教育巴巴 > 高中教案 > 數學教案 >

高三教案怎么寫數學

時間: 新華 數學教案

教案通過明確教學目標、確定教學內容和方法,為教師提供了系統、全面的教學指導。怎樣才能寫好高三教案怎么寫數學?這里給大家提供高三教案怎么寫數學,方便大家學習。

高三教案怎么寫數學篇1

知識結構

重難點分析

本節的重點是菱形的性質和判定定理。菱形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。菱形的這些性質和判定定理即是平行四邊形性質與判定的延續,又是以后要學習的正方形的基礎。

本節的難點是菱形性質的靈活應用。由于菱形是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是菱形,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程 中應給予足夠重視。

教法建議

根據本節內容的特點和與平行四邊形的關系,建議教師在教學過程 中注意以下問題:

1.菱形的.知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。

2.菱形在現實中的實例較多,在講解菱形的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.

3. 如果條件允許,教師在講授這節內容前,可指導學生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學過程 中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.

4. 在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.

5. 由于菱形和菱形的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.

6.在菱形性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。

一、教學目標

1.掌握菱形概念,知道菱形與平行四邊形的關系.

2.掌握菱形的性質.

3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.

4.通過教具的演示培養學生的學習興趣.

5.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.

6.通過菱形性質的學習,體會菱形的圖形美.

二、教法設計

觀察分析討論相結合的方法

三、重點·難點·疑點及解決辦法

1.教學重點:菱形的性質定理.

2.教學難點 :把菱形的性質和直角三角形的知識綜合應用.

3.疑點:菱形與矩形的性質的區別.

四、課時安排

1課時

五、教具學具準備

教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具

六、師生互動活動設計

教師演示教具、創設情境,引入新課,學生觀察討論;學生分析論證方法,教師適時點撥

七、教學步驟

【復習提問】

1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?

2.矩形中對角線與大邊的夾角為 ,求小邊所對的兩條對角線的夾角.

3.矩形的一個角的平分線把較長的邊分成 、 ,求矩形的周長.

【引入新課】

我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出菱形概念.

【講解新課】

1.菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.

講解這個定義時,要抓住概念的本質,應突出兩條:

(1)強調菱形是平行四邊形.

(2)一組鄰邊相等.

2.菱形的性質:

教師強調,菱形既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質,此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質.

下面研究菱形的性質:

師:同學們根據菱形的定義結合圖形猜一下菱形有什么性質(讓學生們討論,并引導學生分別從邊、角、對角線三個方面分析).

生:因為菱形是有一組鄰邊相等的平行四邊形,所以根據平行四邊形對邊相等的性質可以得到.

菱形性質定理1:菱形的四條邊都相等.

由菱形的四條邊都相等,根據平行四邊形對角線互相平分,可以得到

菱形性質定理2:菱形的對角線互相垂直并且每一條對角線平分一組對角.

引導學生完成定理的規范證明.

師:觀察右圖,菱形 被對角線分成的四個直角三角形有什么關系?

生:全等.

師:它們的底和高和兩條對角線有什么關系?

生:分別是兩條對角線的一半.

師:如果設菱形的兩條對角線分別為 、 ,則菱形的面積是什么?

生:

教師指出當不易求出對角線長時,就用平行四邊形面積的一般計算方法計算菱形面積.

例2 已知:如右圖, 是△ 的角平分線, 交 于 , 交 于 .

求證:四邊形 是菱形.

(引導學生用菱形定義來判定.)

例3 已知菱形 的邊長為 , ,對角線 , 相交于點 ,如右圖,求這個菱形的對角線長和面積.

(1)按教材的方法求面積.

(2)還可以引導學生求出△ 一邊上的高,即菱形的高,然后用平行四邊形的面積公式計算菱形的面積.

【總結、擴展】

1.小結:(打出投影)(圖4)

(1)菱形、平行四邊形、四邊形的從屬關系:

(2)菱形性質:圖5

①具有平行四邊形的所有性質.

②特有性質:四條邊相等;對角線互相垂直,且平分每一組對角.

八、布置作業

教材P158中6、7、8,P196中10

九、板書設計

標題

菱形定義……

菱形性質 例2…… 小結:

性質定理1:…… 例3…… ……

性質定理2:……

十、隨堂練習

教材P151中1、2、3

補充

1.菱形的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.

2.菱形周長為80,一對角線為20,則相鄰兩角的度數為___________、____________.

高三教案怎么寫數學篇2

一、教學內容分析

本節課是《普通高中課程標準實驗教科書·數學5》(人教版)第二章數列第二節等差數列第一課時。

數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了“聯想”、“類比”的思想方法。

二、學生學習情況分析

教學內容針對的是高二的學生,經過高中一年的學習,大部分學生知識經驗已較為豐富,具備了較強的抽象思維能力和演繹推理能力,但也可能有一部分學生的基礎較弱,所以在授課時要從具體的生活實例出發,使學生產生學習的興趣,注重引導、啟發學生的積極主動的去學習數學,從而促進思維能力的進一步提高。

三、設計思想

1.教法

⑴誘導思維法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性。

⑵分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性。

⑶講練結合法:可以及時鞏固所學內容,抓住重點,突破難點。 2.學法

引導學生首先從四個現實問題(數數問題、女子舉重獎項設置問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法。

用多種方法對等差數列的通項公式進行推導。

在引導分析時,留出“空白”,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

四、教學目標

通過本節課的學習使學生能理解并掌握等差數列的概念,能用定義判斷一個數列是否為等差數列,引導學生了解等差數列的通項公式的推導過程及思想,掌握等差數列的通項公式與前 n 項和公式,并能解決簡單的實際問題;并在此過程中培養學生觀察、分析、歸納、推理的能力,在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養學生的知識、方法遷移能力。

五、教學重點與難點

重點:

①等差數列的概念。

②等差數列的通項公式的推導過程及應用。 難點:

①理解等差數列“等差”的特點及通項公式的含義。 ②理解等差數列是一種函數模型。關鍵:

等差數列概念的理解及由此得到的“性質”的方法。

六、教學過程(略)

高三教案怎么寫數學篇3

尊敬的各位專家,評委:

上午好!

