教育巴巴 > 高中教案 > 數學教案 >

人教版高中數學必修2教案

時間: 新華 數學教案

在一年的教育任務中,作為高中數學老師的你知道如何寫一篇人教版高中數學必修2教案嗎?來寫一篇人教版高中數學必修2教案吧,它會對你的教學工作起到不菲的幫助。你是否在找正準備撰寫“人教版高中數學必修2教案”,下面小編收集了相關的素材,供大家寫文參考!

人教版高中數學必修2教案篇1

一、學情分析

本節課是在學生已學知識的基礎上進行展開學習的,也是對以前所學知識的鞏固和發展,但對學生的知識準備情況來看,學生對相關基礎知識掌握情況是很好,所以在復習時要及時對學生相關知識進行提問,然后開展對本節課的鞏固性復習。而本節課學生會遇到的困難有:數軸、坐標的表示;平面向量的坐標表示;平面向量的坐標運算。

二、考綱要求

1.會用坐標表示平面向量的加法、減法與數乘運算.

2.理解用坐標表示的平面向量共線的條件.

3.掌握數量積的坐標表達式,會進行平面向量數量積的運算.

4.能用坐標表示兩個向量的夾角,理解用坐標表示的平面向量垂直的條件.

三、教學過程

(一) 知識梳理:

1.向量坐標的求法

(1)若向量的起點是坐標原點,則終點坐標即為向量的坐標.

(2)設A(x1,y1),B(x2,y2),則

=_________________

| |=_______________

(二)平面向量坐標運算

1.向量加法、減法、數乘向量

設 =(x1,y1), =(x2,y2),則

+ = - = λ = .

2.向量平行的坐標表示

設 =(x1,y1), =(x2,y2),則 ∥ ?________________.

(三)核心考點·習題演練

考點1.平面向量的坐標運算

例1.已知A(-2,4),B(3,-1),C(-3,-4).設 (1)求3 + -3 ;

(2)求滿足 =m +n 的實數m,n;

練:(2015江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),則m-n的值為     .

考點2平面向量共線的坐標表示

例2:平面內給定三個向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求實數k的值;

練:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實數,( +λ )∥ ,則λ= (  )

思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?

方法總結:

1.向量共線的兩種表示形式

設a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應視題目的具體條件而定,一般情況涉及坐標的應用②.

2.兩向量共線的充要條件的作用

判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數的值.

考點3平面向量數量積的坐標運算

例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,

則 的值為     ; 的值為     .

【提示】解決涉及幾何圖形的向量數量積運算問題時,可建立直角坐標系利用向量的數量積的坐標表示來運算,這樣可以使數量積的運算變得簡捷.

練:(2014,安徽,13)設 =(1,2), =(1,1), = +k .若 ⊥ ,則實數k的值等于(  )

【思考】兩非零向量 ⊥ 的充要條件: · =0?     .

解題心得:

(1)當已知向量的坐標時,可利用坐標法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.

(2)解決涉及幾何圖形的向量數量積運算問題時,可建立直角坐標系利用向量的數量積的坐標表示來運算,這樣可以使數量積的運算變得簡捷.

(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.

考點4:平面向量模的坐標表示

例4:(2015湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為(2,0),則 的值為(  )

A.6 B.7 C.8 D.9

練:(2016,上海,12)

在平面直角坐標系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則 的取值范圍是?

解題心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉化為數量積運算;

(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..

五、課后作業(課后習題1、2題)

人教版高中數學必修2教案篇2

教學目標:

(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

(2)進一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節內容的教學,培養學生分析問題和轉化的能力.

教學重點、難點:求曲線的方程.

教學用具:計算機.

教學方法:啟發引導法,討論法.

教學過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學生思考并回答.教師強調.

2.坐標法和解析幾何的意義、基本問題.

對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質.

事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節課就初步研究曲線方程的求法.

【問題】

如何根據已知條件,求出曲線的方程.

【實例分析】

例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

首先由學生分析:根據直線方程的知識,運用點斜式即可解決.

解法一:易求線段 的中點坐標為(1,3),

由斜率關系可求得l的斜率為

于是有

即l的方程為

分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據是什么,有證明嗎?

(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據就是定義中的兩條).

