教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

怎么寫高二的數(shù)學(xué)教案

時(shí)間: 新華 數(shù)學(xué)教案

教案的編寫應(yīng)注重簡潔明了、重點(diǎn)突出、條理清晰、可操作性強(qiáng)等特點(diǎn),以便更好地指導(dǎo)教學(xué)工作。下面給大家整理一些怎么寫高二的數(shù)學(xué)教案,方便大家學(xué)習(xí)怎么寫怎么寫高二的數(shù)學(xué)教案。

怎么寫高二的數(shù)學(xué)教案篇1

重點(diǎn)難點(diǎn)教學(xué):

1.正確理解映射的概念;

2.函數(shù)相等的兩個(gè)條件;

3.求函數(shù)的定義域和值域。

一.教學(xué)過程:

1.使學(xué)生熟練掌握函數(shù)的概念和映射的定義;

2.使學(xué)生能夠根據(jù)已知條件求出函數(shù)的定義域和值域;3.使學(xué)生掌握函數(shù)的三種表示方法。

二.教學(xué)內(nèi)容:1.函數(shù)的定義

設(shè)A、B是兩個(gè)非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)()fx和它對(duì)應(yīng),那么稱:fAB?為從集合A到集合B的一個(gè)函數(shù)(function),記作:

(),yf_A

其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對(duì)應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{()}f_A?叫值域(range)。顯然,值域是集合B的子集。

注意:

①“y=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

②函數(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.2.構(gòu)成函數(shù)的三要素定義域、對(duì)應(yīng)關(guān)系和值域。3、映射的定義

設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意

一個(gè)元素x,在集合B中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:A→B為從集合A到集合B的一個(gè)映射。

4.區(qū)間及寫法:

設(shè)a、b是兩個(gè)實(shí)數(shù),且a

(1)滿足不等式axb??的實(shí)數(shù)x的集合叫做閉區(qū)間,表示為[a,b];

(2)滿足不等式axb??的實(shí)數(shù)x的集合叫做開區(qū)間,表示為(a,b);

5.函數(shù)的三種表示方法①解析法②列表法③圖像法

怎么寫高二的數(shù)學(xué)教案篇2

學(xué)習(xí)目標(biāo):

1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法2、能敘述隨機(jī)變量的定義

3、能說出隨機(jī)變量與函數(shù)的關(guān)系,4、能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示

重點(diǎn):能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示

難點(diǎn):隨機(jī)事件概念的透徹理解及對(duì)隨機(jī)變量引入目的的認(rèn)識(shí):

環(huán)節(jié)一:隨機(jī)變量的定義

1.通過生活中的一些隨機(jī)現(xiàn)象,能夠概括出隨機(jī)變量的定義

2能敘述隨機(jī)變量的定義

3能說出隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系

一、閱讀課本33頁問題提出和分析理解,回答下列問題?

1、了解一個(gè)隨機(jī)現(xiàn)象的規(guī)律具體指的是什么?

2、分析理解中的兩個(gè)隨機(jī)現(xiàn)象的隨機(jī)試驗(yàn)結(jié)果有什么不同?建立了什么樣的對(duì)應(yīng)關(guān)系?

總結(jié):

3、隨機(jī)變量

(1)定義:

這種對(duì)應(yīng)稱為一個(gè)隨機(jī)變量。即隨機(jī)變量是從隨機(jī)試驗(yàn)每一個(gè)可能的結(jié)果所組成的

到的映射。

(2)表示:隨機(jī)變量常用大寫字母.等表示.

(3)隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系

函數(shù)隨機(jī)變量

自變量

因變量

因變量的范圍

相同點(diǎn)都是映射都是映射

環(huán)節(jié)二隨機(jī)變量的應(yīng)用

1、能正確寫出隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機(jī)變量的描述隨機(jī)事件

例1:已知在10件產(chǎn)品中有2件不合格品。現(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機(jī)變量的學(xué)案.這是一個(gè)隨機(jī)現(xiàn)象。(1)寫成該隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機(jī)變量來描述上述結(jié)果。

變式:已知在10件產(chǎn)品中有2件不合格品。從這10件產(chǎn)品中任取3件,這是一個(gè)隨機(jī)現(xiàn)象。若Y表示取出的3件產(chǎn)品中的合格品數(shù),試用隨機(jī)變量描述上述結(jié)果

例2連續(xù)投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的次數(shù),則X是一個(gè)隨機(jī)變

量,分別說明下列集合所代表的隨機(jī)事件:

(1){X=0}(2){X=1}

(3){X<2}(4){X>0}

變式:連續(xù)投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數(shù),則X是一個(gè)隨機(jī)變量,X的可能取值是?并說明這些值所表示的隨機(jī)試驗(yàn)的結(jié)果.

練習(xí):寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)變量的結(jié)果。

(1)從學(xué)校回家要經(jīng)過5個(gè)紅綠燈路口,可能遇到紅燈的次數(shù);

(2)一個(gè)袋中裝有5只同樣大小的球,編號(hào)為1,2,3,4,5,現(xiàn)從中隨機(jī)取出3只球,被取出的球的號(hào)碼數(shù);

小結(jié)(對(duì)標(biāo))

怎么寫高二的數(shù)學(xué)教案篇3

教學(xué)目標(biāo)

1.了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實(shí)和判定的基本方法.

(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.

(2)能從數(shù)和形兩個(gè)角度熟悉單調(diào)性和奇偶性.

(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實(shí)某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.

2.通過函數(shù)單調(diào)性的證實(shí),提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時(shí)滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想.

3.通過對(duì)函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對(duì)數(shù)學(xué)美的體驗(yàn),培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹(jǐn)?shù)难芯繎B(tài)度.

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.

(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.

二、重點(diǎn)難點(diǎn)分析

(1)本節(jié)教學(xué)的重點(diǎn)是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉.教學(xué)的難點(diǎn)是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實(shí).

(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對(duì)高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點(diǎn)下功夫.單調(diào)性的證實(shí)是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實(shí),也沒有意識(shí)到它的重要性,所以單調(diào)性的證實(shí)自然就是教學(xué)中的難點(diǎn).

三、教法建議

(1)函數(shù)單調(diào)性概念引入時(shí),可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點(diǎn)感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計(jì)這樣的問題:圖象怎么就升上去了?可以從點(diǎn)的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個(gè)過程中對(duì)一些關(guān)鍵的詞語(某個(gè)區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來.

(2)函數(shù)單調(diào)性證實(shí)的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時(shí),讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號(hào),在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律.

函數(shù)的奇偶性概念引入時(shí),可設(shè)計(jì)一個(gè)課件,以的圖象為例,讓自變量互為相反數(shù),觀察對(duì)應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動(dòng)起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達(dá)式寫出來.經(jīng)歷了這樣的過程,再得到等式時(shí),就比較輕易體會(huì)它代表的是無數(shù)多個(gè)等式,是個(gè)恒等式.關(guān)于定義域關(guān)于原點(diǎn)對(duì)稱的問題,也可借助課件將函數(shù)圖象進(jìn)行多次改動(dòng),幫助學(xué)生發(fā)現(xiàn)定義域的對(duì)稱性,同時(shí)還可以借助圖象(如)說明定義域關(guān)于原點(diǎn)對(duì)稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.

