我們在課本預留的位置上分別給它們補上相應二次函數圖像。

(教師巡視,重點關注程度稍差的同學。)

Ⅲ.演練反饋

1.解下列不等式:

(1) (2)

(3) (4)

2.若代數式 的值恒取非負實數,則實數x的取值范圍是 。

3.解不等式

(1) (2)

參考答案:

1.(1) ;(2) ;(3) ;(4)R

2.

3.(1)

(2)當 或 時, ,當 時,

當 或 時, 。

Ⅳ.總結提煉

這節課我們學習了二次項系數 的一元二次不等式的解法,其關鍵是抓住相應二次函數的圖像與x軸的交點,再對照課本第39頁上表格中的結論給出所求一元二次不等式的解集。

(五)、課時作業

(P20.練習等3、4兩題)

(六)、板書設計

第二課時

Ⅰ.設置情境

(通過講評上一節課課后作業中出現的問題,復習利用“三個二次”間的關系求解一元二次不等式的主要操作過程。)

上節課我們只討論了二次項系數 的一元二次不等式的求解問題??隙ㄓ型瑢W會問,那么二次項系數 的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?

Ⅱ.探索研究

(學生議論紛紛.有的說仍然利用二次函數的圖像,有的說將二次項的系數變為正數后再求解,…….教師分別請持上述見解的學生代表進一步說明各自的見解.)

生甲:只要將課本第39頁上表中的二次函數圖像次依關于x軸翻轉變成開口向下的拋物線,再根據可得的圖像便可求得二次項系數 的一元二次不等式的解集.

生乙:我覺得先在不等式兩邊同乘以-1將二次項系數變為正數后直接運用上節課所學的方法求解就可以了.

師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學們則需再記住一張類似于第39頁上的表格中的各結論.這不但加重了記憶負擔,而且兩表中的結論容易搞混導致錯誤.而按后一種見解來操作時則不存在這個問題,請同學們閱讀第19頁例4.

(待學生閱讀完畢,教師再簡要講解一遍.)

[知識運用與解題研究]

由此例可知,對于二次項系數的一元二次不等式是將其通過同解變形化為 的一元二次不等式來求解的,因此只要掌握了上一節課所學過的方法。我們就能求

解任意一個一元二次不等式了,請同學們求解以下兩不等式.(調兩位程度中等的學生演板)

(1) (2)

(分別為課本P21習題1.5中1大題(2)、(4)兩小題.教師講評兩位同學的解答,注意糾正表述方面存在的問題.)

訓練二 可化為一元一次不等式組來求解的不等式.

目前我們熟悉了利用“三個二次”間的關系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如 (或 )的一元二次不等式時則根據(有理數)乘(除)運算的“符號法則”化為同學們更加熟悉的一元一次不等式組來求解.現在清同學們閱讀課本P20上關于不等式 求解的內容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學生閱讀完畢,請一程度較好,表達能力較強的學生回答該問題.)

【答】因為滿足不等式組 或 的x都能使原不等式 成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.

這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關系,故它們必相等,現在請同學們求解以下各不等式.(調三位程度各異的學生演板.教師巡視,重點關注程度較差的學生).

(1) [P20練習中第1大題]

(2) [P20練習中第1大題]

(3) [P20練習中第2大題]

(老師扼要講評三位同學的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).

例5 解不等式

因為(有理數)積與商運算的“符號法則”是一致的,故求解此類不等式時,也可像求解 (或 )之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。

解:(略)

現在請同學們完成課本P21練習中第3、4兩大題。

(等學生完成后教師給出答案,如有學生對不上答案,由其本人追查原因,自行糾正。)

[訓練三]用“符號法則”解不等式的復式訓練。

(通過多媒體或其他載體給出下列各題)

1.不等式 與 的解集相同此說法對嗎?為什么[補充]

2.解下列不等式:

(1) [課本P22第8大題(2)小題]

(2)   [補充]

(3) [課本P43第4大題(1)小題]

(4) [課本P43第5大題(1)小題]

(5) [補充]

(每題均先由學生說出解題思路,教師扼要板書求解過程)

參考答案:

1.不對。同 時前者無意義而后者卻能成立,所以它們的解集是不同的。

2.(1)

(2)原不等式可化為: ,即

解集為 。

(3)原不等式可化為

解集為

(4)原不等式可化為 或

解集為

(5)原不等式可化為: 或 解集為

Ⅲ.總結提煉

這節課我們重點講解了利用(有理數)乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學們應掌握好這一方法。

(五)布置作業

(P22.2(2)、(4);4;5;6。)

(六)板書設計

2021高一數學公開課教案2

邏輯聯結詞

一、教學目標

(1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;

(2)理解邏輯聯結詞“或”“且”“非”的含義;

(3)能用邏輯聯結詞和簡單命題構成不同形式的復合命題;

(4)能識別復合命題中所用的邏輯聯結詞及其聯結的簡單命題;

(5)會用真值表判斷相應的復合命題的真假;

(6)在知識學習的基礎上,培養學生簡單推理的技能.