證明:(1)曲線上的點的坐標都是這個方程的解.

設 是線段 的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點 的坐標 是方程 的解.

(2)以這個方程的解為坐標的點都是曲線上的點.

設點 的坐標 是方程①的任意一解,則

到 、 的距離分別為

所以 ,即點 在直線 上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內容我們會發現一個有趣的現象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現了曲線方程定義中點集與對應的思想.因此是個好方法.

讓我們用這個方法試解如下問題:

例2:點 與兩條互相垂直的直線的距離的積是常數 求點 的軌跡方程.

分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

求解過程略.

【概括總結】通過學生討論,師生共同總結:

分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:

首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

(1)建立適當的坐標系,用有序實數對例如 表示曲線上任意一點 的坐標;

(2)寫出適合條件 的點 的集合

;

(3)用坐標表示條件 ,列出方程 ;

(4)化方程 為最簡形式;

(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

下面再看一個問題:

例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系.

解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

由距離公式,點 適合的條件可表示為

將①式 移項后再兩邊平方,得

化簡得

由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

【練習鞏固】

題目:在正三角形 內有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

根據條件 ,代入坐標可得

化簡得

由于題目中要求點 在三角形內,所以 ,在結合①式可進一步求出 、 的范圍,最后曲線方程可表示為

【小結】師生共同總結:

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

【作業】課本第72頁練習1,2,3;

人教版高中數學必修2教案篇3

一、指導思想

1、培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力.使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力.

2、根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神.

3、使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀.

二、目的要求

1.深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系和網絡結構,細致領會教材改革的精髓,把握通性通法,逐步明確教材對教學形式、內容和教學目標的影響.

2.因材施教,以學生為學習的主體,構建新的認知體系,營造有利于學生學習的氛圍.

3.加強課堂教學研究,科學設計教學方法,扎實有效的提高課堂教學效果,全面提高數學教學質量.

三、具體措施

1.不孤立記憶和認識各個知識點,而要將其放到相應的體系結構中,在比較、辨析的過程中尋求其內在聯系,達到理解層次,注意知識塊的復習,構建知識網路.注重基礎知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數學語言的表達形式,推力論證要思路清晰、整體完整.

2.學會分析,首先是閱讀理解,側重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側重于經驗及教訓的總結,重視常見題型及通法通解.

3.以“錯”糾錯,查缺補漏,反思錯誤,嚴格訓練,規范解題,養成:想明白,寫清楚,算準確的習慣,注意思路的清晰性、思維的嚴謹性、敘述的條理性、結果的準確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數學思想和數學方法的應用.

4.協調好講、練、評、輔之間的關系,追求數學復習的效果,注重實效,努力提高復習教學的效率和效益;精心設計教學,做到精講精練,不加重學生的負擔,避免“題海戰” ,精心準備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學生的錯誤調整復習策略,使復習更加有重點、針對性,加快教學節奏,提高教學效率.

5.周密計劃合理安排,現數學學科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學,使學生在解題探究中提高能力.

6.多從“貼近教材、貼近學生、貼近實際”角度,選擇典型的數學聯系生活、生產、環境和科技方面的問題,對學生進行有計劃、針對性強的訓練,多給學生鍛煉各種能力的機會,從而達到提升學生數學綜合能力之目的.不脫離基礎知識來講學生的能力,基礎扎實的學生不一定能力 強.教學中,不斷地將基礎知識運用于數學問題的解決中,努力提高學生的學科綜合能力.

新的學期是新的起點,新的希望。通過這份高二數學上學期教學工作計劃,我相信自己在本學期一定能夠將兩個班的數學成績帶上去,我相信,我能行。

人教版高中數學必修2教案篇4

一、 知識梳理

1.三種抽樣方法的聯系與區別:

類別 共同點 不同點 相互聯系 適用范圍

簡單隨機抽樣 都是等概率抽樣 從總體中逐個抽取 總體中個體比較少

系統抽樣 將總體均勻分成若干部分;按事先確定的規則在各部分抽取 在起始部分采用簡單隨機抽樣 總體中個體比較多

分層抽樣 將總體分成若干層,按個體個數的比例抽取 在各層抽樣時采用簡單隨機抽樣或系統抽樣 總體中個體有明顯差異

(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為

(2)系統抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規則抽取樣本.