根據新課改的理論標準,我將從教材分析,學情分析,教學目標分析,學法、教法分析,教學過程分析,以及板書設計這六個方面來談談我對教材的理解和教學的設計。

一、教材分析

地位和作用:

《______________________》是北師大版高中數學必修二的第______章“__________”的第________節內容。

本節是在學習了________________________________________之后編排的。通過本節課的學習,既可以對_________________________________的知識進一步鞏固和深化,又可以為后面學________________________打下基礎,所以_________________是本章的重要內容。此外,《________________________》的知識與我們日常生活、生產、科學研究有著密切的聯系,因此學習這部分有著廣泛的現實意義。

二、學情分析

1、學生已熟悉掌握______

2、學生的認知規律,是由整體到局部,具體到抽象發展的。

3、學生思維活躍,積極性高,已初步形成對數學問題的合作探究能力

4、學生層次參差不齊,個體差異還比較明顯

三、教學目標分析

根據《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

1、知識與技能:

2、過程與方法:通過___學習,體會__的思想,培養學生提出問題,分析問題,解決問題的能力,提高交流表達能力,提高獨立獲取知識的能力。

3、情感態度與價值觀:培養把握空間圖形的能力,欣賞空間圖形所反應的數學美(認識數學內容之間的內在聯系,加強數形結合的思想,形成正確的數學觀)。

教學重點:

難點:

四、學法、教法分析

(一)學法

首先,通過自學探究,培養學生的分析、歸納能力,提高學生合作學習的能力,學生課堂中體現自我,學會尋找問題的突破口,在探究中學會思考,在合作中學會推進,在觀察中學會比較,進而推進整個教學程序的展開。

其次,教學過程中,我想適時地根據學生的“最近發展區”搭建平臺,充分發揮“教師的主導作用和學生的主體地位相統一的教學規律”,

從學生原有的知識和能力出發,指導學生學會觀察、分析、歸納問題的能力。

學生只有不斷地解決問題、產生成就感的過程中,才能真正地提高學習的興趣,也只有這樣才能“學”有新“思”,“思”有新“得”。

(二)教法

數學教育家波利亞曾經說過:“學習任何知識的途徑即是由自己去發現,因為這種發現理解最深刻,也最容易掌握其中的發展規律、性質和聯系。”根據學生的認知特點和知識水平,為落實重點、突破難點,本著以人為本,以學為中心的思想,本節課我將采用啟發式、合作探究的方式來進行教學。運用多媒體演示輔助教學的一種手段,以激發學生的求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現問題、分析問題和解決問題。

五、教學過程分析

1、創設情境,引入問題。

新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統目的明確的設計方式,給學生的思考空間,充分體現學生主體地位。

2、發現問題,探究新知。

數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷

“數學化”、“再創造”的活動過程.

3、深入探究,加深理解。

有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

4、當堂訓練,鞏固提高。

通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。

5、小結歸納,拓展深化。

小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。

6、作業設計

作業分為必做題和選做題。

針對學生能力和水平的差異,進行分層訓練,在所有學生獲得共同知識基礎和基本能力的同時,讓學有余力的學生將學習從課堂延伸到課外,獲得更大的能力提升,這體現新課改理念,也是因材施教的教學原則的具體運用。

現代數學教學觀和新課改要求教學能從“讓學生學會”向“讓學生會學”轉變,使數學教學真正成為數學活動的教學。所以,本節課我們不僅僅是單純的傳授知識,而更應該重視對數學方法的滲透。從熟悉的知識出發,學生自主探索、合作交流激發學生的學習興趣,突破難點,培養學生發現問題、解決問題的能力

六、板書設計

板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;突出本節重難點,能指導教師的教學進程、引導學生探索知識,啟迪學生思維。

我的說課到此結束,敬請各位專家、評委批評指正。

謝謝!

高三教案怎么寫數學篇4

一、關于教材分析

1.教材的地位和作用

“曲線和方程”是高中數學第二冊(上)第七章《直線和圓的方程》的重點內容之一,是在介紹了“直線的方程”之后,對一般曲線(也包括直線)與二元方程的關系作進一步的研究。這部分內容從理論上揭示了幾何中的“形”與代數中的“數”相統一的關系,為“形”與“數”的相互轉化開辟了途徑,同時也體現了解析幾何的基本思想,為解析幾何的教學奠定了一個理論基礎。

2.教學內容的選擇和處理

本節教材主要講解曲線的方程和方程的曲線、坐標法、解析幾何等概念,討論怎樣求曲線的方程以及曲線的交點等問題。共分四課時完成,這是第一課時。此課時的主要內容是建立“曲線的方程”和“方程的曲線”這兩個概念,并對概念進行初步運用。我在處理教材時,不拘泥于教材,敢于大膽進行調整。主要體現在對曲線的方程和方程的曲線的定義進行歸納上,通過構造反例,引導學生進行觀察、討論、分析、正反對比,逐步揭示其內涵,然后在此基礎上歸納定義;再一點就是在得出定義之后,引導學生用集合觀點來理解概念。

3.教學目標的確定

根據教學大綱的要求以及本節教材的地位和作用,結合高二學生的認知特點,我認為,通過本節課的教學,應使學生理解曲線和方程的概念;會用定義來判斷點是否在方程的曲線上、證明曲線的方程;培養學生分析、判斷、歸納的邏輯思維能力,滲透數形結合的數學思想;并借用曲線與方程的關系進行辯證唯物主義觀點的教育;通過對問題的不斷探討,培養學生勇于探索的精神。

4.關于教學重點、難點和關鍵

由于曲線和方程的概念體現了解析幾何的基本思想,學生只有透徹理解了這個概念,才能用解析法去研究幾何圖形,才算是踏上解析幾何的入門之徑。因此,我把曲線和方程的概念確定為本節課的教學重點。另外,由于曲線和方程的概念比較抽象,加之剛剛進入高二的學生抽象思維能力還不是很強,因此,他們對曲線和方程關系的“純粹性”與“完備性”不易理解,弄不清它們之間的區別與聯系,易產生“為什么要規定這樣兩個關系”的疑問。所以,對概念的理解,尤其是對“兩個關系”的認識是本節課的難點。

如何突破這一難點呢?由于學生在學習本節之前,已經有了用方程表示幾何圖形的感性認識(比如用方程表示直線、拋物線、雙曲線等)。因此,突破這一難點的關鍵在于利用學生積累的這些感性認識,通過分析反例,來揭示“兩個關系”中缺少任何一個都將破壞曲線與方程的統一性(即擴大概念的外延)。

二、關于教學方法與教學手段的選用

根據本節課的教學內容和學生的實際水平,我采用的是引導發現法和CAI輔助教學。

(1)引導發現法是通過教師的引導、啟發,調動學生參與教學活動的積極性,充分發揮教師的主導作用和學生的主體作用。在教學中通過設置疑問,創造出思維情境,然后引導學生動腦、動手、動口,使學生在開放、民主、和諧的教學氛圍中獲取知識,提高能力,促進思維的發展。

(2)借助CAI輔助教學,增大教學的容量和直觀性,增強學習興趣,從而達到提高教學效果和教學質量的目的。(這也符合教學論中的直觀性原則和可接受性原則。)

(3)教具:三角板、多媒體。

三、關于學法指導

古人說得好,“授人以魚,只供一飯;教人以漁,終身受用。”我們在向學生傳授知識的同時,必須教給他們好的學習方法,讓他們學會學習、享受學習。因此,在本節課的教學中,引導學生開展“仔細看、動腦想、多交流、細比較、勤練習”的研討式學習,加大學生的參與機會,增強參與意識,讓他們體驗獲取知識的歷程,掌握思考問題的方法,逐漸培養他們“會觀察”、“會類比”、“會分析”、“會歸納”的能力。

高三教案怎么寫數學篇5

教學目標

進一步熟悉正、余弦定理內容,能熟練運用余弦定理、正弦定理解答有關問題,如判斷三角形的形狀,證明三角形中的三角恒等式.

