教育巴巴 > 高中教案 > 數學教案 >

高中數學優秀教案范例

時間: 金成 數學教案

作為一名無私奉獻的老師,就難以避免地要準備教案,教案是教學藍圖,可以有效提高教學效率。教案要怎么寫呢?下面小編帶來高中數學優秀教案范例5篇,希望大家喜歡。

高中數學優秀教案范例

高中數學優秀教案范例篇1

一、教學目標

【知識與技能】

在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

【過程與方法】

通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學生探索發現及分析解決問題的實際能力得到提高。

【情感態度與價值觀】

滲透數形結合、化歸與轉化等數學思想方法,提高學生的整體素質,激勵學生創新,勇于探索。

二、教學重難點

【重點】

掌握圓的一般方程,以及用待定系數法求圓的一般方程。

【難點】

二元二次方程與圓的一般方程及標準圓方程的關系。

三、教學過程

(一)復習舊知,引出課題

1、復習圓的標準方程,圓心、半徑。

2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數學教案9

1.課題

填寫課題名稱(高中代數類課題)

2.教學目標

(1)知識與技能:

通過本節課的學習,掌握......知識,提高學生解決實際問題的能力;

(2)過程與方法:

通過......(討論、發現、探究),提高......(分析、歸納、比較和概括)的能力;

(3)情感態度與價值觀:

通過本節課的學習,增強學生的學習興趣,將數學應用到實際生活中,增加學生數學學習的樂趣。

3.教學重難點

(1)教學重點:本節課的知識重點

(2)教學難點:易錯點、難以理解的知識點

4.教學方法(一般從中選擇3個就可以了)

(1)討論法

(2)情景教學法

(3)問答法

(4)發現法

(5)講授法

5.教學過程

(1)導入

簡單敘述導入課題的方式和方法(例:復習、類比、情境導出本節課的課題)

(2)新授課程(一般分為三個小步驟)

①簡單講解本節課基礎知識點(例:奇函數的定義)。

②歸納總結該課題中的重點知識內容,尤其對該注意的一些情況設置易錯點,進行強調。可以設計分組討論環節(分組判斷幾組函數圖像是否為奇函數,并歸納奇函數圖像的特點。設置定義域不關于原點對稱的函數是否為奇函數的易錯點)。

③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題。

(在新授課里面一定要表下出講課的大體流程,但是不必太過詳細。)

(3)課堂小結

教師提問,學生回答本節課的收獲。

(4)作業提高

布置作業(盡量與實際生活相聯系,有所創新)。

6.教學板書

高中數學優秀教案范例篇2

一.課題(說明本課名稱)

二.教學目的(或稱教學要求,或稱教學目標,說明本課所要完成的教學任務)

三.課型(說明屬新授課,還是復習課)

四.課時(說明屬第幾課時)

五.教學重點(說明本課所必須解決的關鍵性問題)

六.教學難點(說明本課的學習時易產生困難和障礙的知識傳授與能力培養點)

七.教學方法要根據學生實際,注重引導自學,注重啟發思維

八.教學過程(或稱課堂結構,說明教學進行的內容、方法步驟)

九.作業處理(說明如何布置書面或口頭作業)

十.板書設計(說明上課時準備寫在黑板上的內容)

十一.教具(或稱教具準備,說明輔助教學手段使用的工具)

十二.教學反思:(教者對該堂課教后的感受及學生的收獲、改進方法)

高中數學優秀教案范例篇3

【教學目標】

1.知識與技能

(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:

(2)賬務等差數列的通項公式及其推導過程:

(3)會應用等差數列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

3.情感、態度與價值觀

通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。

【教學重點】

①等差數列的概念;

②等差數列的通項公式

【教學難點】

①理解等差數列“等差”的特點及通項公式的含義;

②等差數列的通項公式的推導過程.

【學情分析】

我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。

【設計思路】

1、教法

①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.

②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.

③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

2、學法

引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

【教學過程】

一、創設情境,引入新課

1、從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?

2、水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?

3、我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?

教師:以上三個問題中的數蘊涵著三列數.

學生:

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.