二、教學重點難點:

重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.

三、教學過程

1.新課導入

在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質的重要方面.數學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤.其實,同學們在初中已經開始接觸一些簡易邏輯的知識.

初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)

(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)

學生舉例:平行四邊形的對角線互相平. ……(1)

兩直線平行,同位角相等.…………(2)

教師提問:“……相等的角是對頂角”是不是命題?……(3)

(同學議論結果,答案是肯定的.)

教師提問:什么是命題?

(學生進行回憶、思考.)

概念總結:對一件事情作出了判斷的語句叫做命題.

(教師肯定了同學的回答,并作板書.)

由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.

(教師利用投影片,和學生討論以下問題.)

例1 判斷以下各語句是不是命題,若是,判斷其真假:

命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.

初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.

2.講授新課

大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內容主要講了哪些問題?

(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)

(1)什么叫做命題?

可以判斷真假的語句叫做命題.

判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).

(2)介紹邏輯聯結詞“或”、“且”、“非”.

“或”、“且”、“非”這些詞叫做邏輯聯結詞.邏輯聯結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.

對“或”的理解,可聯想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.

對“且”的理解,可聯想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.

對“非”的理解,可聯想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著集合 在全集 中的補集 .

命題可分為簡單命題和復合命題.

不含邏輯聯結詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.

由簡單命題和邏輯聯結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡單命題“6是自然數”和“6是偶數”由邏輯聯結詞“且”構成的復合命題.

(4)命題的表示:用 , , , ,……來表示.

(教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)

我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.

給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯結詞;應能根據所給出的兩個簡單命題,寫出含有邏輯聯結詞“或”、“且”、“非”的復合命題.

對于給出“若 則 ”形式的復合命題,應能找到條件 和結論 .

在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數的末位數字不是0就是5”的字面上無“或”,但它們都是復合命題.

3.鞏固新課

例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡單命題.

(1) ;

(2)0.5非整數;

(3)內錯角相等,兩直線平行;

(4)菱形的對角線互相垂直且平分;

(5)平行線不相交;

(6)若 ,則 .

(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充.)

例3 寫出下表中各給定語的否定語(用課件打出來).

分析:“等于”的否定語是“不等于”;

“大于”的否定語是“小于或者等于”;

“是”的否定語是“不是”;

“都是”的否定語是“不都是”;

“至多有一個”的否定語是“至少有兩個”;

“至少有一個”的否定語是“一個都沒有”;

“至多有 個”的否定語是“至少有 個”.

(如果時間寬裕,可讓學生討論后得出結論.)

置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當的辨析與展開.)

4.課堂練習:第26頁練習1,2.

5.課外作業:第29頁習題1.6 1,2.

2021高一數學公開課教案3

教學目標:

①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

∵5.1<5.9 ∴loga5.1

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

例 2 ⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數的值域和單調區間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y= log0.5u, u= x- x2復合而成。

板書:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0

⑶已知函數y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調性。

⑷已知函數y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的單調性。

5.課堂教學設計說明

這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,

培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

2021高一數學公開課教案4

一、學習目標與自我評估

1 掌握利用單位圓的幾何方法作函數 的圖象

2 結合 的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期

3 會用代數方法求 等函數的周期

4 理解周期性的幾何意義

二、學習重點與難點

“周期函數的概念”, 周期的求解。

三、學法指導

1、 是周期函數是指對定義域中所有 都有____,即 應是恒等式。

2、周期函數一定會有周期,但不一定存在最小正周期。

四、學習活動與意義建構

五、重點與難點探究

例1、若鐘擺的高度 與時間 之間的函數關系如圖所示

(1)求該函數的周期;

(2)求 時鐘擺的高度。

例2、求下列函數的周期。

(1) (2)