函數(shù)的奇偶性教學(xué)設(shè)計(jì)方案

教學(xué)目標(biāo)

1.使學(xué)生了解奇偶性的概念,回會(huì)利用定義判定簡單函數(shù)的奇偶性.

2.在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時(shí)滲透數(shù)形結(jié)合和非凡到一般的思想方法.

3.在學(xué)生感受數(shù)學(xué)美的同時(shí),激發(fā)學(xué)習(xí)的愛好,培養(yǎng)學(xué)生樂于求索的精神.

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)是奇偶性概念的形成與函數(shù)奇偶性的判定

難點(diǎn)是對(duì)概念的熟悉

教學(xué)用具

投影儀,計(jì)算機(jī)

教學(xué)方法

引導(dǎo)發(fā)現(xiàn)法

教學(xué)過程

一.引入新課

前面我們已經(jīng)研究了函數(shù)的單調(diào)性

,它是反映函數(shù)在某一個(gè)區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個(gè)性質(zhì).從什么角度呢?將從對(duì)稱的角度來研究函數(shù)的性質(zhì).

對(duì)稱我們大家都很熟悉,在生活中有很多對(duì)稱,在數(shù)學(xué)中也能發(fā)現(xiàn)很多對(duì)稱的問題,大家回憶一下在我們所學(xué)的內(nèi)容中,非凡是函數(shù)中有沒有對(duì)稱問題呢?

(學(xué)生可能會(huì)舉出一些數(shù)值上的對(duì)稱問題,等,也可能會(huì)舉出一些圖象的對(duì)稱問題,此時(shí)教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等.)

結(jié)合圖象提出這些對(duì)稱是我們?cè)诔踔醒芯康年P(guān)于軸對(duì)稱和關(guān)于原點(diǎn)對(duì)稱問題,而我們還曾研究過關(guān)于軸對(duì)稱的問題,你們舉的例子中還沒有這樣的,能舉出一個(gè)函數(shù)圖象關(guān)于軸對(duì)稱的嗎?

學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個(gè)只能對(duì)一個(gè),而不能有兩個(gè)不同的,故函數(shù)的圖象不可能關(guān)于軸對(duì)稱.最終提出我們今天將重點(diǎn)研究圖象關(guān)于軸對(duì)稱和關(guān)于原點(diǎn)對(duì)稱的問題,從形的特征中找出它們?cè)跀?shù)值上的規(guī)律.

二.講解新課

2.函數(shù)的奇偶性(板書)

教師從剛才的圖象中選出,用計(jì)算機(jī)打出,指出這是關(guān)于軸對(duì)稱的圖象,然后問學(xué)生初中是怎樣判定圖象關(guān)于軸對(duì)稱呢?(由學(xué)生回答,是利用圖象的翻折后重合來判定)此時(shí)教師明確提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?

學(xué)生開始可能只會(huì)用語言去描述:自變量互為相反數(shù),函數(shù)值相等.教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示.(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進(jìn)而再提出會(huì)不會(huì)在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動(dòng)起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)

從這個(gè)結(jié)論中就可以發(fā)現(xiàn)對(duì)定義域內(nèi)任意一個(gè),都有成立.最后讓學(xué)生用完整的語言給出定義,不準(zhǔn)確的地方教師予以提示或調(diào)整.

(1)偶函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做偶函數(shù).(板書)

(給出定義后可讓學(xué)生舉幾個(gè)例子,如等以檢驗(yàn)一下對(duì)概念的初步熟悉)

提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時(shí)打出或的圖象讓學(xué)生觀察研究)

學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義.

(2)奇函數(shù)的定義:假如對(duì)于函數(shù)的定義域內(nèi)任意一個(gè),都有,那么就叫做奇函數(shù).(板書)

(由于在定義形成時(shí)已經(jīng)有了一定的熟悉,故可以先作判定,在判定中再加深熟悉)

例1.判定下列函數(shù)的奇偶性(板書)

(1);(2);

(3);;

(5);(6).

(要求學(xué)生口答,選出12個(gè)題說過程)

解:(1)是奇函數(shù).(2)是偶函數(shù).

(3),是偶函數(shù).

前三個(gè)題做完,教師做一次小結(jié),判定奇偶性,只需驗(yàn)證與之間的關(guān)系,但對(duì)你們的回答我不滿足,因?yàn)轭}目要求是判定奇偶性而你們只回答了一半,另一半沒有作答,以第(1)為例,說明怎樣解決它不是偶函數(shù)的問題呢?

學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個(gè)反例說明與不等.如即可說明它不是偶函數(shù).(從這個(gè)問題的解決中讓學(xué)生再次熟悉到定義中任意性的重要)

從(4)題開始,學(xué)生的答案會(huì)有不同,可以讓學(xué)生先討論,教師再做評(píng)述.即第(4)題中表面成立的=不能經(jīng)受任意性的考驗(yàn),當(dāng)時(shí),由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性.

教師由此引導(dǎo)學(xué)生,通過剛才這個(gè)題目,你發(fā)現(xiàn)在判定中需要注重些什么?(若學(xué)生發(fā)現(xiàn)不了定義域的特征,教師可再從定義啟發(fā),在定義域中有1,就必有1,有2,就必有2,有,就必有,有就必有,從而發(fā)現(xiàn)定義域應(yīng)關(guān)于原點(diǎn)對(duì)稱,再提出定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的什么條件?

可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論.

(3)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要但不充分條件.(板書)

由學(xué)生小結(jié)判定奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個(gè)函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明.

經(jīng)學(xué)生思考,可找到函數(shù).然后繼續(xù)提問:是不是具備這樣性質(zhì)的函數(shù)的解析式都只能寫成這樣呢?能證實(shí)嗎?

例2.已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:.(板書)(試由學(xué)生來完成)

證實(shí):既是奇函數(shù)也是偶函數(shù),

=,且,

=.

,即.

證后,教師請(qǐng)學(xué)生記住結(jié)論的同時(shí),追問這樣的函數(shù)應(yīng)有多少個(gè)呢?學(xué)生開始可能認(rèn)為只有一個(gè),經(jīng)教師提示可發(fā)現(xiàn),只是解析式的特征,若改變函數(shù)的定義域,如,,,,它們顯然是不同的函數(shù),但它們都是既是奇函數(shù)也是偶函數(shù).由上可知函數(shù)按其是否具有奇偶性可分為四類

(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)

例3.判定下列函數(shù)的奇偶性(板書)

(1);(2);(3).

由學(xué)生回答,不完整之處教師補(bǔ)充.

解:(1)當(dāng)時(shí),為奇函數(shù),當(dāng)時(shí),既不是奇函數(shù)也不是偶函數(shù).

(2)當(dāng)時(shí),既是奇函數(shù)也是偶函數(shù),當(dāng)時(shí),是偶函數(shù).

(3)當(dāng)時(shí),于是,

當(dāng)時(shí),,于是=,

綜上是奇函數(shù).

教師小結(jié)(1)(2)注重分類討論的使用,(3)是分段函數(shù),當(dāng)檢驗(yàn),并不能說明具備奇偶性,因?yàn)槠媾夹允菍?duì)函數(shù)整個(gè)定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可.

