教育巴巴 > 高中教案 > 數學教案 >

2025高考數學教案

時間: 新華 數學教案

教案應該突出教學重難點,采用合適的教學方法和手段,幫助學生理解和掌握重點和難點知識。寫2025高考數學教案要注意什么?這里給大家提供2025高考數學教案下載,供大家參考。

2025高考數學教案篇1

教學目標

(1)理解四種命題的概念;

(2)理解四種命題之間的相互關系,能由原命題寫出其他三種形式;

(3)理解一個命題的真假與其他三個命題真假間的關系;

(4)初步掌握反證法的概念及反證法證題的基本步驟;

(5)通過對四種命題之間關系的學習,培養學生邏輯推理能力;

(6)通過對四種命題的存在性和相對性的認識,進行辯證唯物主義觀點教育;

(7)培養學生用反證法簡單推理的技能,從而發展學生的思維能力.

教學重點和難點

重點:四種命題之間的關系;難點:反證法的運用.

教學過程設計

第一課時:四種命題

一、導入新課

【練習】1.把下列命題改寫成“若p則q”的形式:

(l)同位角相等,兩直線平行;

(2)正方形的四條邊相等.

2.什么叫互逆命題?上述命題的逆命題是什么?

將命題寫成“若p則q”的形式,關鍵是找到命題的條件p與q結論.

如果第一個命題的條件是第二個命題的結論,且第一個命題的結論是第二個命題的條件,那么這兩個命題叫做互道命題.

上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.

值得指出的是原命題和逆命題是相對的.我們也可以把逆命題當成原命題,去求它的逆命題.

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學生活動:

口答:

(1)若同位角相等,則兩直線平行;

(2)若一個四邊形是正方形,則它的四條邊相等.

設計意圖:

通過復習舊知識,打下學習否命題、逆否命題的基礎.

二、新課

【設問】命題“同位角相等,兩條直線平行”除了能構成它的逆命題外,是否還可以構成其它形式的命題?

【講述】可以將原命題的條件和結論分別否定,構成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題.

【提問】你能由原命題“正方形的四條邊相等”構成它的否命題嗎?

學生活動:

口答:若一個四邊形不是正方形,則它的四條邊不相等.

教師活動:

【講述】一個命題的條件和結論分別是另一個命題的條件的否定和結論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.

若用p和q分別表示原命題的條件和結論,用┐p和┐q分別表示p和q的否定.

【板書】原命題:若p則q;

否命題:若┐p則q┐.

【提問】原命題真,否命題一定真嗎?舉例說明?

學生活動:

講論后回答:

原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.

原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.

由此可以得原命題真,它的否命題不一定真.

設計意圖:

通過設問和討論,讓學生在自己舉例中研究如何由原命題構成否命題及判斷它們的真假,調動學生學習的積極性.

教師活動:

【提問】命題“同位角相等,兩條直線平行”除了能構成它的逆命題和否命題外,還可以不可以構成別的命題?

學生活動:

討論后回答

【總結】可以將這個命題的條件和結論互換后再分別將新的條件和結論分別否定構成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.

教師活動:

【提問】原命題“正方形的四條邊相等”的逆否命題是什么?

學生活動:

口答:若一個四邊形的四條邊不相等,則不是正方形.

教師活動:

【講述】一個命題的條件和結論分別是另一個命題的結論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.

原命題是“若p則q”,則逆否命題為“若┐q則┐p.

【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?

學生活動:

討論后回答

這兩個逆否命題都真.

原命題真,逆否命題也真.

教師活動:

【提問】原命題的真假與其他三種命題的真

假有什么關系?舉例加以說明?

【總結】1.原命題為真,它的逆命題不一定為真.

2.原命題為真,它的否命題不一定為真.

3.原命題為真,它的逆否命題一定為真.

設計意圖:

通過設問和討論,讓學生在自己舉例中研究如何由原命題構成逆否命題及判斷它們的真假,調動學生學的積極性.

教師活動:

三、課堂練習

1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫在方框內?

學生活動:筆答

教師活動:

2.根據上圖所給出的箭頭,寫出箭頭兩頭命題之間的關系?舉例加以說明?

學生活動:討論后回答

設計意圖:

通過學生自己填圖,使學生掌握四種命題的形式和它們之間的關系.

教師活動:

2025高考數學教案篇2

教學目標:

1、了解反函數的概念,弄清原函數與反函數的定義域和值域的關系。

2、會求一些簡單函數的反函數。

3、在嘗試、探索求反函數的過程中,深化對概念的認識,總結出求反函數的一般步驟,加深對函數與方程、數形結合以及由特殊到一般等數學思想方法的認識。

4、進一步完善學生思維的深刻性,培養學生的逆向思維能力,用辯證的觀點分析問題,培養抽象、概括的能力。

教學重點:

求反函數的方法。

教學難點:

反函數的概念。

教學過程:

一、創設情境,引入新課

1、復習提問

①函數的概念

②y=f(x)中各變量的意義

2、同學們在物理課學過勻速直線運動的位移和時間的函數關系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是時間t的函數;在t=中,時間t是位移S的函數。在這種情況下,我們說t=是函數S=vt的反函數。什么是反函數,如何求反函數,就是本節課學習的內容。

3、板書課題

由實際問題引入新課,激發了學生學習興趣,展示了教學目標。這樣既可以撥去"反函數"這一概念的神秘面紗,也可使學生知道學習這一概念的必要性。

二、實例分析,組織探究

1、問題組一:

(1)這兩組函數的圖像有什么關系?這兩組函數有什么關系?