教學重難點

教學重點:熟練運用定理.

教學難點:應用正、余弦定理進行邊角關系的相互轉化.

教學過程

一、復習準備:

1.寫出正弦定理、余弦定理及推論等公式.

2.討論各公式所求解的三角形類型.

二、講授新課:

1.教學三角形的解的討論:

①出示例1:在△ABC中,已知下列條件,解三角形.

分兩組練習→討論:解的個數情況為何會發生變化?

②用如下圖示分析解的情況.(A為銳角時)

②練習:在△ABC中,已知下列條件,判斷三角形的解的情況.

2.教學正弦定理與余弦定理的活用:

①出示例2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求角的余弦.

分析:已知條件可以如何轉化?→引入參數k,設三邊后利用余弦定理求角.

②出示例3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的類型.

分析:由三角形的什么知識可以判別?→求角余弦,由符號進行判斷

③出示例4:已知△ABC中,試判斷△ABC的形狀.

分析:如何將邊角關系中的邊化為角?→再思考:又如何將角化為邊?

3.小結:三角形解的情況的討論;判斷三角形類型;邊角關系如何互化.

高三教案怎么寫數學篇6

一、 知識梳理

1.三種抽樣方法的聯系與區別:

類別 共同點不同點相互聯系適用范圍

簡單隨機抽樣 都是等概率抽樣從總體中逐個抽取總體中個體比較少

系統抽樣 將總體均勻分成若干部分;按事先確定的規則在各部分抽取在起始部分采用簡單隨機抽樣總體中個體比較多

分層抽樣 將總體分成若干層,按個體個數的比例抽取在各層抽樣時采用簡單隨機抽樣或系統抽樣總體中個體有明顯差異

(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為

(2)系統抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規則抽取樣本.

(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數;③各層抽樣;④匯合成樣本.

(4) 要懂得從圖表中提取有用信息

如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數是矩形的中點的橫坐標③中位數的左邊與右邊的直方圖的面積相等,可以由此估計中位數的值

2.方差和標準差都是刻畫數據波動大小的數字特征,一般地,設一組樣本數據 ,,…,,其平均數為則方差,標準差

3.古典概型的概率公式:如果一次試驗中可能出現的結果有 個,而且所有結果都是等可能的,如果事件包含個結果,那么事件的概率P=

特別提醒:古典概型的兩個共同特點:

○1 ,即試中有可能出現的基本事件只有有限個,即樣本空間Ω中的元素個數是有限的;

○2 ,即每個基本事件出現的可能性相等。

4. 幾何概型的概率公式:P(A)=

特別提醒:幾何概型的特點:試驗的結果是無限不可數的;○2每個結果出現的可能性相等。

二、夯實基礎

(1)某單位有職工160名,其中業務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業務人員、管理人員、后勤人員的人數應分別為____________.

(2)某賽季,甲、乙兩名籃球運動員都參加了

11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,

則甲、乙兩名運動員得分的中位數分別為( )

A.19、13 B.13、19C.20、18D.18、20

(3)統計某校1000名學生的數學會考成績,

得到樣本頻率分布直方圖如右圖示,規定不低于60分為

及格,不低于80分為優秀,則及格人數是 ;

優秀率為 。

(4)在一次歌手大獎賽上,七位評委為歌手打出的分數如下:

9.4 8.49.49.99.69.49.7

去掉一個分和一個最低分后,所剩數據的平均值

和方差分別為( )

A.9.4, 0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016

(5)將一顆骰子先后拋擲2次,觀察向上的點數,則以第一次向上點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.

(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )

三、高考鏈接

07、某班50名學生在一次百米測試中,成績全部介于13秒與19秒之間,將測試結果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒

; 第六組,成績大于等于18秒且小于等于19秒.右圖

是按上述分組方法得到的頻率分布直方圖.設成績小于17秒

的學生人數占全班總人數的百分比為 ,成績大于等于15秒

且小于17秒的學生人數為 ,則從頻率分布直方圖中可分析

出 和分別為()

08、從某項綜合能力測試中抽取100人的成績,統計如表,則這100人成績的標準差為( )

分數 54321

人數 2010303010

09、在區間 上隨機取一個數x,的值介于0到之間的概率為().

08、現有8名奧運會志愿者,其中志愿者 通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.

(Ⅰ)求 被選中的概率;(Ⅱ)求和不全被選中的概率.

高三教案怎么寫數學篇7

【教學目標】:

(1)知識目標:

通過實例,了解聯結詞“且”、“或”的含義;

(2)過程與方法目標:

了解含有邏輯聯結詞“且”、“或”復合命題的構成形式,以及會對新命題作出真假的判斷;

(3)情感與能力目標:

在知識學習的基礎上,培養學生簡單推理的技能.

【教學重點】:

通過數學實例,了解邏輯聯結詞“或”、“且”的含義,使學生能正確地表述相關數學內容.

【教學難點】:

簡潔、準確地表述“或”命題、“且”等命題,以及對新命題真假的判斷.

【教學過程設計】:

教學環節教學活動設計意圖

情境引入問題:

下列三個命題間有什么關系?

(1)12能被3整除;

(2)12能被4整除;

(3)12能被3整除且能被4整除;通過數學實例,認識用用邏輯聯結詞“且”聯結兩個命題可以得到一個新命題;

知識建構歸納總結:

一般地,用邏輯聯結詞“且”把命題p和命題q聯結起來,就得到一個新命題,

記作,讀作“p且q”.

