高中數(shù)學教案微盤
在一年的高中數(shù)學教學活動中,作為高中數(shù)學老師的你了解怎樣寫一篇高中數(shù)學教案微盤嗎?來寫一篇高中數(shù)學教案微盤吧,它會對你的數(shù)學教學工作起到不菲的幫助。你是否在找正準備撰寫“高中數(shù)學教案微盤”,下面小編收集了相關(guān)的素材,供大家寫文參考!
高中數(shù)學教案微盤篇1
一、教學目標
(一)知識與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。
(三)情感態(tài)度價值觀
1、感受動點軌跡的動態(tài)美、和諧美、對稱美
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣
二、教學重點與難點
教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡
教學難點:圖形、文字、符號三種語言之間的過渡
三、、教學方法和手段
【教學方法】觀察發(fā)現(xiàn)、啟發(fā)引導、合作探究相結(jié)合的教學方法。啟發(fā)引導學生積極思考并對學生的思維進行調(diào)控,幫助學生優(yōu)化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。
【教學手段】利用網(wǎng)絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。
【教學模式】重點中學實施素質(zhì)教育的課堂模式"創(chuàng)設情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展"。
四、教學過程
1、創(chuàng)設情景,引入課題
生活中我們四處可見軌跡曲線的影子
【演示】這是美麗的城市夜景圖
【演示】許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多
【演示】建筑中也有許多美麗的軌跡曲線
設計意圖:讓學生感受數(shù)學就在我們身邊,感受軌跡曲線的動態(tài)美、和諧美、對稱美,激發(fā)學習興趣。
2、激發(fā)情感,引導探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學問題就是新教材高二上冊88頁20題,也就是這里的例題1;
例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。
第一步:讓學生借助畫板動手驗證軌跡
第二步:要求學生求出軌跡方程
法一:設,則
由得,
化簡得
法二:設,由得
化簡得
法三:設, 由點到定點的距離等于定長,
根據(jù)圓的定義得;
第三步:復習求軌跡方程的一般步驟
(1)建立適當?shù)淖鴺讼?/p>
(2)設動點的坐標M(x,y)
(3)列出動點相關(guān)的約束條件p(M)
(4)將其坐標化并化簡,f(x,y)=0
(5)證明
其中,最關(guān)鍵的一步是根據(jù)題意尋求等量關(guān)系,并把等量關(guān)系坐標化
設計意圖:在這里我借助幾何畫板的動畫功能,先讓學生直觀地、形象地、動態(tài)地感受動點的軌跡是圓,接著要求學生求出軌跡方程,最后師生共同回顧求軌跡方程的一般步驟,達到熟練掌握直譯法、定義法,體會從感性到理性、從形象到抽象的思維過程。
3、主動發(fā)現(xiàn)、主動發(fā)展
由上述例1可知,如果人站在梯子中間,則他會劃了一段優(yōu)美的圓弧飛出去。學生很自然就會想,如果人不是站在中間,而是隨意站,結(jié)果會怎樣呢?讓學生動手探究M不是中點時的軌跡。
第一步:利用網(wǎng)絡平臺展示學生得到的軌跡(教師有意識的整合在一起)
設計意圖:借助數(shù)學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發(fā)現(xiàn)疑問,更容易激發(fā)學生學習的熱情,促使他們主動學習。
第二步:分解動作,向?qū)W生提出3個問題:
問題1:當M位置不同時,線段BM與MA的大小關(guān)系如何?
問題2、體現(xiàn)BM與MA大小關(guān)系還有什么常見的形式?
問題3、你能類比例1把這種數(shù)量關(guān)系表達出來嗎?