(2)由,已知y能否求x?

(3)是否是一個函數?它與有何關系?

(4)與有何聯系?

2、問題組二:

(1)函數y=2x1(x是自變量)與函數x=2y1(y是自變量)是否是同一函數?

(2)函數(x是自變量)與函數x=2y1(y是自變量)是否是同一函數?

(3)函數()的定義域與函數()的值域有什么關系?

3、滲透反函數的概念。

(教師點明這樣的函數即互為反函數,然后師生共同探究其特點)

從學生熟知的函數出發,抽象出反函數的概念,符合學生的認知特點,有利于培養學生抽象、概括的能力。

通過這兩組問題,為反函數概念的引出做了鋪墊,利用舊知,引出新識,在"最近發展區"設計問題,使學生對反函數有一個直觀的粗略印象,為進一步抽象反函數的概念奠定基礎。

三、師生互動,歸納定義

1、(根據上述實例,教師與學生共同歸納出反函數的定義)

函數y=f(x)(x∈A)中,設它的值域為C。我們根據這個函數中x,y的關系,用y把x表示出來,得到x=j(y)。如果對于y在C中的任何一個值,通過x=j(y),x在A中都有的值和它對應,那么,x=j(y)就表示y是自變量,x是自變量y的函數。這樣的函數x=j(y)(y∈C)叫做函數y=f(x)(x∈A)的反函數。記作:。考慮到"用x表示自變量,y表示函數"的習慣,將中的x與y對調寫成。

2、引導分析:

1)反函數也是函數;

2)對應法則為互逆運算;

3)定義中的"如果"意味著對于一個任意的函數y=f(x)來說不一定有反函數;

4)函數y=f(x)的定義域、值域分別是函數x=f(y)的值域、定義域;

5)函數y=f(x)與x=f(y)互為反函數;

6)要理解好符號f;

7)交換變量x、y的原因。

3、兩次轉換x、y的對應關系

(原函數中的自變量x與反函數中的函數值y是等價的,原函數中的函數值y與反函數中的自變量x是等價的)

四、應用解題,總結步驟

1、(投影例題)

【例1】求下列函數的反函數

(1)y=3x—1(2)y=x1

【例2】求函數的反函數。

(教師板書例題過程后,由學生總結求反函數步驟。)

2、總結求函數反函數的步驟:

1、由y=f(x)反解出x=f(y)。

2、把x=f(y)中x與y互換得。

3、寫出反函數的定義域。

【例3】(1)有沒有反函數?

(2)的反函數是________。

(3)(x<0)的反函數是__________。

在上述探究的基礎上,揭示反函數的定義,學生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預設產生矛盾沖突,體會反函數。在剖析定義的過程中,讓學生體會函數與方程、一般到特殊的數學思想,并對數學的符號語言有更好的把握。

通過動畫演示,表格對照,使學生對反函數定義從感性認識上升到理性認識,從而消化理解。

通過對具體例題的講解分析,在解題的步驟上和方法上為學生起示范作用,并及時歸納總結,培養學生分析、思考的習慣,以及歸納總結的能力。

題目的設計遵循了從了解到理解,從掌握到應用的不同層次要求,由淺入深,循序漸進。并體現了對定義的反思理解。學生思考練習,師生共同分析糾正。

五、鞏固強化,評價反饋

1、已知函數y=f(x)存在反函數,求它的反函數y=f(x)

(1)y=—2x3(xR)(2)y=—(xR,且x)

(3)y=(xR,且x)

2、已知函數f(x)=(xR,且x)存在反函數,求f(7)的值。

六、反思小結,再度設疑

本節課主要研究了反函數的定義,以及反函數的求解步驟。互為反函數的兩個函數的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節研究。

進一步強化反函數的概念,并能正確求出反函數。反饋學生對知識的掌握情況,評價學生對學習目標的落實程度。具體實踐中可采取同學板演、分組競賽等多種形式調動學生的積極性。"問題是數學的心臟"學生帶著問題走進課堂又帶著新的問題走出課堂。

七、作業

習題2.4第1題,第2題

進一步鞏固所學的知識。

教學設計說明

"問題是數學的心臟"。一個概念的形成是螺旋式上升的,一般要經過具體到抽象,感性到理性的過程。本節教案通過一個物理學中的具體實例引入反函數,進而又通過若干函數的圖象進一步加以誘導剖析,最終形成概念。