引導學生通過通過一些數學實例分析,概括出一般特征。

1、引導學生閱讀教科書上的例1中每組命題p,q,讓學生嘗試寫出命題,判斷真假,糾正可能出現的邏輯錯誤。學習使用邏輯聯結詞“且”聯結兩個命題,根據“且”的含義判斷邏輯聯結詞“且”聯結成的新命題的真假。

2、引導學生閱讀教科書上的例2中每個命題,讓學生嘗試改寫命題,判斷真假,糾正可能出現的邏輯錯誤。

歸納總結:

當p,q都是真命題時,是真命題,當p,q兩個命題中有一個是假命題時,是假命題,

學習使用邏輯聯結詞“且”改寫一些命題,根據“且”的含義判斷原先命題的真假。

引導學生通過通過一些數學實例分析命題p和命題q以及命題的真假性,概括出這三個命題的真假性之間的一般規律。

高三教案怎么寫數學篇8

學習對數函數的教案設計

教學目標

1. 在指數函數及反函數概念的基礎上,使學生掌握對數函數的概念,能正確描繪對數函數的圖像,掌握對數函數的性質,并初步應用性質解決簡單問題.

2. 通過對數函數的學習,樹立相互聯系,相互轉化的觀點,滲透數形結合,分類討論的思想.

3. 通過對數函數有關性質的研究,培養學生觀察,分析,歸納的思維能力,調動學生學習的積極性.

教學重點,難點

重點是理解對數函數的定義,掌握圖像和性質.

難點是由對數函數與指數函數互為反函數的關系,利用指數函數圖像和性質得到對數函數的圖像和性質.

教學方法

啟發研討式

教學用具

投影儀

教學過程

一. 引入新課

今天我們一起再來研究一種常見函數.前面的幾種函數都是以形式定義的方式給出的,今天我們將從反函數的角度介紹新的函數.

反函數的實質是研究兩個函數的關系,所以自然我們應從大家熟悉的函數出發,再研究其反函數.這個熟悉的函數就是指數函數.

提問:什么是指數函數?指數函數存在反函數嗎?

由學生說出 是指數函數,它是存在反函數的.并由一個學生口答求反函數的過程:

由 得 .又 的值域為 ,

所求反函數為 .

那么我們今天就是研究指數函數的反函數-----對數函數.

二.對數函數的圖像與性質 (板書)

1. 作圖方法

提問學生打算用什么方法來畫函數圖像?學生應能想到利用互為反函數的兩個函數圖像之間的關系,利用圖像變換法畫圖.同時教師也應指出用列表描點法也是可以的,讓學生從中選出一種,最終確定用圖像變換法畫圖.

由于指數函數的圖像按 和 分成兩種不同的類型,故對數函數的圖像也應以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

具體操作時,要求學生做到:

(1) 指數函數 和 的圖像要盡量準確(關鍵點的`位置,圖像的變化趨勢等).

(2) 畫出直線 .

(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學生分兩段翻折,在 左側的先翻,然后再翻在 右側的部分.

學生在筆記本完成具體操作,教師在學生完成后將關鍵步驟在黑板上演示一遍,畫出和 的圖像.(此時同底的指數函數和對數函數畫在同一坐標系內)如圖:

2. 草圖.

教師畫完圖后再利用投影儀將 和 的圖像畫在同一坐標系內,如圖:

然后提出讓學生根據圖像說出對數函數的性質(要求從幾何與代數兩個角度說明)

3. 性質

(1) 定義域:

(2) 值域:

由以上兩條可說明圖像位于 軸的右側.

(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.

(4) 奇偶性:既不是奇函數也不是偶函數,即它不關于原點對稱,也不關于 軸對稱.

(5) 單調性:與 有關.當 時,在 上是增函數.即圖像是上升的

當 時,在 上是減函數,即圖像是下降的.

之后可以追問學生有沒有最大值和最小值,當得到否定答案時,可以再問能否看待何時函數值為正?學生看著圖可以答出應有兩種情況:

當 時,有 ;當 時,有 .

學生回答后教師可指導學生巧記這個結論的方法:當底數與真數在1的同側時函數值為正,當底數與真數在1的兩側時,函數值為負,并把它當作第(6)條性質板書記下來.

最后教師在總結時,強調記住性質的關鍵在于要腦中有圖.且應將其性質與指數函數的性質對比記憶.(特別強調它們單調性的一致性)

對圖像和性質有了一定的了解后,一起來看看它們的應用.

三.鞏固練習

練習:若 ,求 的取值范圍.

四.小結

五.作業 略

高三教案怎么寫數學篇9

一、教材分析

1、本節內容在全書及章節的地位:《函數的單調性》是必修1第一章第 3 節,

高中數學《函數的單調性》說課稿教案模板

是高考的重點考查內容之一,是函數的一個重要性質,在比較幾個數的大小、求函數值域、對函數的定性分析以及與其他知識的綜合上都有廣泛的應用。通過對這一節課的學習,可以讓學生加深對函數的本質認識。也為今后研究具體函數的性質作了充分準備,起到承上啟下的作用。

2、教學目標:根據上述教材結構與內容分析,考慮到學生已有的認知水平我制定如下教學目標:

基礎知識目標:了解能用文字語言和符號語言正確表述增函數、減函數、單調性、單調區間的概念;明確掌握利用函數單調性定義證明函數單調性的方法與步驟;并能用定義證明某些簡單函數的單調性;

能力訓練目標:培養學生嚴密的.邏輯思維能力、用運動變化、數形結合、分類討論的方法去分析和處理問題,

情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。

重點:形成增(減)函數的形式化定義。

難點。形成增減函數概念的過程中,如何從圖像升降的直觀認識過渡到函數增減數學符號語言表述;用定義證明函數的單調性。

為了講清重點、難點,使學生能達到本節設定的教學目標,我再從教法和學法上談談:

二、 教法

在教學中我使用啟發式教學,在教師的引導下,創設情景,通過開放性問題的設置來啟發學生思考,在思考中體會數學概念形成過程中所蘊涵的數學方法,

三、學法

倡導學生主動參與、樂于探究、勤于動手,培養學生搜集和處理信息的能力、獲取新知識的能力、分析和解決問題的能力以及交流與合作的能力”。數學作為基礎教育的核心課程之一,轉變學生數學學習方式,不僅有利于提高學生的數學素養,而且有利于促進學生整體學習方式的轉變。我以建構主義理論為指導,輔以多媒體手段,采用著重于學生探索研究的啟發式教學方法,結合師生共同討論、歸納。在課堂結構上,我根據學生的認知水平,我設計了 ①創設情境——引入概念②觀察歸納——形成概念③討論研究——深化概念④即時訓練—鞏固新知⑤總結反思——提高認識⑥任務后延——自主探究六個層次的學法,

它們環環相扣,層層深入,從而順利完成教學目標。接下來,我再具體談一談這堂課的教學過程:

四、 教學程序及設想

(一) 創設情境——引入概念

通過設置問題情景、課堂導入、新課講授及終結階段的教學中,我力求培養學生的自主學習的能力,以點撥、啟發、引導為教師職責。

1、由具體的數列實例引入:

觀察下列各個函數的圖象,并說說它們分別反映了相應函數的哪些變化規律:隨x的增大,y的值有什么變化。

高三教案怎么寫數學篇10

一、教學內容分析

本小節是普通高中課程標準實驗教科書數學5(必修)第三章第3小節,主要內容是利用平面區域體現二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標函數的最值與解問題;運用線性規劃知識解決一些簡單的實際問題(如資源利用,人力調配,生產安排等)。突出體現了優化思想,與數形結合的思想。本小節是利用數學知識解決實際問題的典例,它體現了數學源于生活而用于生活的特性。

二、學生學習情況分析

本小節內容建立在學生學習了一元不等式(組)及其應用、直線與方程的基礎之上,學生對于將實際問題轉化為數學問題,數形結合思想有所了解。但從數學知識上看學生對于涉及多個已知數據、多個字母變量,多個不等關系的知識接觸尚少,從數學方法上看,學生對于圖解法還缺少認識,對數形結合的思想方法的掌握還需時日,而這些都將成為學生學習中的難點。

三、設計思想

以問題為載體,以學生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發學生的動手、觀察、思考、猜想探究的興趣。注重引導學生充分體驗“從實際問題到數學問題”的數學建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學生應用“數形結合”的思想方法解題的能力;培養學生的分析問題、解決問題的能力。

四、教學目標

1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區域刻畫二元一次不等式(組)的方法;了解線性規劃的意義,了解線性約束條件、線性目標函數、可行解、可行域和解等概念;理解線性規劃問題的圖解法;會利用圖解法求線性目標函數的最值與相應解;

2、過程與方法:從實際問題中抽象出簡單的線性規劃問題,提高學生的數學建模能力;在探究的過程中讓學生體驗到數學活動中充滿著探索與創造,培養學生的數據分析能力、化歸能力、探索能力、合情推理能力;

3、情態與價值:在應用圖解法解題的過程中,培養學生的化歸能力與運用數形結合思想的能力;體會線性規劃的基本思想,培養學生的數學應用意識;體驗數學來源于生活而服務于生活的特性。

五、教學重點和難點

重點:從實際問題中抽象出二元一次不等式(組),用平面區域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規劃問題;

難點:二元一次不等式所表示的平面區域的探究,從實際情境中抽象出數學問題的過程探究,簡單的二元線性規劃問題的圖解法的探究。

高三教案怎么寫數學篇11

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數并運用這個公式去解決有關排列數的應用問題。

難點是解有關排列的應用題。

教學過程設計

一、復習引入

上節課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2.某農場為了考察三個外地優良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區?

找一同學談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據加法原理,得到不同的取法種數是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據乘法原理,得到不同的取法種數是:50×40=2000.

第2題說,共有A,B,C三個優良品種,而每個品種在甲類型土地上實驗有三個小區,在乙類型的土地上有三個小區……所以共需3×5=15個實驗小區.

二、講授新課

學習了兩個基本原理之后,現在我們繼續學習排列問題,這是我們本節討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?

由學生設計好方案并回答.

(1)用加法原理設計方案.

首先確定起點站,如果北京是起點站,終點站是上海或廣州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經選了起點站,終點站只能在其余兩個站去選.那么,根據乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據以上分析由學生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯系,即利用不同顏色的旗子發送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數,也就是紅、黃、綠這三面旗子的所有不同順序的排法總數.

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數是:3×2×1=6(種).

根據學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.

由數字1,2,3,4可以組成多少個沒有重復數字的三位數?寫出這些所有的三位數.

根據乘法原理,從四個不同的數字中,每次取出三個排成三位數的方法共有4×3×2=24(個).

請板演的學生談談怎樣想的?

第一步,先確定百位上的數字.在1,2,3,4這四個數字中任取一個,有4種取法.

第二步,確定十位上的數字.當百位上的數字確定以后,十位上的數字只能從余下的三個數字去取,有3種方法.

第三步,確定個位上的數字.當百位、十位上的數字都確定以后,個位上的數字只能從余下的兩個數字中去取,有2種方法.

根據乘法原理,所以共有4×3×2=24種.

下面由教師提問,學生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行.我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.

下面由教師提問,學生回答下列問題

(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上海—廣州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數?

生:“一個排列”不應當是一個數,而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數,不用把所有情況羅列出來,才是一個數.前面提到的第三個問題,實質上也是這樣的.

三、課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內,每箱必須并且只能放一張,而且卡片數碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業

課本:P232練習1,2,3,4,5,6,7.

高三教案怎么寫數學篇12

一、教學內容分析

本小節是普通高中課程標準實驗教科書數學5(必修)第三章第3小節,主要內容是利用平面區域體現二元一次不等式(組)的解集;借助圖解法解決在線性約束條件下的二元線性目標函數的最值與解問題;運用線性規劃知識解決一些簡單的實際問題(如資源利用,人力調配,生產安排等)。突出體現了優化思想,與數形結合的思想。本小節是利用數學知識解決實際問題的典例,它體現了數學源于生活而用于生活的特性。

二、學生學習情況分析

本小節內容建立在學生學習了一元不等式(組)及其應用、直線與方程的基礎之上,學生對于將實際問題轉化為數學問題,數形結合思想有所了解.但從數學知識上看學生對于涉及多個已知數據、多個字母變量,多個不等關系的知識接觸尚少,從數學方法上看,學生對于圖解法還缺少認識,對數形結合的思想方法的掌握還需時日,而這些都將成為學生學習中的難點。

三、設計思想

以問題為載體,以學生為主體,以探究歸納為主要手段,以問題解決為目的,以多媒體為重要工具,激發學生的動手、觀察、思考、猜想探究的興趣。注重引導學生充分體驗“從實際問題到數學問題”的數學建模過程,體會“從具體到一般”的抽象思維過程,從“特殊到一般”的探究新知的過程;提高學生應用“數形結合”的思想方法解題的能力;培養學生的分析問題、解決問題的能力。

四、教學目標

1、知識與技能:了解二元一次不等式(組)的概念,掌握用平面區域刻畫二元一次

不等式(組)的方法;了解線性規劃的意義,了解線性約束條件、線性目標函數、

可行解、可行域和解等概念;理解線性規劃問題的圖解法;會利用圖解法求線性目標函數的最值與相應解;

2、過程與方法:從實際問題中抽象出簡單的線性規劃問題,提高學生的數學建模能力;

在探究的過程中讓學生體驗到數學活動中充滿著探索與創造,培養學生的數據分析能力、化歸能力、探索能力、合情推理能力;

3、情態與價值:在應用圖解法解題的過程中,培養學生的化歸能力與運用數形結合思想的能力;體會線性規劃的基本思想,培養學生的數學應用意識;體驗數學來源于生活而服務于生活的特性.