第三步:展示學生歸納、概括出來的數(shù)學問題
1、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。
2、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。
3、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。(說明是什么軌跡)
第四步:課堂完成學生歸納出來的問題1,問題2和3課后完成
4、合作探究、實現(xiàn)創(chuàng)新
改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當?shù)闹笇?這里固定A點,運動B點)
學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。
5、布置作業(yè)、實現(xiàn)拓展
1、把上述同學們探究得到的軌跡圖形用文字、符號描述出來,(仿造例1),并求出軌跡方程。
2、已知A(4,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。
3、已知A(2,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。
4若把上述問題中垂線改為一般的垂線與直線OB相交于點P,請同學們利用畫板驗證點P 的軌跡。
以下是學生課后探究得到的一些軌跡圖形
課后有學生問,如果X軸和Y軸不垂直會有什么結(jié)果?定長的線段在上面滑動怎么做出來?
可以說,學生的這些問題我之前并沒有想過,給了我很大的觸動,同時也促使我更進一步去研究幾何畫板,提高自己的能力。在這里,我體會到了教師不再只是一根根蠟燭,更像是一盞盞明燈,在照亮別人的同時也照亮自己。
以下是X軸和Y軸不垂直時的軌跡圖形
五、教學設計說明:
(一)、教材
《平面動點的軌跡》是高二一節(jié)探究課,軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角、平面幾何等基礎知識,其中滲透著運動與變化、方程的思想、數(shù)形結(jié)合的思想等,是中學數(shù)學的重要內(nèi)容,也是歷年高考數(shù)學考查的重點之一。
(二)、校情、學情
校情:我校是一所省一級達標校,省級示范性高中,學校的硬件設施比較完善,每間教室都具備多媒體教學的功能,另外有兩間網(wǎng)絡教室和一個學生電子閱室,并且能隨時上網(wǎng)。
學情:大部分學生家里都有電腦,而且能隨時上網(wǎng)。對學生進行了幾何畫板基本操作的培訓,學生能較快的畫出圓、橢圓、雙曲線、拋物線等基本的圓錐曲線。學生對求軌跡方程的基本方法有了一定的掌握,但是對文字、圖形、符號三種語言之間的轉(zhuǎn)換還存在很大的差異,在合作交流意識方面,發(fā)展不均衡,有待加強。
(三)學法
觀察、實驗、交流、合作、類比、聯(lián)想、歸納、總結(jié)
(四)、教學過程
1、創(chuàng)設情景,引入課題
2、激發(fā)情感,引導探索
由梯子滑落問題抽象、概括出數(shù)學問題
第一步:讓學生借助畫板動手驗證軌跡
第二步:要求學生求出軌跡方程
第三步:復習求軌跡方程的一般步驟
3、主動發(fā)現(xiàn)、主動發(fā)展
探究M不是中點時的軌跡
第一步:利用網(wǎng)絡平臺展示學生得到的軌跡
第二步:分解動作,向?qū)W生提出3個問題:
第三步:展示學生歸納、概括出來的數(shù)學問題
4、合作探究、實現(xiàn)創(chuàng)新
改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當?shù)闹笇?這里固定A點,運動B點)
學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。
5、布置作業(yè)、實現(xiàn)拓展
(五)、教學特色:
借助網(wǎng)絡、多媒體教學平臺,讓學生自己動手實驗,發(fā)現(xiàn)問題并解決問題,同時把學生的學習情況及時的展現(xiàn)出來,做到大家一起學習,一起評價的效果。同時節(jié)省了時間,提高了課堂效率。
整個教學過程,體現(xiàn)了四個統(tǒng)一:既學習書本知識與投身實踐的統(tǒng)一、書本學習與現(xiàn)代信息技術(shù)學習的統(tǒng)一、書本知識與資源拓展的統(tǒng)一、課堂學習與課外實踐的統(tǒng)一。