二、觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數列有什么共同特點?

思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?

思考3你能將上述的文字語言轉換成數學符號語言嗎?

教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.

學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.

(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的準確表達.)

三、舉一反三,鞏固定義

1、判定下列數列是否為等差數列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.

(設計意圖:強化學生對等差數列“等差”特征的理解和應用).

2、思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

(設計意圖:強化等差數列的證明定義法)

四、利用定義,導出通項

1、已知等差數列:8,5,2,…,求第200項?

2、已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.

(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)

五、應用通項,解決問題

1、判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?

2、在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

3、求等差數列3,7,11,…的第4項和第10項

教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)

六、反饋練習:教材13頁練習1

七、歸納總結:

1、一個定義:

等差數列的定義及定義表達式

2、一個公式:

等差數列的通項公式

3、二個應用:

定義和通項公式的應用

教師:讓學生思考整理,找幾個代表發言,最后教師給出補充

(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

【設計反思】

本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

高中數學優秀教案范例篇4

各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節“一元二次不等式解法”。

下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

(二)教學內容

本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。

二、教學目標分析

根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:

知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

三、重難點分析

一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。

要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

四、教法與學法分析

(一)學法指導

教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。

(二)教法分析

本節課設計的指導思想是:現代認知心理學——建構主義學習理論。

建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

五、課堂設計

本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

(一)創設情景,引出“三個一次”的關系

本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

為此,我設計了以下幾個問題:

1、請同學們解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

學生回答,我板書。

2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質就容易得到。

3、接著我提出:我們能否利用不等式的基本性質來解一元二次不等式呢?學生可能感到很困惑。

4、為此,我引入一次函數y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關系:

①2x-7=0的解恰是函數y=2x-7的圖象與x軸

交點的橫坐標。

②2x-70的解集正是函數y=2x-7的圖象

在x軸的上方的點的橫坐標的集合。

③2x-70的解集正是函數y=2x-7的圖象

在x軸的下方的點的橫坐標的集合。

三組關系的得出,實際上讓學生找到了利用“一次函數的圖象”來解一元一次方程和一元一次不等式的方法。讓學生看到了解決一元二次不等式的希望,大大激發了學生解決新問題的興趣。此時,學生很自然聯想到利用函數y=x2-x-6的`圖象來求不等式x2-x-60的解集。

(二)比舊悟新,引出“三個二次”的關系

為此我引導學生作出函數y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進行探究。

看函數y=x2-x-6的圖象并說出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此時,學生已經沖出了困惑,找到了利用二次函數的圖象來解一元二次不等式的方法。

學生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數y=x2-x-6變為y=ax2+bx+c(a0),那么圖象與x軸的位置關系又怎樣呢?(學生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學們討論:ax2+bx+c0與ax2+bx+c0的解集與函數y=ax2+bx+c的圖象有怎樣的關系?

(三)歸納提煉,得出“三個二次”的關系

1、引導學生根據圖象與x軸的相對位置關系,寫出相關不等式的解集。

2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經討論之后,有的學生得出:將二次項系數由負化正,轉化為上述模式求解,教師應予以強調;也有的學生提出畫出相應的二次函數圖象,根據圖象寫出解集,教師應給予肯定。)

(四)應用新知,熟練掌握一元二次不等式的解集

借助二次函數的圖象,得到一元二次不等式的解集,學生形成了感性認識,為鞏固所學知識,我們一起來完成以下例題:

例1、解不等式2x2-3x-20

解:因為Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應用;二是規范了一元二次不等式的解題格式。

下面我們接著學習課本例2。

例2 解不等式-3x2+6x2

課本例2的出現恰當好處,一方面突出了“對于二次項系數是負數(即a0)的一元二次不等式,可以先把二次項系數化為正數,再求解”;另一方面,學生對此例的解答極易出現寫錯解集(如出現“或”與“且”的錯誤)。

通過例1、例2的解決,學生與我一起總結了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學生練習,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予熱情表揚。

4道例題,具有典型性、層次性和學生的可接受性。為了避免學生學后“一團亂麻”、“一盤散沙”的局面,我和學生一起總結。

(五)總結

解一元二次不等式的“四部曲”:

(1)把二次項的系數化為正數

(2)計算判別式Δ

(3)解對應的一元二次方程

(4)根據一元二次方程的根,結合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

(六)作業布置

為了使所有學生鞏固所學知識,我布置了“必做題”;又為學有余力者留有自由發展的空間,我布置了“探究題”。

(1)必做題:習題1.5的1、3題

(2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數k的取值范圍。

(七)板書設計

一元二次不等式解法(1)

五、教學效果評價

本節課立足課本,著力挖掘,設計合理,層次分明。以“三個一次關系→三個二次關系→一元二次不等式解法”為主線,以“從形到數,從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學思想上既注重知識形成過程的教學,還特別突出學生學習方法的指導,探究能力的訓練,創新精神的培養,引導學生發現數學的美,體驗求知的樂趣。

高中數學優秀教案范例篇5

一、教學目標

1.知識與技能

(1)掌握斜二測畫法畫水平設置的平面圖形的直觀圖。

(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。

2.過程與方法

學生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。

3.情感態度與價值觀

(1)提高空間想象力與直觀感受。

(2)體會對比在學習中的作用。

(3)感受幾何作圖在生產活動中的應用。

二、教學重點、難點

重點、難點:用斜二測畫法畫空間幾何值的直觀圖。

三、學法與教學用具

1.學法:學生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。

2.教學用具:三角板、圓規

四、教學思路

(一)創設情景,揭示課題

1.我們都學過畫畫,這節課我們畫一物體:圓柱

把實物圓柱放在講臺上讓學生畫。

2.學生畫完后展示自己的結果并與同學交流,比較誰畫的效果更好,思考怎樣才能畫好物體的直觀圖呢?這是我們這節主要學習的內容。

(二)研探新知

1.例1,用斜二測畫法畫水平放置的正六邊形的直觀圖,由學生閱讀理解,并思考斜二測畫法的關鍵步驟,學生發表自己的見解,教師及時給予點評。

畫水平放置的多邊形的直觀圖的關鍵是確定多邊形頂點的位置,因為多邊形頂點的位置一旦確定,依次連結這些頂點就可畫出多邊形來,因此平面多邊形水平放置時,直觀圖的畫法可以歸結為確定點的位置的畫法。強調斜二測畫法的步驟。

練習反饋

根據斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學生獨立完成后,教師檢查。

2.例2,用斜二測畫法畫水平放置的圓的直觀圖

教師引導學生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構造出一些點。

教師組織學生思考、討論和交流,如何構造出需要的一些點,與學生共同完成例2并詳細板書畫法。

3.探求空間幾何體的直觀圖的畫法

(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體ABCD-A’B’C’D’的直觀圖。

教師引導學生完成,要注意對每一步驟提出嚴格要求,讓學生按部就班地畫好每一步,不能敷衍了事。

(2)投影出示幾何體的三視圖、課本P15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學生思考,討論和交流完成,教師巡視幫不懂的同學解疑,引導學生正確把握圖形尺寸大小之間的關系。

4.平行投影與中心投影

投影出示課本P17圖1.2-12,讓學生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。

5.鞏固練習,課本P16練習1(1),2,3,4

三、歸納整理

學生回顧斜二測畫法的關鍵與步驟

四、作業

1.書畫作業,課本P17練習第5題

2.課外思考課本P16,探究(1)(2)

22902 主站蜘蛛池模板: 繁昌县| 婺源县| 涡阳县| 合川市| 阆中市| 惠安县| 澄城县| 泰兴市| 恩平市| 灵丘县| 万载县| 商河县| 贵溪市| 文昌市| 乐昌市| 那曲县| 丹寨县| 南丹县| 德庆县| 石门县| 英山县| 全椒县| 定兴县| 长武县| 桂东县| 勃利县| 蒲城县| 徐汇区| 神木县| 岱山县| 平南县| 永济市| 施甸县| 长海县| 祁阳县| 宜良县| 昌吉市| 若羌县| 福州市| 仙居县| 黑龙江省|