五、教學重點和難點

重點:從實際問題中抽象出二元一次不等式(組),用平面區域刻畫二元一次不等式組的解集及用圖解法解簡單的二元線性規劃問題;

難點:二元一次不等式所表示的平面區域的探究,從實際情境中抽象出數學問題的過

程探究,簡單的二元線性規劃問題的圖解法的探究.

六、教學基本流程

第一課時,利用生動的情景激起學生求知的__,從中抽象出數學問題,引出二元一次不等式(組)的基本概念,并為線性規劃問題的引出埋下伏筆.通過學生的自主探究,分類討論,大膽猜想,細心求證,得出二元一次不等式所表示的平面區域,從而突破本小節的第一個難點;通過例1、例2的討論與求解引導學生歸納出畫二元一次不等式(組)所表示的平面區域的具體解答步驟(直線定界,特殊點定域);最后通過練習加以鞏固。

第二課時,重現引例,在學生的回顧、探討中解決引例中的可用方案問題,并由此歸納總結出從實際問題中抽象出數學問題的基本過程:理清數據關系(列表)→設立決策變量→建立數學關系式→畫出平面區域.讓學生對例3、例4進行分析與討論進一步完善這一過程,突破本小節的第二個難點。

第三課時,設計情景,借助前兩個課時所學,設立決策變量,畫出平面區域并引出新的問題,從中引出線性規劃的相關概念,并讓學生思考探究,利用特殊值進行猜測,找到方案;再引導學生對目標函數進行變形轉化,利用直線的圖象對上述問題進行幾何探究,把最值問題轉化為截距問題,通過幾何方法對引例做出完美的解答;回顧整個探究過程,讓學生在討論中達成共識,總結出簡單線性規劃問題的圖解法的基本步驟.通過例5的展示讓學生從動態的角度感受圖解法.最后再現情景1,并對之作出完美的解答。

第四課時,給出新的引例,讓學生體會到線性規劃問題的普遍性.讓學生討論分析,對引例給出解答,并綜合前三個課時的教學內容,連綴成線,總結出簡單線性規劃的應用性問題的一般解答步驟,通過例6,例7的分析與展示進一步完善這一過程.總結線性規劃的應用性問題的幾種類型,讓學生更深入的體會到優化理論,更好的認識到數學來源于生活而運用于生活的特點。

高三教案怎么寫數學篇13

高中數學反函數教案

教學目標

1.使學生了解反函數的概念;

2.使學生會求一些簡單函數的反函數;

3.培養學生用辯證的觀點觀察、分析解決問題的能力。

教學重點

1.反函數的概念;

2.反函數的求法。

教學難點

反函數的概念。

教學方法

師生共同討論

教具裝備

幻燈片2張

第一張:反函數的定義、記法、習慣記法。(記作A);

第二張:本課時作業中的預習內容及提綱。

教學過程

(I)講授新課

(檢查預習情況)

師:這節課我們來學習反函數(板書課題)§2.4.1 反函數的概念。

同學們已經進行了預習,對反函數的概念有了初步的了解,誰來復述一下反函數的定義、記法、習慣記法?

生:(略)

(學生回答之后,打出幻燈片A)。

師:反函數的定義著重強調兩點:

(1)根據y= f(x)中x與y的關系,用y把x表示出來,得到x=φ(y);

(2)對于y在c中的任一個值,通過x=φ(y),x在A中都有惟一的值和它對應。

師:應該注意習慣記法是由記法改寫過來的'。

師:由反函數的定義,同學們考慮一下,怎樣的映射確定的函數才有反函數呢?

生:一一映射確定的函數才有反函數。

(學生作答后,教師板書,若學生答不來,教師再予以必要的啟示)。

師:在y= f(x)中與y= f -1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個集合,y也是如此),但地位不同(前者x是自變量,y是函數值;后者y是自變量,x是函數值。)

在y= f(x)中與y= f –1(x)中的x都是自變量,y都是函數值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

由此,請同學們談一下,函數y= f(x)與它的反函數y= f –1(x)兩者之間,定義域、值域存在什么關系呢?

生:(學生作答,教師板書)函數的定義域,值域分別是它的反函數的值域、定義域。

師:從反函數的概念可知:函數y= f (x)與y= f –1(x)互為反函數。

從反函數的概念我們還可以知道,求函數的反函數的方法步驟為:

(1)由y= f (x)解出x= f –1(y),即把x用y表示出;

(2)將x= f –1(y)改寫成y= f –1(x),即對調x= f –1(y)中的x、y。

(3)指出反函數的定義域。

下面請同學自看例1

(II)課堂練習 課本P68練習1、2、3、4。

(III)課時小結

本節課我們學習了反函數的概念,從中知道了怎樣的映射確定的函數才有反函數并求函數的反函數的方法步驟,大家要熟練掌握。

(IV)課后作業

一、課本P69習題2.4 1、2。

二、預習:互為反函數的函數圖象間的關系,親自動手作題中要求作的圖象。

板書設計

課題: 求反函數的方法步驟:

定義:(幻燈片)

注意: 小結

一一映射確定的

函數才有反函數

函數與它的反函

數定義域、值域的關系。

高三教案怎么寫數學篇14

一、教學目標

1、理解一次函數和正比例函數的概念,以及它們之間的關系。

2、能根據所給條件寫出簡單的一次函數表達式。

二、能力目標

1、經歷一般規律的探索過程、發展學生的抽象思維能力。

2、通過由已知信息寫一次函數表達式的過程,發展學生的數學應用能力。

三、情感目標1、通過函數與變量之間的關系的聯系,一次函數與一次方程的聯系,發展學生的數學思維。

2、經歷利用一次函數解決實際問題的過程,發展學生的數學應用能力。

四、教學重難點1、一次函數、正比例函數的概念及關系。2、會根據已知信息寫出一次函數的表達式。

五、教學過程

1、新課導入有關函數問題在我們日常生活中隨處可見,如彈簧秤有自然長度,在彈性限度內,隨著所掛物體的重量的&39;增加,彈簧的長度相應的會拉長,那么所掛物體的重量與彈簧的長度之間就存在某種關系,究竟是什么樣的關系,請看:某彈簧的自然長度為3厘米,在彈性限度內,所掛物體的質量x每增加1千克、彈簧長度y增加0.5厘米。

(1)計算所掛物體的質量分別為1千克、2千克、3千克、4千克、5千克時彈簧的長度,

(2)你能寫出x與y之間的關系式嗎?