本節(jié)課學生精神飽滿、興趣濃厚、合作積極,與我保持良好的互動,還不時產(chǎn)生一些爭執(zhí),給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。
高中數(shù)學教案微盤篇2
上個學期,根據(jù)需要,學校安排我上高二數(shù)學文科,在這一學期里我從各方面嚴格要求自己,在教學上虛心向老教師請教,結(jié)合本校和班級學生的實際狀況,針對性的開展教學工作,使工作有計劃,有組織,有步驟。經(jīng)過了一學期,我對教學工作有了如下感想:
一、認真?zhèn)湔n,做到既備學生又備教材與備教法。
上學期我根據(jù)教材資料及學生的實際狀況設計課程教學,擬定教學方法,并對教學過程中遇到的問題盡可能的預先思考到,認真寫好教案。每一課都做到“有備而去”,每堂課都在課前做好充分的準備,課后及時對該課作出小結(jié),并認真整理每一章節(jié)的知識要點,幫忙學生進行歸納總結(jié)。
二、增強上課技能,提高教學質(zhì)量。
增強上課技能,提高教學質(zhì)量是我們每一名新教師不斷努力的目標。因為應對的是文科生,基礎普遍比較差,所以我主要是立足于基礎,讓學生學得簡單,學得愉快。注意精講精練,在課堂上講得盡量少些,而讓學生自己動口動手動腦盡量多些;同時在每一堂課上都充分思考每一個層次的學生學習需求和理解潛力,讓各個層次的學生都得到提高。
三、虛心向其他老師學習,在教學上做到有疑必問。
在每個章節(jié)的學習上都用心征求其他有經(jīng)驗老師的意見,學習他們的方法。同時多聽老教師的課,做到邊聽邊學,給自己不斷充電,彌補自己在教學上的不足,征求他們的意見,改善教學工作。
四、認真批改作業(yè)、布置作業(yè)有針對性,有層次性。
作業(yè)是學生對所學知識鞏固的過程。為了做到布置作業(yè)有針對性,有層次性,我常常多方面的搜集資料,對各種輔導資料進行篩選,力求每一次練習都能讓學生起到的效果。同時對學生的作業(yè)批改及時、認真,并分析學生的作業(yè)狀況,將他們在作業(yè)過程出現(xiàn)的問題及時評講,并針對反映出的狀況及時改善自己的教學方法,做到有的放矢。
然而,在肯定成績、總結(jié)經(jīng)驗的同時,我清楚地認識到我所獲得的教學經(jīng)驗還是膚淺的,在教學中存在的問題也不容忽視,也有一些困惑有待解決今后我將努力工作,用心向老老師學習以提高自己的教學水平。
以上幾點便是我的一點心得,期望能發(fā)揚優(yōu)點,克服不足,總結(jié)經(jīng)驗教訓,為今后的教育教學工作積累經(jīng)驗,以便盡快地提高自己的水平。
高中數(shù)學教案微盤篇3
教學目標
(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題.
(2)理解曲線的方程、方程的曲線的概念,能根據(jù)曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念.
(3)通過曲線方程概念的教學,培養(yǎng)學生數(shù)與形相互聯(lián)系、對立統(tǒng)一的辯證唯物主義觀點.
(4)通過求曲線方程的教學,培養(yǎng)學生的轉(zhuǎn)化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法.
(5)進一步理解數(shù)形結(jié)合的思想方法.
教學建議
教材分析
(1)知識結(jié)構(gòu)
曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質(zhì).曲線方程的概念和求曲線方程的問題又有內(nèi)在的邏輯順序.前者回答什么是曲線方程,后者解決如何求出曲線方程.至于用曲線方程研究曲線性質(zhì)則更在其后,本節(jié)不予研究.因此,本節(jié)涉及曲線方程概念和求曲線方程兩大基本問題.
(2)重點、難點分析
①本節(jié)內(nèi)容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領(lǐng)悟坐標法和解析幾何的思想.
②本節(jié)的難點是曲線方程的概念和求曲線方程的方法.
教法建議
(1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關(guān)系,說明曲線與方程的對應關(guān)系.曲線與方程對應關(guān)系的基礎是點與坐標的對應關(guān)系.注意強調(diào)曲線方程的完備性和純粹性.