總結:(1)函數 (其中 均為常數,且___的周期T= 。

(2)函數 (其中 均為常數,且__的周期T= 。

例3、求證:____的周期為 __。

例4、(1)研究 和 函數的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數,

總結:函數 (其中 均為常數,且___的周期T= 。

例5、(1)求 的周期。

(2)已知 滿足 ,求證: 是周期函數

課后思考:能否利用單位圓作函數 的圖象。

六、作業:

七、自主體驗與運用

1、函數 的周期為 ( )

A、 B、 C、 D、

2、函數 的最小正周期是 ( )

A、 B、 C、 D、

3、函數 的最小正周期是 ( )

A、 B、 C、 D、

4、函數 的周期是 ( )

A、 B、 C、 D、

5、設 是定義域為R,最小正周期為 的函數,

若 ,則 的值等于 (  )

A、1 B、 C、0 D、

6、函數 的最小正周期是 ,則

7、已知函數 的最小正周期不大于2,則正整數的最小值是

8、求函數 的最小正周期為T,且 ,則正整數的值是

9、已知函數 是周期為6的奇函數,且 則

10、若函數 ,則

11、用周期的定義分析 的周期。

12、已知函數 ,如果使 的周期在 內,求正整數 的值

13、一機械振動中,某質子離開平衡位置的位移 與時間 之間的

函數關系如圖所示:

(1) 求該函數的周期;

(2) 求 時,該質點離開平衡位置的位移。

14、已知 是定義在R上的函數,且對任意 有

成立,

(1) 證明: 是周期函數;

(2) 若 求 的值。

兩角差的余弦公式

【使用說明】

1、復習教材P124-P127頁,40分鐘時間完成預習學案

2、有余力的學生可在完成探究案中的部分內容。

【學習目標】

知識與技能:理解兩角差的余弦公式的推導過程及其結構特征并能靈活運用。

過程與方法:應用已學知識和方法思考問題,分析問題,解決問題的能力。

情感態度價值觀: 通過公式推導引導學生發現數學規律,培養學生的創新意識和學習數學的興趣。

【重點】通過探索得到兩角差的余弦公式以及公式的靈活運用

【難點】兩角差余弦公式的推導過程

預習自學案

一、知識鏈接

1. 寫出 的三角函數線 :

2. 向量 , 的數量積,

①定義:

②坐標運算法則:

3. , ,那么 是否等于 呢?

下面我們就探討兩角差的余弦公式

二、教材導讀

1.、兩角差的余弦公式的推導思路

如圖,建立單位圓O

(1)利用單位圓上的三角函數線

又OM=OB+BM

=OB+CP

=OA_____ +AP_____

=

從而得到兩角差的余弦公式:

____________________________________

(2)利用兩點間距離公式

如圖,角 的終邊與單位圓交于A( )

角 的終邊與單位圓交于B( )

角 的終邊與單位圓交于P( )

點T( )

AB與PT關系如何?

從而得到兩角差的余弦公式:

____________________________________

(3) 利用平面向量的知識

用 表示向量 ,

=( , ) =( , )

則 . =

設 與 的夾角為

①當 時:

=

從而得出

②當 時顯然此時 已經不是向量 的夾角,在 范圍內,是向量夾角的補角.我們設夾角為 ,則 + =

此時 =

從而得出

2、兩角差的余弦公式

____________________________

三、預習檢測

1. 利用余弦公式計算 的值.

2. 怎樣求 的值

你的疑惑是什么?

________________________________________________________

______________________________________________________

探究案

例1. 利用差角余弦公式求 的值.

例2.已知 , 是第三象限角,求 的值.

訓練案

一、 基礎訓練題

1、

2、 ???????????

3、

二、綜合題

--------------------------------------------------

3400 主站蜘蛛池模板: 木里| 原平市| 乌兰浩特市| 东平县| 青岛市| 广宗县| 大悟县| 衢州市| 新龙县| 疏附县| 沭阳县| 靖安县| 静宁县| 乡宁县| 浦江县| 如东县| 鹿泉市| 黄骅市| 特克斯县| 横山县| 合作市| 临高县| 瑞金市| 海门市| 朝阳区| 宾阳县| 青浦区| 阿勒泰市| 桂阳县| 镶黄旗| 双峰县| 石楼县| 河源市| 延边| 宁陵县| 白银市| 余干县| 大邑县| 社会| 建平县| 邹平县|