分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

2、做一做某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。你能寫出x與y之間的關系嗎?(y=1000.18x或y=100x)接著看下面這些函數,你能說出這些函數有什么共同的特點嗎?上面的幾個函數關系式,都是左邊是因變量,右邊是含自變量的代數式,并且自變量和因變量的指數都是一次。

3、一次函數,正比例函數的概念若兩個變量x,y間的關系式可以表示成y=kx+b(k,b為常數k≠0)的形式,則稱y是x的&39;一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。

4、例題講解例1:下列函數中,y是x的一次函數的是()①y=x6;②y=;③y=;④y=7xA、①②③B、①③④C、①②③④D、②③④分析:這道題考查的是一次函數的概念,特別要強調一次函數自變量與因變量的指數都是1,因而②不是一次函數,答案為B

高三教案怎么寫數學篇15

函數的概念數學教案

一、教材分析及處理

函數是高中數學的重要內容之一,函數的基礎知識在數學和其他許多學科中有著廣泛的應用;函數與代數式、方程、不等式等內容聯系非常密切;函數是近一步學習數學的重要基礎知識;函數的概念是運動變化和對立統一等觀點在數學中的具體體現;函數概念及其反映出的數學思想方法已廣泛滲透到數學的各個領域,《函數》教學設計。

對函數概念本質的理解,首先應通過與初中定義的比較、與其他知識的聯系以及不斷地應用等,初步理解用集合與對應語言刻畫的函數概念.其次在后續的學習中通過基本初等函數,引導學生以具體函數為依托、反復地、螺旋式上升地理解函數的本質。

教學重點是函數的概念,難點是對函數概念的本質的理解。

學生現狀

學生在第一章的時候已經學習了集合的概念,同時在初中時已學過一次函數、反比例函數和二次函數,那么如何用集合知識來理解函數概念,結合原有的知識背景,活動經驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的,使學生獲得有益有效的學習體驗和情感體驗,是在教學設計中應思考的。

二、教學三維目標分析

1、知識與技能(重點和難點)

(1)、通過實例讓學生能夠進一步體會到函數是描述變量之間的依賴關系的重要數學模型。并且在此基礎上學習應用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用。不但讓學生能完成本節知識的學習,還能較好的復習前面內容,前后銜接。

(2)、了解構成函數的三要素,缺一不可,會求簡單函數的定義域、值域、判斷兩個函數是否相等等。

(3)、掌握定義域的表示法,如區間形式等。

(4)、了解映射的概念。

2、過程與方法

函數的概念及其相關知識點較為抽象,難以理解,學習中應注意以下問題:

(1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發現知識,找出不同點與相同點,實現學生在教學中的主體地位,培養學生的創新意識。

(2)、面向全體學生,根據課本大綱要求授課。

(3)、加強學法指導,既要讓學生學會本節知識點,也要讓學生會自我主動學習。

3、情感態度與價值觀

(1)、通過多媒體給出實例,學生小組討論,給出自己的結論和觀點,加上老師的輔助講解,培養學生的實踐能力和和大膽創新意識,教案《《函數》教學設計》。

(2)、讓學生自己討論給出結論,培養學生的自我動手能力和小組團結能力。

三、教學器材

多媒體ppt課件

四、教學過程

教學內容教師活動學生活動設計意圖

《函數》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數應用的廣泛,將同學們的視線引入函數的.學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內容上從貼近學生生活入手,符合學生的認知特點。讓學生在領略大自然的美妙與和諧中進入函數的世界,體現了新課標的理念:從知識走向生活

知識回顧:初中所學習的函數知識(用時兩分鐘)回顧初中函數定義及其性質,簡單回顧一次函數、二次函數、正比例函數、反比例函數的性質、定義及簡單作圖認真聽老師回顧初中知識,發現異同在初中知識的基礎上引導學生向更深的內容探索、求知。即復習了所學內容又做了即將所學內容的鋪墊

思考與討論:通過給出的問題,引出本節課的主要內容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內容無法給出正確答案,需要從新的高度來認識函數結合老師所回顧的知識,結合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節主要知識,回顧前一節的集合感念,應用到本節知識,前后聯系、銜接

新知識的講解:從概念開始講解本節知識(用時三分鐘)詳細講解函數的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數概念,由知識講解回到問題身上,解決問題

對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結更好的掌握函數概念,通過問題來更好的掌握知識

函數區間(用時五分鐘)引入函數定義域的表示方法簡潔明了的方法表示函數的定義域或值域,在集合表示方法的基礎上引入另一種方法

注意點(用時三分鐘)做個簡單的的回顧新內容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內容和知識點

習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯系

映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學習給以后的知識內容做更好的鋪墊

小結(用時五分鐘)簡單講述本節的知識點,重難點做筆記前后知識的連貫,總結,使學生更明白知識點

五、教學評價

為了使學生了解函數概念產生的背景,豐富函數的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應用"的方式,在不同的場合考察問題的不同側面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數概念的理解也逐層深入,從而準確理解函數的概念。函數引入中的三種對應,與初中時學習函數內容相聯系,這樣起到了承上啟下的作用。這三種對應既是函數知識的生長點,又突出了函數的本質,為從數學內部研究函數打下了基礎。

在培養學生的能力上,本課也進行了整體設計,通過探究、思考,培養了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內在聯系,培養了學生的辨證思維能力;通過實際問題的解決,培養了學生的分析問題、解決問題和表達交流能力;通過案例探究,培養了學生的創新意識與探究能力。

雖然函數概念比較抽象,難以理解,但是通過這樣的教學設計,學生基本上能很好地理解了函數概念的本質,達到了課程標準的要求,體現了課改的教學理念。

高三教案怎么寫數學篇16

(一)引入:

(1)情景1

王老漢的疑惑:秋收過后,村中擁入了不少生意人,收購大豆與紅薯,精明的王老漢上了心,一打聽,頓時喜上眉梢.村中大豆的收購價是5元/千克,紅薯的收購價是

2元/千克,而送到縣城每千克大豆可獲利1.2元,每千克紅薯可獲利0.6元,王老漢決定明天就帶上家中僅有的1000元現金,踏著可載重350千克的三輪車開始自己的發財大計,可明天應該收購多少大豆與紅薯呢?王老漢決定與家人合計.回家一討論,問題來了.孫女說:“收購大豆每千克獲利多故應收購大豆”,孫子說:“收購紅薯每元成本獲利多故應收購紅薯”,王老漢一聽,好像都對,可誰說得更有理呢?精明的王老漢心中更糊涂了。

【問題情景使學生感受到數學是來自現實生活的,讓學生體會從實際問題中抽象出數學問題的過程;通過情景我們不僅能從中引出本堂課的內容“二元一次不等式(組)的概念,及其所表示的平面區域”,也為后面的內容“簡單的線性規劃問題”埋下了伏筆.】

(2)問題與探究

師:同學們,你們能用具體的數字體現出王老漢的兩個孫子的收購方案嗎?