(2)可以結(jié)合已經(jīng)學過的直線方程的知識幫助學生領(lǐng)會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備.
(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則.
(4)從集合與對應的觀點可以看得更清楚:
設 表示曲線 上適合某種條件的點 的集合;
表示二元方程的解對應的點的坐標的集合.
可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即
(5)在學習求曲線方程的方法時,應從具體實例出發(fā),引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數(shù)方程(曲線的方程),這個過渡是一個從幾何向代數(shù)不斷轉(zhuǎn)化的過程,在這個過程中提醒學生注意轉(zhuǎn)化是否為等價的,這將決定第五步如何做.同時教師不要生硬地給出或總結(jié)出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得.教學中對課本例2的解法分析很重要.
這五個步驟的實質(zhì)是將產(chǎn)生曲線的幾何條件逐步轉(zhuǎn)化為代數(shù)方程,即
文字語言中的幾何條件 數(shù)學符號語言中的等式 數(shù)學符號語言中含動點坐標 , 的代數(shù)方程 簡化了的 , 的代數(shù)方程
由此可見,曲線方程就是產(chǎn)生曲線的幾何條件的一種表現(xiàn)形式,這個形式的特點是“含動點坐標的代數(shù)方程.”
(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”.
高中數(shù)學教案微盤篇4
教學目標
(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學生掌握組合數(shù)的計算公式、組合數(shù)的性質(zhì)用組合數(shù)與排列數(shù)之間的關(guān)系;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
(4)通過對排列、組合問題求解與剖析,培養(yǎng)學生學習興趣和思維深刻性,學生具有嚴謹?shù)膶W習態(tài)度。
教學建議
一、知識結(jié)構(gòu)
二、重點難點分析
本小節(jié)的重點是組合的定義、組合數(shù)及組合數(shù)的公式,組合數(shù)的性質(zhì)。難點是解組合的應用題。突破重點、難點的關(guān)鍵是對加法原理與乘法原理的掌握和應用,并將這兩個原理的基本思想貫穿在解決組合應用題當中。
組合與組合數(shù),也有上面類似的關(guān)系。從n個不同元素中任取m(m≤n)個元素并成一組,叫做從n個不同元素中任取m個元素的一個組合。所有這些不同的組合的個數(shù)叫做組合數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的一個集合(無序集),相當于一個組合,而這種集合的個數(shù),就是相應的組合數(shù)。
解排列組合應用題時主要應抓住是排列問題還是組合問題,其次要搞清需要分類,還是需要分步.切記:排組分清(有序排列、無序組合),加乘明確(分類為加、分步為乘).
三、教法設計
1.對于基礎較好的學生,建議把排列與組合的概念進行對比的進行學習,這樣有利于搞請這兩組概念的區(qū)別與聯(lián)系.
2.學生與老師可以合編一些排列組合問題,如“45人中選出5人當班干部有多少種選法?”與“45人中選出5人分別擔任班長、副班長、體委、學委、生委有多少種選法?”這是兩個相近問題,同學們會根據(jù)自己身邊的實際可以編出各種各樣的具有特色的問題,教師要引導學生辨認哪個是排列問題,哪個是組合問題.這樣既調(diào)動了學生學習的積極性,又在編題辨題中澄清了概念.
為了理解排列與組合的概念,建議大家學會畫排列與組合的樹圖.如,從a,b,c,d 4個元素中取出3個元素的排列樹圖與組合樹圖分別為:
排列樹圖
由排列樹圖得到,從a,b,c,d 取出3個元素的所有排列有24個,它們分別是:abc,abd,acb.abd,adc,adb,bac,bad,bca,bcd,bda,bdc.……dca,dcb.
組合樹圖
由組合樹圖可得,從a,b,c,d中取出3個元素的組合有4個,它們是(abc),(abd),(acd),(bcd).