(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數;③各層抽樣;④匯合成樣本.

(4) 要懂得從圖表中提取有用信息

如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數是矩形的中點的橫坐標③中位數的左邊與右邊的直方圖的面積相等,可以由此估計中位數的值

2.方差和標準差都是刻畫數據波動大小的數字特征,一般地,設一組樣本數據 , ,…, ,其平均數為 則方差 ,標準差

3.古典概型的概率公式:如果一次試驗中可能出現的結果有 個,而且所有結果都是等可能的,如果事件 包含 個結果,那么事件 的概率P=

特別提醒:古典概型的兩個共同特點:

○1 ,即試中有可能出現的基本事件只有有限個,即樣本空間Ω中的元素個數是有限的;

○2 ,即每個基本事件出現的可能性相等。

4. 幾何概型的概率公式: P(A)=

特別提醒:幾何概型的特點:試驗的結果是無限不可數的;○2每個結果出現的可能性相等。

二、夯實基礎

(1)某單位有職工160名,其中業務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業務人員、管理人員、后勤人員的人數應分別為____________.

(2)某賽季,甲、乙兩名籃球運動員都參加了

11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,

則甲、乙兩名運動員得分的中位數分別為( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)統計某校1000名學生的數學會考成績,

得到樣本頻率分布直方圖如右圖示,規定不低于60分為

及格,不低于80分為優秀,則及格人數是 ;優秀率為 。

(4)在一次歌手大獎賽上,七位評委為歌手打出的分數如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一個分和一個最低分后,所剩數據的平均值和方差分別為( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)將一顆骰子先后拋擲2次,觀察向上的點數,則以第一次向上點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.

(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )

三、高考鏈接

07、某班50名學生在一次百米測試中,成績全部介于13秒與19秒之間,將測試結果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒; 第六組,成績大于等于18秒且小于等于19秒.右圖

是按上述分組方法得到的頻率分布直方圖.設成績小于17秒的學生人數占全班總人數的百分比為 ,成績大于等于15秒且小于17秒的學生人數為 ,則從頻率分布直方圖中可分析出 和 分別為( )

08、從某項綜合能力測試中抽取100人的成績,統計如表,則這100人成績的標準差為( )

分數 5 4 3 2 1

人數 20 10 30 30 10

09、在區間 上隨機取一個數x, 的值介于0到 之間的概率為( ).

08、現有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.

人教版高中數學必修2教案篇5

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;

(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。

教學建議

一、知識結構

二、重點難點分析

本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題.難點是導出排列數的公式和解有關排列的應用題.突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中.

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列.因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同.排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數.排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數.從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數.

公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.要重點分析好 的推導.

排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力.

在分析應用題的解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用.

在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求.

三、教法建議

①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念.一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數.例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號 表示排列數.

②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”.

從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列.

在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別.

在排列的定義中 ,如果 有的書上叫選排列,如果 ,此時叫全排列.

要特別注意,不加特殊說明,本章不研究重復排列問題.

③關于排列數公式的推導的教學.公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解.課本上用的是不完全歸納法,先推導 , ,…,再推廣到 ,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的.

導出公式 后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯.這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是 ,共m個因數相乘.”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘.

公式 是在引出全排列數公式 后,將排列數公式變形后得到的公式.對這個公式指出兩點:(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;(2)為使這個公式在 時也能成立,規定 ,如同 時 一樣,是一種規定,因此,不能按階乘數的原意作解釋.

④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解.

⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實.隨著學生解題熟練程度的提高,可以逐步降低這種要求.

27277 主站蜘蛛池模板: 雷山县| 宜章县| 开平市| 观塘区| 峨眉山市| 龙陵县| 含山县| 河北区| 隆安县| 油尖旺区| 兰溪市| 正安县| 石楼县| 上杭县| 沾化县| 昌都县| 昌吉市| 平罗县| 麻栗坡县| 玉田县| 香港 | 泸西县| 文登市| 普宁市| 永州市| 确山县| 芜湖市| 阳泉市| 曲松县| 景德镇市| 东海县| 安多县| 西峡县| 永济市| 延川县| 额济纳旗| 汕头市| 同仁县| 新泰市| 屏山县| 翁牛特旗|