三.小結(jié)

1.奇偶性的概念

2.判定中注重的問題

四.作業(yè)略

五.板書設(shè)計(jì)

2.函數(shù)的奇偶性例1.例3.

(1)偶函數(shù)定義

(2)奇函數(shù)定義

(3)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)例2.小結(jié)

具備奇偶性的必要條件

(4)函數(shù)按奇偶性分類分四類

探究活動(dòng)

(1)定義域?yàn)榈娜我夂瘮?shù)都可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和,你能試證實(shí)之嗎?

(2)判定函數(shù)在上的單調(diào)性,并加以證實(shí).

在此基礎(chǔ)上試?yán)眠@個(gè)函數(shù)的單調(diào)性解決下面的問題:

怎么寫高二的數(shù)學(xué)教案篇4

【教材分析】

1.知識(shí)內(nèi)容與結(jié)構(gòu)分析

集合論是現(xiàn)代數(shù)學(xué)的一個(gè)重要的基礎(chǔ)。在高中數(shù)學(xué)中,集合的初步知識(shí)與其他內(nèi)容有著密切的聯(lián)系,是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),集合論以及它所反映的數(shù)學(xué)思想在越來越廣泛的領(lǐng)域中得到應(yīng)用。課本從學(xué)生熟悉的集合(自然數(shù)集合、有理數(shù)的集合等)出發(fā),結(jié)合實(shí)例給出了元素、集合的含義,學(xué)生通過對(duì)具體實(shí)例的抽象、概括發(fā)展了邏輯思維能力。

2.知識(shí)學(xué)習(xí)意義分析

通過自主探究的學(xué)習(xí)過程,了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系,能選擇合適的語言描述不同的具體問題,感受集合語言的意義和作用。

3.教學(xué)建議與學(xué)法指導(dǎo)

由于本節(jié)新概念、新符號(hào)較多,雖然內(nèi)容較為淺顯,但不應(yīng)講得過快,應(yīng)在講解概念的同時(shí),讓學(xué)生多閱讀課本,互相交流,在此基礎(chǔ)上理解概念并熟悉新符號(hào)的使用。通過問題探究、自主探索、合作交流、自我總結(jié)等形式,調(diào)動(dòng)學(xué)生的積極性。

【學(xué)情分析】

在初中,學(xué)生學(xué)習(xí)過一些點(diǎn)的集合或軌跡,如:平面內(nèi)到一個(gè)定點(diǎn)的距離等于定長的點(diǎn)的集合(圓);到一條線段的兩個(gè)端點(diǎn)的距離相等的點(diǎn)的集合(線段的垂直平分線)。這對(duì)學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)有一定的幫助,只不過現(xiàn)在我們要把這個(gè)“集合”推廣,它不僅僅是點(diǎn)的集合或圖形的集合,而是“指定的某些對(duì)象的全體”。集合語言是現(xiàn)代數(shù)學(xué)的基本語言,使用這種語言,不僅有助于簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,還可以用來刻畫和解決生活中的許多問題。學(xué)習(xí)集合,可以發(fā)展同學(xué)們用數(shù)學(xué)語言進(jìn)行交流的能力。

【教學(xué)目標(biāo)】

1.知識(shí)與技能

(1)學(xué)生通過自主學(xué)習(xí),初步理解集合的概念,理解元素與集合間的關(guān)系,了解集合元素的確定性、互異性,無序性,知道常用數(shù)集及其記法;

(2)掌握集合的常用表示法——列舉法和描述法。

2.過程與方法

通過實(shí)例了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉(zhuǎn)換和抽象概括能力,樹立用集合語言表示數(shù)學(xué)內(nèi)容的意識(shí)。

3.情態(tài)與價(jià)值

在掌握基本概念的基礎(chǔ)上,能夠解決相關(guān)問題,獲得數(shù)學(xué)學(xué)習(xí)的成就感,提高學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。

【重點(diǎn)難點(diǎn)】

1.教學(xué)重點(diǎn):集合的基本概念與表示方法。

2.教學(xué)難點(diǎn):選擇合適的方法正確表示集合。

【教學(xué)思路】

通過實(shí)例以及學(xué)生熟悉的數(shù)集,引入集合的概念,進(jìn)而給出集合的表示方法,學(xué)生通過自我體會(huì)、自主學(xué)習(xí)、自我總結(jié)達(dá)到掌握本節(jié)課內(nèi)容的目的。教學(xué)過程按照“提出問題——學(xué)生討論——?dú)w納總結(jié)——獲得新知——自我檢測(cè)”環(huán)節(jié)安排。

【教學(xué)過程】

課前準(zhǔn)備:

提前留給學(xué)生預(yù)習(xí)方案:a.預(yù)習(xí)初中數(shù)學(xué)中有關(guān)集合的章節(jié);b.預(yù)習(xí)本節(jié)內(nèi)容,試著找出與以往的聯(lián)系;c.搜集生活中的集合的使用實(shí)例。

導(dǎo)入新課:同學(xué)們,我們今天要學(xué)習(xí)的是集合的知識(shí),在小學(xué)和初中,我們已經(jīng)接觸過了一些集合,例如,自然數(shù)的集合,有理數(shù)的集合,不等式x-7<3的解得集合,到一個(gè)頂點(diǎn)的距離等于定長的點(diǎn)的集合(即圓),等等。現(xiàn)在呢,我要說的是:我們大家通過對(duì)初中知識(shí)的預(yù)習(xí)和對(duì)本節(jié)課的預(yù)習(xí)我相信你們能夠很大一部分已經(jīng)掌握了本節(jié)知識(shí)的主要問題,對(duì)不對(duì)?(同學(xué)們會(huì)高興地說:對(duì)!)

下面我們分三個(gè)小組,做個(gè)游戲,好不好?我們互相競賽答題,互相評(píng)論優(yōu)點(diǎn)與不足,好不好?(同學(xué)們?cè)诒徽{(diào)動(dòng)起情緒的時(shí)候應(yīng)該說:好!)