從以上兩組樹圖清楚的告訴我們,排列樹圖是對稱的,組合圖式不是對稱的,之所以排列樹圖具有對稱性,是因為對于a,b,c,d四個字母哪一個都有在第一位的機會,哪一個都有在第二位的機會,哪一個都有在第三位的機會,而組合只考慮字母不考慮順序,為實現(xiàn)無順序的要求,我們可以限定a,b,c,d的順序是從前至后,固定了死順序等于無順序,這樣組合就有了自己的樹圖.
學會畫組合樹圖,不僅有利于理解排列與組合的概念,還有助于推導組合數(shù)的計算公式.
3.排列組合的應用問題,教師應從簡單問題問題入手,逐步到有一個附加條件的單純排列問題或組合問題,最后在設及排列與組合的綜合問題.
對于每一道題目,教師必須先讓學生獨立思考,在進行全班討論,對于學生的每一種解法,教師要先讓學生判斷正誤,在給予點播.對于排列、組合應用問題的解決我們提倡一題多解,這樣有利于培養(yǎng)學生的分析問題解決問題的能力,在學生的多種解法基礎上教師要引導學生選擇方案,總結(jié)解題規(guī)律.對于學生解題中的常見錯誤,教師一定要講明道理,認真分析錯誤原因,使學生在是非的判斷得以提高.
4.兩個性質(zhì)定理教學時,對定理1,可以用下例來說明:從4個不同的元素a,b,c,d里每次取出3個元素的組合及每次取出1個元素的組合分別是
這就說明從4個不同的元素里每次取出3個元素的組合與從4個元素里每次取出1個元素的組合是—一對應的.
對定理2,可啟發(fā)學生從下面問題的討論得出.從n個不同元素 , ,…, 里每次取出m個不同的元素( ),問:(1)可以組成多少個組合;(2)在這些組合里,有多少個是不含有 的; (3)在這些組合里,有多少個是含有 的;(4)從上面的結(jié)果,可以得出一個怎樣的公式.在此基礎上引出定理2.
對于 ,和 一樣,是一種規(guī)定.而學生常常誤以為是推算出來的,因此,教學時要講清楚.
教學設計示例
教學目標
(1)使學生正確理解組合的意義,正確區(qū)分排列、組合問題;
(2)使學生掌握組合數(shù)的計算公式;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
教學重點難點
重點是組合的定義、組合數(shù)及組合數(shù)的公式;
難點是解組合的應用題.
教學過程設計
(-)導入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數(shù),屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關(guān)系,要求出不同的組數(shù),屬于組合問題.這節(jié)課著重研究組合問題.
設計意圖:組合與排列所研究的問題幾乎是平行的.上面設計的問題目的是從排列知識中發(fā)現(xiàn)并提出新的問題.
(二)新課講授
[提出問題 創(chuàng)設情境]
(教師活動)指導學生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區(qū)別?
(學生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環(huán)境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數(shù):從 個不同元素中取出 個元素的所有組合的個數(shù),稱之,用符號 表示,如從6個元素中取出2個元素的組合數(shù)為 .
[評述]區(qū)分一個排列與一個組合的關(guān)鍵是:該問題是否與順序有關(guān),當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關(guān)系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數(shù) ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數(shù)為 ;
第2步,求每一個組合中 個元素的全排列數(shù)為 .
根據(jù)分步計數(shù)原理,得到
[字幕]公式1:
公式2:
(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設計意圖:本著以認識概念為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.
【例題示范 探求方法】
(教師活動)打出字幕,給出示范,指導訓練.
[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.
例2 計算:(1) ;(2) .
(學生活動)板演、示范.
(教師活動)講評并指出用兩種方法計算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學生活動)思考分析.
解 首先,根據(jù)組合的定義,有
①
其次,由原不等式轉(zhuǎn)化為
即
解得 ②
綜合①、②,得 ,即
[點評]這是組合數(shù)公式的應用,關(guān)鍵是公式的選擇.