生,討論并很快給出答案.(師,記錄數據)

師:請你們各自為王老漢設計一種收購方案.

生,獨立思考,并寫出自己的方案.(師,查看學生各人的設計方案并有針對性的請幾個同學說出自己的方案并記錄,注意:要特意選出2個不合理的方案)

師:這些同學的方案都是對的嗎?

生,討論并找出其中不合理的方案.

師:為什么這些方案就不行呢?

生,討論后并回答

師:滿足什么條件的方案才是合理的呢?

生,討論思考.(師,引導學生設出未知量,列出起約束作用的不等式組)

師,讓幾個學生上黑板列出不等式組,并對之分析指正

(教師用多媒體展示所列不等式組,并介紹二元一次不等式,二元一次不等式組的概念.)

師:同學們還記得什么是方程的解嗎?你能說出二元一次方程二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的一組解嗎?

生,討論并回答(教師記錄幾組,并引導學生表示成有序實數對形式.)

師:同學們能說出什么是不等式(組)的解嗎?你能說出二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的一組解嗎?

生,討論并回答(教師對于學生的回答指正并有選擇性的記錄幾組比較簡單的數據,對于這些數據要事先設計好并在課件的坐標系中標出備用)

(教師對引例中給出的不等式組介紹,并指出上面的正確的設計方案都是不等式組的解.進而介紹二元一次不等式(組)解與解集的概念)

師:我們知道每一組有序實數對都對應于平面直角坐標系上的一個點,你能把上面記錄的不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解在平面直角坐標系上標記出來嗎?

生,討論并在下面作圖(師巡視檢查并對個別同學的錯誤進行指正)

師,利用多媒體課件展示平面直角坐標系及不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解所對應的一些點,讓學生觀察并思考討論:不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解在平面直角坐標系中的位置有什么特點?(由于點太少,我們的學生可能得不出結論)

師,引導學生在同一平面直角坐標系中畫出方程二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解所對應的圖形(一條直線,指導學生用與坐標軸的兩個交點作出直線),再提出問題:二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解為坐標的點在平面直角坐標系中的位置有什么特點?

生,提出猜想:直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計分得的左下半平面.

【教師通過幾個簡單的問題,讓學生產生了利用平面區域表示二元一次不等式的想法,而后再讓學生大膽的猜想,細心的論證,讓他們從中讓體會到對新知識進行科學探索的全過程.】

師:這個結論正確嗎?你能說出理由來嗎?

生,分組討論,并利用自己的數學知識去探究.(由于沒有給出一個固定的方向,所以各人用的方法不一,有的可能用特殊點再去檢驗,有的可能會試著用坐標軸的正方向去說明,也有的可能會用直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計下方的點與對應直線上的點對照比較的方法進行說明)

師,在巡視的基礎上請運用不同方法的同學闡述自己的理由,并對于正確的作法給予表揚,然后用多媒體展示出利用與直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計橫坐標相同而縱坐標不同的點對應分析的方法進行證明.

師:直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的右上半平面應怎么表示?

生:表示為二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計,(很快回答)

師:從中你能得出什么結論?

生,討論并得到一般性結論(教師總結糾正)

(教師總結并用多媒體展示,二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的某側所有點組成的平面區域,因不包含邊界故直線畫成虛線;二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示的平面區域因包含邊界故直線畫成實線.)

師:點O(0,0)是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計一個解嗎?據此你能說出不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域相對與直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的位置嗎?

生,作圖分析,討論并回答(師,對學生的回答進行分析)

師:結合上面問題請同學們歸納出作不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域的過程.

生,討論并回答(師,對于學生的答案給以分析,并肯定其中正確的結論)

師:你們能說出作二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計對應的平面區域的過程嗎?

生,討論并回答(教師總結并用多媒體展示:直線定界,特殊點定域)

師:若點P(3,-1),點Q(2,4)在直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的異側,你能用數學語言表示嗎?

生,討論,思考(教師巡視,并觀察學生的解答過程,最后引導學生得出:一個是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解,一個是不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解)

師:你能在這個條件下求出二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的范圍嗎?

生.討論分析,最后得到不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計并求解.

師:若把上面問題改為點在同側呢?請同學們課后完成.

【在教師的幫助下學生通過自己的分析得出了正確的結論,讓他們從中體會到了獲取新知后的成就感,從而增加了對數學的學習興趣.同時也讓他們體會人們在認識新生事物時從特殊到一般,再從一般到特殊的認知過程.】

(二)實例展示:

例1、畫出不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示的平面區域.

例2、用平面區域表示不等式組二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計的解集.

【通過利用多媒體對實例的展示讓學生體會到畫出不等式表示的平面區域的基本流程:直線定界,特殊點定域,而不等式(組)表示的平面區域是各個不等式表示的平面區域的公共部分.同時對具體作圖中的細節問題進行點拔.】

(三)練習:

學生練習P86第1-3題.

【及時鞏固所學,進一步體會畫出不等式(組)表示的平面區域的基本流程】

(四)課后延伸:

師:我們在今天主要解決了在給出不等式(組)的情況下如何用平面區域來表示出來的問題.如果反過來給出了平面區域你能寫出相關的不等式(組)嗎?例如你能寫出A(2,4),B(2,0),C(1,2)三點構成的三角形內部區域對應的不等式組嗎?

你能寫出不等式形如二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計這種不等式表示的平面區域?

(五)小結與作業:

二元一次不等式二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計表示直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計某側所有點組成的平面區域,畫出不等式(組)表示的平面區域的基本流程:直線定界,特殊點定域(一般找原點)

作業:第93頁A組習題1、2,

補充作業:若線段PQ的兩個端點坐標為P(3,-1),Q(2,4),且直線二元一次不等式(組)與簡單的線性規劃問題的模塊單元教學設計與線段PQ

101313 主站蜘蛛池模板: 安宁市| 宝兴县| 滨州市| 涿鹿县| 崇礼县| 开江县| 普兰县| 成武县| 东光县| 南昌县| 隆尧县| 泰宁县| 柏乡县| 如东县| 闽清县| 德庆县| 白水县| 高雄市| 盘山县| 乳源| 房山区| 新源县| 改则县| 汉寿县| 博兴县| 东海县| 永靖县| 阳朔县| 明水县| 宁晋县| 黄梅县| 隆化县| 赤水市| 朝阳市| 赤壁市| 奎屯市| 扎兰屯市| 盐津县| 稷山县| 湘潭县| 四川省|