教與學(xué)的過程:

預(yù)設(shè)問題設(shè)計(jì)意圖師生活動(dòng)教師活動(dòng)

一組二組三組活動(dòng)同學(xué)們,通過看課本2頁的(1)至(8)個(gè)例子,同學(xué)們有什么啟發(fā)嗎?提出一個(gè)模糊一點(diǎn)的問題,留給三組學(xué)生更寬的思考空間。啟發(fā)思考,激發(fā)興趣。教師點(diǎn)撥,及時(shí)糾正偏差的回答方向。(理想答案:我們學(xué)過很多集合的知識(shí)了。我們會(huì)舉出一些集合的例子。)

學(xué)生三個(gè)組分組輪流回答。你能說出他們有什么共同的特征嗎?為集合的定義及含義的給出作出鋪墊,并培養(yǎng)學(xué)生的總結(jié)概括能力。引導(dǎo)學(xué)生共同得出正確的結(jié)論。最后給出準(zhǔn)確的定義:我們把研究的對(duì)象稱為元素(element);把一些元素組成的總體叫做集合(set)(簡稱集)。學(xué)生討論,分組輪流回答。你們能說出元素與集合是什么關(guān)系嗎?怎么表示呀?用什么額符號(hào)表示啊?通過學(xué)生自己總結(jié),對(duì)元素與集合的關(guān)系記憶更深刻。教師指導(dǎo)學(xué)生得出準(zhǔn)確答案。(理想答案:集合是整體,元素是個(gè)體,集合有元素組成。集合用大寫字母表示,例如A;元素用小寫字母表示,例如a.如果a是集合A的元素,就說a屬于A集合A,記做a∈A,如果a不是集合A中的元素,就說a不屬于集合A,記做A)學(xué)生討論,分組輪流回答。

可以互相挑出對(duì)方回答問題的錯(cuò)誤來比賽。我們描述集合常用哪些方法呢?怎么表示?引導(dǎo)學(xué)生認(rèn)識(shí)集合的兩種常見表示方法。教師引導(dǎo)指正。(理想答案:列舉法:把集合的元素一一列舉出來,并用花括號(hào)“{}”括起來表示集合的方法叫做列舉法。描述法:用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號(hào)內(nèi)線寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。同學(xué)們上黑板邊回答邊演練。誰能試著說說集合中的元素有什么特點(diǎn)啊?拓展知識(shí),讓學(xué)生對(duì)元素的特征有極愛哦理性的認(rèn)識(shí),并開發(fā)其探究思維。教師點(diǎn)撥。(理想答案:元素一旦給出是確定的,確定性,沒有相同的,互異性,是沒有順序的,無序性。

即(1)確定性:對(duì)于任意一個(gè)元素,要么它屬于某個(gè)指定集合,要么它不屬于該集合,二者必居其一。

(2)互異性:同一個(gè)集合中的元素是互不相同的。

(3)無序性:任意改變集合中元素的排列次序,它們?nèi)匀槐硎就粋€(gè)集合。)學(xué)生探究討論,回答。什么叫兩個(gè)集合相等呢?深刻理解集合。教師給出答案。(如果構(gòu)成兩個(gè)集合的元素是一樣的,我們稱這兩個(gè)集合是相等的。)學(xué)生探討回答。

怎么寫高二的數(shù)學(xué)教案篇5

教材分析

因式分解是代數(shù)式的一種重要恒等變形。《數(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對(duì)因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對(duì)立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

學(xué)情分析

通過探究平方差公式和運(yùn)用平方差公式分解因式的活動(dòng)中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

教學(xué)目標(biāo)

1、在分解因式的過程中體會(huì)整式乘法與因式分解之間的聯(lián)系。

2、通過公式a-b=(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。

3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

4、通過活動(dòng)4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):靈活運(yùn)用平方差公式進(jìn)行分解因式。

難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

怎么寫高二的數(shù)學(xué)教案篇6

教材分析教材的地位和作用

期望是概率論和數(shù)理統(tǒng)計(jì)的重要概念之一,是反映隨機(jī)變量取值分布的特征數(shù),學(xué)習(xí)期望將為今后學(xué)習(xí)概率統(tǒng)計(jì)知識(shí)做鋪墊。同時(shí),它在市場(chǎng)預(yù)測(cè),經(jīng)濟(jì)統(tǒng)計(jì),風(fēng)險(xiǎn)與決策等領(lǐng)域有著廣泛的應(yīng)用,為今后學(xué)習(xí)數(shù)學(xué)及相關(guān)學(xué)科產(chǎn)生深遠(yuǎn)的影響。

教學(xué)重點(diǎn)與難點(diǎn)

重點(diǎn):離散型隨機(jī)變量期望的概念及其實(shí)際含義。

難點(diǎn):離散型隨機(jī)變量期望的實(shí)際應(yīng)用。

[理論依據(jù)]本課是一節(jié)概念新授課,而概念本身具有一定的抽象性,學(xué)生難以理解,因此把對(duì)離散性隨機(jī)變量期望的概念的教學(xué)作為本節(jié)課的教學(xué)重點(diǎn)。此外,學(xué)生初次應(yīng)用概念解決實(shí)際問題也較為困難,故把其作為本節(jié)課的教學(xué)難點(diǎn)。

二、教學(xué)目標(biāo)

[知識(shí)與技能目標(biāo)]

通過實(shí)例,讓學(xué)生理解離散型隨機(jī)變量期望的概念,了解其實(shí)際含義。

會(huì)計(jì)算簡單的離散型隨機(jī)變量的期望,并解決一些實(shí)際問題。

[過程與方法目標(biāo)]

經(jīng)歷概念的建構(gòu)這一過程,讓學(xué)生進(jìn)一步體會(huì)從特殊到一般的.思想,培養(yǎng)學(xué)生歸納、概括等合情推理能力。

通過實(shí)際應(yīng)用,培養(yǎng)學(xué)生把實(shí)際問題抽象成數(shù)學(xué)問題的能力和學(xué)以致用的數(shù)學(xué)應(yīng)用意識(shí)。

[情感與態(tài)度目標(biāo)]

通過創(chuàng)設(shè)情境激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的情感,培養(yǎng)其嚴(yán)謹(jǐn)治學(xué)的態(tài)度。在學(xué)生分析問題、解決問題的過程中培養(yǎng)其積極探索的精神,從而實(shí)現(xiàn)自我的價(jià)值。

三、教法選擇

引導(dǎo)發(fā)現(xiàn)法

四、學(xué)法指導(dǎo)

“授之以魚,不如授之以漁”,注重發(fā)揮學(xué)生的主體性,讓學(xué)生在學(xué)習(xí)中學(xué)會(huì)怎樣發(fā)現(xiàn)問題、分析問題、解決問題。

怎么寫高二的數(shù)學(xué)教案篇7

一、教材分析

【教材地位及作用】

基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。

【教學(xué)目標(biāo)】

依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):

知識(shí)與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;

過程與方法目標(biāo):通過探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過程,培養(yǎng)分析、解決問題的能力;

情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

【教學(xué)重難點(diǎn)】

重點(diǎn):理解掌握基本不等式,能借助幾何圖形說明基本不等式的意義。

難點(diǎn):利用基本不等式推導(dǎo)不等式.

關(guān)鍵是對(duì)基本不等式的理解掌握.

二、教法分析

本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率.

三、學(xué)法指導(dǎo)

新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。

四、教學(xué)過程

教學(xué)過程設(shè)計(jì)以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

具體過程安排如下:

(一)基本不等式的教學(xué)設(shè)計(jì)創(chuàng)設(shè)情景,提出問題

設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:

上圖是在北京召開的第24屆國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國人民熱情好客。

[問題1]請(qǐng)觀察會(huì)標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們?cè)诿娣e上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組討論)

(二)探究問題,抽象歸納

基本不等式的教學(xué)設(shè)計(jì)1.探究圖形中的不等關(guān)系

形的角度----(利用多媒體展示會(huì)標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個(gè)直角三角形的面積之和小于或等于正方形的面積.)

數(shù)的角度

[問題2]若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?