設計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應用,從而培養(yǎng)學生的綜合分析能力.
【反饋練習 學會應用】
(教師活動)給出練習,學生解答,教師點評.
[課堂練習]課本P99練習第2,5,6題.
[補充練習]
[字幕]1.計算:
2.已知 ,求 .
(學生活動)板演、解答.
設計意圖:課堂教學體現(xiàn)以學生為本,讓全體學生參與訓練,深刻揭示排列數(shù)公式的結(jié)構(gòu)、特征及應用.
【點評矯正 交流提高】
(教師活動)依照學生的板演,給予指正并總結(jié).
補充練習答案:
1.解:原式:
2.解:由題設得
整理化簡得 ,
解之,得 或 (因 ,舍去),
所以 ,所求
[字幕]小結(jié):
1.前一個公式主要用于計算具體的組合數(shù),而后一個公式則主要用于對含有字母的式子進行化簡和論證.
2.在解含組合數(shù)的方程或不等式時,一定要注意組合數(shù)的上、下標的限制條件.
(學生活動)交流討論,總結(jié)記錄.
設計意圖:由“實踐——認識——一實踐”的認識論,教學時抓住“學習—一練習——反饋———小結(jié)”這些環(huán)節(jié),使教學目標得以強化和落實.
(三)小結(jié)
(師生活動)共同小結(jié).
本節(jié)主要內(nèi)容有
1.組合概念.
2.組合數(shù)計算的兩個公式.
(四)布置作業(yè)
1.課本作業(yè):習題10 3第1(1)、(4),3題.
2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數(shù)學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學習了排列知識的基礎上,本節(jié)課引進了組合概念,并推導出組合數(shù)公式,同時調(diào)控進行訓練,從而培養(yǎng)學生分析問題、解決問題的能力.
作業(yè)參考答案
2.解;設有男同學 人,則有女同學 人,依題意有 ,由此解得 或 或2.即男同學有5人或6人,女同學相應為3人或2人.
3.能組成 (注意不能用 點為頂點)個四邊形, 個三角形.
探究活動
同室四人各寫一張賀年卡,先集中起來,然后每人從中拿一張別人送出的賀年卡,那么四張不同的分配萬式可有多少種?
解 設四人分別為甲、乙、丙、丁,可從多種角度來解.
解法一 可將拿賀卡的情況,按甲分別拿乙、丙、丁制作的賀卡的情形分為三類,即:
甲拿乙制作的賀卡時,則賀卡有3種分配方法.
甲拿丙制作的賀卡時,則賀卡有3種分配方法.
甲拿丁制作的賀卡時,則賀卡有3種分配方法.
由加法原理得,賀卡分配方法有3+3+3=9種.
解法二 可從利用排列數(shù)和組合數(shù)公式角度來考慮.這時還存在正向與逆向兩種思考途徑.
正向思考,即從滿足題設條件出發(fā),分步完成分配.先可由甲從乙、丙、丁制作的賀卡中選取1張,有 種取法,剩下的乙、丙、丁中所制作賀卡被甲取走后可在剩下的3張賀卡中選取1張,也有 種,最后剩下2人可選取的賀卡即是這2人所制作的賀卡,其取法只有互取對方制作賀卡1種取法.根據(jù)乘法原理,賀卡的分配方法有 (種).
逆向思考,即從4人取4張不同賀卡的所有取法中排除不滿足題設條件的取法.不滿足題設條件的取法為,其中只有1人取自己制作的賀卡,其中有2人取自己制作的賀卡,其中有3人取自己制作的賀卡(此時即為4人均拿自己制作的賀卡).其取法分別為 1.故符合題設要求的取法共有 (種).
說明(1)對一類元素不太多而利用排列或組合計算公式計算比較復雜,且容易重復遺漏計算的排列組合問題,常可采用直接分類后用加法原理進行計算,如本例采用解法一的做法.
(2)設集合 ,如果S中元素的一個排列 滿足