學(xué)生討論結(jié)果:。

[問題3]大家看,這個(gè)圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個(gè)不等式。這里a、b的取值有沒有什么限制條件?不等式中的等號(hào)什么時(shí)候成立呢?(師生共同探索)

咱們?cè)倏匆豢磮D形的變化,(教師演示)

(學(xué)生發(fā)現(xiàn))當(dāng)a=b四個(gè)直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。

設(shè)計(jì)意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計(jì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。

2.抽象歸納:

一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

[問題4]你能給出它的證明嗎?

學(xué)生在黑板上板書。

[問題5]特別地,當(dāng)時(shí),在不等式中,以、分別代替a、b,得到什么?

學(xué)生歸納得出。

設(shè)計(jì)意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).

【歸納總結(jié)】

如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。

我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。

3.探究基本不等式證明方法:

[問題6]如何證明基本不等式?

設(shè)計(jì)意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。

方法一:作差比較或由基本不等式的教學(xué)設(shè)計(jì)展開證明。

方法二:分析法

要證

只要證2

要證,只要證2

要證,只要證

顯然,是成立的。當(dāng)且僅當(dāng)a=b時(shí),中的等號(hào)成立。

4.理解升華

1)文字語言敘述:

兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

2)符號(hào)語言敘述:

若,則有,當(dāng)且僅當(dāng)a=b時(shí),。

[問題7]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))

“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:

當(dāng)a=b時(shí),取等號(hào),即;

僅當(dāng)a=b時(shí),取等號(hào),即。

3)探究基本不等式的幾何意義:

基本不等式的教學(xué)設(shè)計(jì)借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號(hào)成立的條件。

如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),

CD⊥AB,AC=a,CB=b,

[問題8]你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?

(教師演示,學(xué)生直觀感覺)

易證RtACDRtDCB,那么CD2=CA·CB

即CD=.

這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立.

因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高.

4)聯(lián)想數(shù)列的知識(shí)理解基本不等式

從形的角度來看,基本不等式具有特定的幾何意義;從數(shù)的角度來看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系.

[問題9]回憶一下你所學(xué)的知識(shí)中,有哪些地方出現(xiàn)過“和”與“積”的結(jié)構(gòu)?

歸納得出:

均值不等式的代數(shù)解釋為:兩個(gè)正數(shù)的等差中項(xiàng)不小它們的等比中項(xiàng).

基本不等式的教學(xué)設(shè)計(jì)(四)體會(huì)新知,遷移應(yīng)用

例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計(jì)

(2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,

,過作交于,你能利用這個(gè)圖形得出這個(gè)不等式的一種幾何解釋嗎?

設(shè)計(jì)意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識(shí),進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時(shí),等號(hào)成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。

(五)演練反饋,鞏固深化

公式應(yīng)用之一:

1.試判斷與與2的大小關(guān)系?

問題:如果將條件“x>0”去掉,上述結(jié)論是否仍然成立?

2.試判斷與7的大小關(guān)系?

公式應(yīng)用之二:

設(shè)計(jì)意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中

(1)用一個(gè)兩臂長短有差異的天平稱一樣物品,有人說只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺得這種做法比實(shí)際重量輕了還是重了?

(2)甲、乙兩商場(chǎng)對(duì)單價(jià)相同的同類產(chǎn)品進(jìn)行促銷.甲商場(chǎng)采取的促銷方式是在原價(jià)p折的基礎(chǔ)上再打q折;乙商場(chǎng)的促銷方式則是兩次都打折.對(duì)顧客而言,哪種打折方式更合算?(0≠q)

(五)反思總結(jié),整合新知:

通過本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問題需要請(qǐng)教?

設(shè)計(jì)意圖:通過反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.從各種角度對(duì)均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生掌握本節(jié)課的重點(diǎn),突破難點(diǎn)

老師根據(jù)情況完善如下:

知識(shí)要點(diǎn):

(1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征

(2)基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義

思想方法技巧:

(1)數(shù)形結(jié)合思想、“整體與局部”

(2)歸納與類比思想

(3)換元法、比較法、分析法

(七)布置作業(yè),更上一層

1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計(jì)

2.書面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計(jì)

3.思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會(huì)有怎樣的不等式?

設(shè)計(jì)意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時(shí)考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。

五、評(píng)價(jià)分析

1.在建立新知的過程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識(shí)來分析問題、解決問題,以形成比較系統(tǒng)和完整的知識(shí)結(jié)構(gòu)。每個(gè)問題在設(shè)計(jì)時(shí),充分考慮了學(xué)生的具體情況,力爭提問準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價(jià)值,對(duì)知識(shí)的理解和掌握在不斷的思考和討論中完善和加深。

2.本節(jié)的教學(xué)中要求學(xué)生對(duì)基本不等式在數(shù)與形兩個(gè)方面都有比較充分的認(rèn)識(shí),特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對(duì)基本不等式得以深刻理解。“數(shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠掌握并且會(huì)用的,只有學(xué)生通過實(shí)踐,意識(shí)到它的好處之后,學(xué)生才會(huì)在解決問題時(shí)去嘗試使用,只有通過不斷的使用才能促進(jìn)學(xué)生對(duì)這種思想方法的再理解,從而達(dá)到掌握它的目的。

怎么寫高二的數(shù)學(xué)教案篇8

函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。

1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。

2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動(dòng)中求靜,研究運(yùn)動(dòng)中的等量關(guān)系;

3.函數(shù)方程思想的幾種重要形式

(1)函數(shù)和方程是密切相關(guān)的,對(duì)于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。

(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對(duì)于函數(shù)y=f(x),當(dāng)y>0時(shí),就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;

(3)數(shù)列的通項(xiàng)或前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)處理數(shù)列問題十分重要;

(4)函數(shù)f(x)=(1+x)^n(n∈N_)與二項(xiàng)式定理是密切相關(guān)的,利用這個(gè)函數(shù)用賦值法和比較系數(shù)法可以解決很多二項(xiàng)式定理的問題;

(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;

(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。

怎么寫高二的數(shù)學(xué)教案篇9

1.教材結(jié)構(gòu)分析

《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié).圓作為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用.圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用.

2.學(xué)情分析

圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的.但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會(huì)出現(xiàn)困難.另外學(xué)生在探究問題的能力,合作交流的意識(shí)等方面有待加強(qiáng).

根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

3.教學(xué)目標(biāo)

(1)知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;

②會(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

③利用圓的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題.

(2)能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

②加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).

(3)情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

②在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

4.教學(xué)重點(diǎn)與難點(diǎn)

(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

(2)難點(diǎn):①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題.

為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

【二】教法學(xué)法分析

1.教法分析為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上.另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程.

2.學(xué)法分析通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解.通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程.

下面我就對(duì)具體的教學(xué)過程和設(shè)計(jì)加以說明:

【三】教學(xué)過程與設(shè)計(jì)

整個(gè)教學(xué)過程是由七個(gè)問題組成的問題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高

反饋訓(xùn)練形成方法小結(jié)反思拓展引申

下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖.

首先:縱向敘述教學(xué)過程

(一)創(chuàng)設(shè)情境——啟迪思維

問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

通過對(duì)這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決.一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題.用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望.這樣獲取的知識(shí),不但易于保持,而且易于遷移.

通過對(duì)問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié).

(二)深入探究——獲得新知

問題二1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

2.如果圓心在,半徑為時(shí)又如何呢?

這一環(huán)節(jié)我首先讓學(xué)生對(duì)問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程.然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究.我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法.

得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié).

(三)應(yīng)用舉例——鞏固提高

I.直接應(yīng)用內(nèi)化新知

問題三1.寫出下列各圓的標(biāo)準(zhǔn)方程:

(1)圓心在原點(diǎn),半徑為3;

(2)經(jīng)過點(diǎn),圓心在點(diǎn).

2.寫出圓的圓心坐標(biāo)和半徑.

我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備.

II.靈活應(yīng)用提升能力

問題四1.求以點(diǎn)為圓心,并且和直線相切的圓的方程.

2.求過點(diǎn),圓心在直線上且與軸相切的圓的方程.

3.已知圓的方程為,求過圓上一點(diǎn)的切線方程.

你能歸納出具有一般性的結(jié)論嗎?

已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?

我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程.第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓.第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間.最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮.

III.實(shí)際應(yīng)用回歸自然

問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長度(精確到0.01m).

我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí).

(四)反饋訓(xùn)練——形成方法

問題六1.求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程.

2.求圓過點(diǎn)的切線方程.

3.求圓過點(diǎn)的切線方程.

接下來是第四環(huán)節(jié)——反饋訓(xùn)練.這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心.另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果.

(五)小結(jié)反思——拓展引申

1.課堂小結(jié)

把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

①圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:

圓心在原點(diǎn)時(shí),半徑為r的圓的標(biāo)準(zhǔn)方程為:.

②已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:.

2.分層作業(yè)

(A)鞏固型作業(yè):教材P81-82:(習(xí)題7.6)1,2,4.(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程.

3.激發(fā)新疑

問題七1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

2.方程表示什么圖形?

在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了.在知識(shí)的拓展中再次掀起學(xué)生探究的熱情.另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備.

以上是我縱向的教學(xué)過程及簡單的設(shè)計(jì)意圖,接下來,我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):

橫向闡述教學(xué)設(shè)計(jì)

(一)突出重點(diǎn)抓住關(guān)鍵突破難點(diǎn)

求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn).

第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心.最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問題——問題五.這樣的設(shè)計(jì),使學(xué)生在解決問題的同時(shí),形成了方法,難點(diǎn)自然突破.

(二)學(xué)生主體教師主導(dǎo)探究主線

本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終.從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的.另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù).

(三)培養(yǎng)思維提升能力激勵(lì)創(chuàng)新

為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力.在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行.

以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變.最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”.

怎么寫高二的數(shù)學(xué)教案篇10

【學(xué)習(xí)目標(biāo)】

1、進(jìn)一步體會(huì)數(shù)形結(jié)合的思想,提高分析問題解決問題的能力;

2、能借助正余弦函數(shù)的誘導(dǎo)公式推導(dǎo)出正切函數(shù)的誘導(dǎo)公式;

3、掌握誘導(dǎo)公式在求值和化簡中的應(yīng)用.

【學(xué)習(xí)重點(diǎn)】正切函數(shù)的誘導(dǎo)公式及應(yīng)用

【學(xué)習(xí)難點(diǎn)】正切函數(shù)誘導(dǎo)公式的推導(dǎo)

【學(xué)習(xí)過程】

一、預(yù)習(xí)自學(xué)

1.觀察課本38頁圖1-46,當(dāng)-414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式<414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式<414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式時(shí),角414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式與角2414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式的正切函數(shù)值有什么關(guān)系?

我們可以歸納出以下公式:

tan(2414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=tan(-414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=tan(2414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=

tan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式=tan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式=

2.我們可以利用誘導(dǎo)公式,將任意角的三角函數(shù)問題轉(zhuǎn)化為銳角三角函數(shù)的問題,參考下面的框圖,想想每次變換應(yīng)該運(yùn)用哪些公式。

414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

給上述箭頭上填上相應(yīng)的文字

二、合作探究

探究1試運(yùn)用414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式,414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式的正、余弦函數(shù)的誘導(dǎo)公式推證公式tan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式和tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式.

探究2若tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式,借助三角函數(shù)定義求角414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式的正弦函數(shù)值和余弦函數(shù)值.

探究3求414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式的值.

三、達(dá)標(biāo)檢測(cè)

1下列各式成立的是()

Atan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式=-tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式Btan(414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式=tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

Ctan(-414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=-tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式Dtan(2414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)=tan414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

2求下列三角函數(shù)數(shù)值

(1)tan(-414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式(2)tan240414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式(3)tan(-1574414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)

3化簡求值

tan675414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式+tan765414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式+tan(-300414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)+tan(-690414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式)+tan1080414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

四、課后延伸

求值:414【導(dǎo)學(xué)案】正切函數(shù)的誘導(dǎo)公式

怎么寫高二的數(shù)學(xué)教案篇11

教學(xué)目標(biāo)

1、知識(shí)與技能:

(1)推廣角的概念、引入大于角和負(fù)角;

(2)理解并掌握正角、負(fù)角、零角的定義;

(3)理解任意角以及象限角的概念;

(4)掌握所有與角終邊相同的角(包括角)的表示方法;

(5)樹立運(yùn)動(dòng)變化觀點(diǎn),深刻理解推廣后的角的概念;

(6)揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣;

(7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí)。

2、過程與方法:

通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時(shí)針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的&39;判定方法;列出幾個(gè)終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。

3、情態(tài)與價(jià)值:

通過本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)角的概念有了一個(gè)新的認(rèn)識(shí),即有正角、負(fù)角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會(huì)運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識(shí)事物。

教學(xué)重難點(diǎn)

重點(diǎn):理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。

難點(diǎn):終邊相同的角的表示。

怎么寫高二的數(shù)學(xué)教案篇12

一、教學(xué)目標(biāo):

1、知識(shí)與技能目標(biāo)

①理解循環(huán)結(jié)構(gòu),能識(shí)別和理解簡單的框圖的功能。

②能運(yùn)用循環(huán)結(jié)構(gòu)設(shè)計(jì)程序框圖解決簡單的問題。

2、過程與方法目標(biāo)

通過模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá),解決問題的過程,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力。

3、情感、態(tài)度與價(jià)值觀目標(biāo)

通過本節(jié)的自主性學(xué)習(xí),讓學(xué)生感受和體會(huì)算法思想在解決具體問題中的意義,增強(qiáng)學(xué)生的創(chuàng)新能力和應(yīng)用數(shù)學(xué)的意識(shí)。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):理解循環(huán)結(jié)構(gòu),能識(shí)別和畫出簡單的循環(huán)結(jié)構(gòu)框圖,

難點(diǎn):循環(huán)結(jié)構(gòu)中循環(huán)條件和循環(huán)體的確定。

三、教法、學(xué)法

本節(jié)課我遵循引導(dǎo)發(fā)現(xiàn),循序漸進(jìn)的思路,采用問題探究式教學(xué)。運(yùn)用多媒體,投影儀輔助。倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式。

怎么寫高二的數(shù)學(xué)教案篇13

一、教學(xué)目標(biāo)

1.把握菱形的判定.

2.通過運(yùn)用菱形知識(shí)解決具體問題,提高分析能力和觀察能力.

3.通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好.

4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.

二、教法設(shè)計(jì)

觀察分析討論相結(jié)合的方法

三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

1.教學(xué)重點(diǎn):菱形的判定方法.

2.教學(xué)難點(diǎn):菱形判定方法的綜合應(yīng)用.

四、課時(shí)安排

1課時(shí)

五、教具學(xué)具預(yù)備

教具(做一個(gè)短邊可以運(yùn)動(dòng)的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動(dòng)活動(dòng)設(shè)計(jì)

教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時(shí)點(diǎn)撥

七、教學(xué)步驟

復(fù)習(xí)提問

1.敘述菱形的定義與性質(zhì).

2.菱形兩鄰角的比為1:2,較長對(duì)角線為,則對(duì)角線交點(diǎn)到一邊距離為________.

引入新課

師問:要判定一個(gè)四邊形是不是菱形最基本的判定方法是什么方法?

生答:定義法.

此外還有別的兩種判定方法,下面就來學(xué)習(xí)這兩種方法.

講解新課

菱形判定定理1:四邊都相等的四邊形是菱形.

菱形判定定理2:對(duì)角錢互相垂直的&39;平行四邊形是菱形.圖1

分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.

分析判定2:

師問:本定理有幾個(gè)條件?

生答:兩個(gè).

師問:哪兩個(gè)?

生答:(1)是平行四邊形(2)兩條對(duì)角線互相垂直.

師問:再需要什么條件可證該平行四邊形是菱形?

生答:再證兩鄰邊相等.

(由學(xué)生口述證實(shí))

證實(shí)時(shí)讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,

師問:對(duì)角線互相垂直的四邊形是菱形嗎?為什么?

可畫出圖,顯然對(duì)角線,但都不是菱形.

菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):

注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.

例4已知:的對(duì)角錢的垂直平分線與邊、分別交于、,如圖.

求證:四邊形是菱形(按教材講解).

總結(jié)、擴(kuò)展

1.小結(jié):

(1)歸納判定菱形的四種常用方法.

(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.

2.思考題:已知:如圖4△中,,平分,,,交于.

求證:四邊形為菱形.

八、布置作業(yè)

教材P159中9、10、11、13

怎么寫高二的數(shù)學(xué)教案篇14

[核心必知]

1.預(yù)習(xí)教材,問題導(dǎo)入

根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問題.

(1)常見的程序框有哪些?

提示:終端框(起止框),輸入、輸出框,處理框,判斷框.

(2)算法的基本邏輯結(jié)構(gòu)有哪些?

提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu).

2.歸納總結(jié),核心必記

(1)程序框圖

程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形.

在程序框圖中,一個(gè)或幾個(gè)程序框的組合表示算法中的一個(gè)步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執(zhí)行順序.

(2)常見的程序框、流程線及各自表示的功能

圖形符號(hào)名稱功能

終端框(起止框)表示一個(gè)算法的起始和結(jié)束

輸入、輸出框表示一個(gè)算法輸入和輸出的信息

處理框(執(zhí)行框)賦值、計(jì)算

判斷框判斷某一條件是否成立,成立時(shí)在出口處標(biāo)明“是”或“Y”;不成立時(shí)標(biāo)明“否”或“N”

流程線連接程序框

○連接點(diǎn)連接程序框圖的兩部分

(3)算法的基本邏輯結(jié)構(gòu)

①算法的三種基本邏輯結(jié)構(gòu)

算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的.

②順序結(jié)構(gòu)

順序結(jié)構(gòu)是由若干個(gè)依次執(zhí)行的步驟組成的.這是任何一個(gè)算法都離不開的基本結(jié)構(gòu),用程序框圖表示為:

[問題思考]

(1)一個(gè)完整的程序框圖一定是以起止框開始,同時(shí)又以起止框表示結(jié)束嗎?

提示:由程序框圖的概念可知一個(gè)完整的程序框圖一定是以起止框開始,同時(shí)又以起止框表示結(jié)束.

(2)順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)嗎?

提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu).

[課前反思]

通過以上預(yù)習(xí),必須掌握的幾個(gè)知識(shí)點(diǎn):

(1)程序框圖的概念:;

(2)常見的程序框、流程線及各自表示的功能:;

(3)算法的三種基本邏輯結(jié)構(gòu):;

(4)順序結(jié)構(gòu)的概念及其程序框圖的表示:.

問題背景:計(jì)算1×2+3×4+5×6+…+99×100.

[思考1]能否設(shè)計(jì)一個(gè)算法,計(jì)算這個(gè)式子的值.

提示:能.

[思考2]能否采用更簡潔的方式表述上述算法過程.

提示:能,利用程序框圖.

[思考3]畫程序框圖時(shí)應(yīng)遵循怎樣的規(guī)則?

名師指津:(1)使用標(biāo)準(zhǔn)的框圖符號(hào).

(2)框圖一般按從上到下、從左到右的方向畫.

(3)除判斷框外,其他程序框圖的符號(hào)只有一個(gè)進(jìn)入點(diǎn)和一個(gè)退出點(diǎn),判斷框是一個(gè)具有超過一個(gè)退出點(diǎn)的程序框.

(4)在圖形符號(hào)內(nèi)描述的語言要非常簡練清楚.

(5)流程線不要忘記畫箭頭,因?yàn)樗欠从沉鞒虉?zhí)行先后次序的,如果不畫出箭頭就難以判斷各框的執(zhí)行順序.

講一講

1.下列關(guān)于程序框圖中圖形符號(hào)的理解正確的有()

①任何一個(gè)流程圖必須有起止框;②輸入框只能放在開始框后,輸出框只能放在結(jié)束框前;③判斷框是的具有超過一個(gè)退出點(diǎn)的圖形符號(hào);④對(duì)于一個(gè)程序框圖來說,判斷框內(nèi)的條件是的.

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

[嘗試解答]任何一個(gè)程序必須有開始和結(jié)束,從而流程圖必須有起止框,①正確.輸入、輸出框可以用在算法中任何需要輸入、輸出的位置,②錯(cuò)誤.③正確.判斷框內(nèi)的條件不是的,④錯(cuò)誤.故選B.

答案:B

畫程序框圖時(shí)應(yīng)注意的問題

(1)畫流程線不要忘記畫箭頭;

(2)由于判斷框的退出點(diǎn)在任何情況下都是根據(jù)條件去執(zhí)行其中的一種結(jié)果,而另一個(gè)則不會(huì)被執(zhí)行,故判斷框后的流程線應(yīng)根據(jù)情況注明“是”或“否”.

練一練

1.下列關(guān)于程序框圖的說法中正確的個(gè)數(shù)是()

①用程序框圖表示算法直觀、形象、容易理解;②程序框圖能夠清楚地展現(xiàn)算法的邏輯結(jié)構(gòu),也就是通常所說的“一圖勝萬言”;③在程序框圖中,起止框是任何程序框圖中不可少的;④輸入和輸出框可以在算法中任何需要輸入、輸出的位置.

A.1B.2C.3D.4

解析:選D由程序框圖的定義知,①②③④均正確,故選D.

觀察如圖所示的內(nèi)容:

[思考1]順序結(jié)構(gòu)有哪些結(jié)構(gòu)特征?

名師指津:順序結(jié)構(gòu)的結(jié)構(gòu)特征:

(1)順序結(jié)構(gòu)的語句與語句之間、框與框之間按從上到下的順序執(zhí)行,不會(huì)引起程序步驟的跳轉(zhuǎn).

(2)順序結(jié)構(gòu)是最簡單的算法結(jié)構(gòu).

(3)順序結(jié)構(gòu)只能解決一些簡單的問題.

[思考2]順序結(jié)構(gòu)程序框圖的基本特征是什么?

名師指津:順序結(jié)構(gòu)程序框圖的基本特征:

(1)必須有兩個(gè)起止框,穿插輸入、輸出框和處理框,沒有判斷框.

(2)各程序框用流程線依次連接.

(3)處理框按計(jì)算機(jī)執(zhí)行順序沿流程線依次排列.

講一講

2.已知P0(x0,y0)和直線l:Ax+By+C=0,寫出求點(diǎn)P0到直線l的距離d的算法,并用程序框圖來描述.

[嘗試解答]第一步,輸入x0,y0,A,B,C;

第二步,計(jì)算m=Ax0+By0+C;

第三步,計(jì)算n=A2+B2;

第四步,計(jì)算d=mn;

第五步,輸出d.

程序框圖如圖所示.

應(yīng)用順序結(jié)構(gòu)表示算法的步驟:

(1)仔細(xì)審題,理清題意,找到解決問題的方法.

(2)梳理解題步驟.

(3)用數(shù)學(xué)語言描述算法,明確輸入量,計(jì)算過程,輸出量.

(4)用程序框圖表示算法過程.

練一練

2.寫出解不等式2x+1>0的一個(gè)算法,并畫出程序框圖.

解:第一步,將1移到不等式的右邊;

第二步,不等式的兩端同乘12;

第三步,得到x>-12并輸出.

程序框圖如圖所示:

怎么寫高二的數(shù)學(xué)教案篇15

教學(xué)目標(biāo)

熟練掌握三角函數(shù)式的求值

教學(xué)重難點(diǎn)

熟練掌握三角函數(shù)式的求值

教學(xué)過程

【知識(shí)點(diǎn)精講】

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

三角函數(shù)式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡,再求之

三角函數(shù)式常用化簡方法:切割化弦、高次化低次

注意點(diǎn):靈活角的變形和公式的變形

重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論

【課堂小結(jié)】

三角函數(shù)式的求值的關(guān)鍵是熟練掌握公式及應(yīng)用,掌握公式的逆用和變形

三角函數(shù)式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細(xì)觀察非特殊角的特點(diǎn),找出和特殊角之間的關(guān)系,利用公式轉(zhuǎn)化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數(shù)式的值,求另外一些角得三角函數(shù)式的值。找出已知角與所求角之間的某種關(guān)系求解

(3)“給值求角”:轉(zhuǎn)化為給值求值,由所得函數(shù)值結(jié)合角的范圍求出角。

(4)“給式求值”:給出一些較復(fù)雜的三角式的值,求其他式子的值。將已知式或所求式進(jìn)行化簡,再求之

三角函數(shù)式常用化簡方法:切割化弦、高次化低次

注意點(diǎn):靈活角的變形和公式的變形

重視角的范圍對(duì)三角函數(shù)值的影響,對(duì)角的范圍要討論

怎么寫高二的數(shù)學(xué)教案篇16

教學(xué)目標(biāo)

1、知識(shí)與技能

(1)理解并掌握正弦函數(shù)的定義域、值域、周期性、(小)值、單調(diào)性、奇偶性;

(2)能熟練運(yùn)用正弦函數(shù)的性質(zhì)解題。

2、過程與方法

通過正弦函數(shù)在R上的圖像,讓學(xué)生探索出正弦函數(shù)的性質(zhì);講解例題,總結(jié)方法,鞏固練習(xí)。

3、情感態(tài)度與價(jià)值觀

通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生創(chuàng)新能力、探索歸納能力;讓學(xué)生體驗(yàn)自身探索成功的喜悅感,培養(yǎng)學(xué)生的自信心;使學(xué)生認(rèn)識(shí)到轉(zhuǎn)化“矛盾”是解決問題的有效途經(jīng);培養(yǎng)學(xué)生形成實(shí)事求是的科學(xué)態(tài)度和鍥而不舍的鉆研精神。

教學(xué)重難點(diǎn)

重點(diǎn):正弦函數(shù)的性質(zhì)。

難點(diǎn):正弦函數(shù)的性質(zhì)應(yīng)用。

教學(xué)工具

投影儀

教學(xué)過程

【創(chuàng)設(shè)情境,揭示課題】

同學(xué)們,我們?cè)跀?shù)學(xué)一中已經(jīng)學(xué)過函數(shù),并掌握了討論一個(gè)函數(shù)性質(zhì)的幾個(gè)角度,你還記得有哪些嗎?在上一次課中,我們已經(jīng)學(xué)習(xí)了正弦函數(shù)的y=sinx在R上圖像,下面請(qǐng)同學(xué)們根據(jù)圖像一起討論一下它具有哪些性質(zhì)?

【探究新知】

讓學(xué)生一邊看投影,一邊仔細(xì)觀察正弦曲線的圖像,并思考以下幾個(gè)問題:

(1)正弦函數(shù)的定義域是什么?

(2)正弦函數(shù)的值域是什么?

(3)它的最值情況如何?

(4)它的正負(fù)值區(qū)間如何分?

(5)?(x)=0的解集是多少?

師生一起歸納得出:

1.定義域:y=sinx的定義域?yàn)镽

2.值域:引導(dǎo)回憶單位圓中的正弦函數(shù)線,結(jié)論:|sinx|≤1(有界性)

再看正弦函數(shù)線(圖象)驗(yàn)證上述結(jié)論,所以y=sinx的值域?yàn)閇-1,1]

課后小結(jié)

歸納整理,整體認(rèn)識(shí)

(1)請(qǐng)學(xué)生回顧本節(jié)課所學(xué)過的知識(shí)內(nèi)容有哪些?所涉及的主要數(shù)學(xué)思想方法有哪些?

(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請(qǐng)向老師提出。

(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會(huì)是什么?

課后習(xí)題

作業(yè):習(xí)題1—4第3、4、5、6、7題.

101370 主站蜘蛛池模板: 个旧市| 沁阳市| 水富县| 阳信县| 合川市| 辽阳县| 刚察县| 长岭县| 通江县| 曲松县| 锡林郭勒盟| 辽阳县| 滕州市| 息烽县| 昌宁县| 娱乐| 宜兴市| 玉山县| 启东市| 新干县| 嘉荫县| 乐安县| 固镇县| 静乐县| 纳雍县| 嵩明县| 安阳县| 桦南县| 西昌市| 常宁市| 怀集县| 黄山市| 雷州市| 翁牛特旗| 洱源县| 邢台县| 阆中市| 夏河县| 五寨县| 凤阳县| 丰城市|