反函數的概念是教學中的難點,原因是其本身較為抽象,經過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學生難以從本質上去把握反函數的概念。為此,我們大膽地使用教材,把互為反函數的兩個函數的圖象關系預先揭示,進而探究原因,尋找規律,程序是從問題出發,研究性質,進而得出概念,這正是數學研究的順序,符合學生認知規律,有助于概念的建立與形成。另外,對概念的剖析以及習題的配備也很精當,通過不同層次的問題,滿足學生多層次需要,起到評價反饋的作用。通過對函數與方程的分析,互逆探索,動畫演示,表格對照、學生討論等多種形式的教學環節,充分調動了學生的探求欲,在探究與剖析的過程中,完善學生思維的深刻性,培養學生的逆向思維。使學生自然成為學習的主人。

2025高考數學教案篇3

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2025高考數學教案篇4

一、單元教學內容

(1)算法的基本概念

(2)算法的基本結構:順序、條件、循環結構

(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句

二、單元教學內容分析

算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力。

三、單元教學課時安排:

1、算法的基本概念3課時

2、程序框圖與算法的基本結構5課時

3、算法的基本語句2課時

四、單元教學目標分析

1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義

2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。

3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

五、單元教學重點與難點分析

1、重點

(1)理解算法的含義

(2)掌握算法的基本結構

(3)會用算法語句解決簡單的實際問題

2、難點

(1)程序框圖

(2)變量與賦值

(3)循環結構

(4)算法設計

六、單元總體教學方法

本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。

七、單元展開方式與特點

1、展開方式

自然語言→程序框圖→算法語句

2、特點

(1)螺旋上升分層遞進

(2)整合滲透前呼后應

(3)三線合一橫向貫通

(4)彈性處理多樣選擇

八、單元教學過程分析

1、算法基本概念教學過程分析

對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。

2、算法的流程圖教學過程分析

對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。

3、基本算法語句教學過程分析

經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,

4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。

九、單元評價設想

1、重視對學生數學學習過程的評價

關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。

2、正確評價學生的數學基礎知識和基本技能

關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法

2025高考數學教案篇5

一、教學目標

1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。

2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態度與價值觀:提高學生空間想象力,體會三視圖的作用。

二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;

難點:識別三視圖所表示的空間幾何體。

三、學法指導:

觀察、動手實踐、討論、類比。

四、教學過程

(一)創設情景,揭開課題

展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。

(二)講授新課

1、中心投影與平行投影:

中心投影:光由一點向外散射形成的投影;

平行投影:在一束平行光線照射下形成的投影。

正投影:在平行投影中,投影線正對著投影面。

2、三視圖:

正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

三視圖:幾何體的正視圖、側視圖和俯視圖統稱為幾何體的三視圖。

三視圖的畫法規則:長對正,高平齊,寬相等。

長對正:正視圖與俯視圖的長相等,且相互對正;

高平齊:正視圖與側視圖的高度相等,且相互對齊;

寬相等:俯視圖與側視圖的寬度相等。

3、畫長方體的三視圖:

正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

4、畫圓柱、圓錐的三視圖:

5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。

2025高考數學教案篇6

一、說課分析

1.《指數函數》在教材中的地位、作用和特點

《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節內容,是在學習了《指數》一節內容之后編排的。通過本節課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。

此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。

2.教學目標、重點和難點

通過初中學段的學習和高中對集合、函數等知識的系統學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:

知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。

技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。

素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。

鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節課的教學目標、教學重點和難點如下:

(1)知識目標:①掌握指數函數的概念;②掌握指數函數的圖象和性質;③能初步利用指數函數的概念解決實際問題;

(2)技能目標:①滲透數形結合的基本數學思想方法②培養學生觀察、聯想、類比、猜測、歸納的能力;

(3)情感目標:①體驗從特殊到一般的學習規律,認識事物之間的普遍聯系與相互轉化,培養學生用聯系的觀點看問題②通過教學互動促進師生情感,激發學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數學科學的應用價值。

(4)教學重點:指數函數的圖象和性質。

(5)教學難點:指數函數的圖象性質與底數a的關系。

突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。

二、說課設計

由于《指數函數》這節課的特殊地位,在本節課的教法設計中,我力圖通過這一節課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:

1.創設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。

2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。

3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發揮了主要的作用。

4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養學生的數學應用意識。

三、學法指導

本節課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。

2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。

3.在互相交流和自主探究中獲得發展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節等教學環節中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。

4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。

四、程序設計

在設計本節課的教學過程中,本著遵循學生的認知規律、讓學生去經歷知識的形成與發展過程的原則,我設計了如下的教學程序,啟發學生逐步發現和認識指數函數的圖象和性質。

1.創設情景、導入新課

教師活動:①用電腦展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞的例子,②將學生按奇數列、偶數列分組。

學生活動:①分別寫出計算機價格y與經過月份x的關系式和細胞個數y與次數x的關系式,并互相交流;②回憶指數的概念;③歸納指數函數的概念;④分析出對指數函數底數討論的必要性以及分類的方法。

設計意圖:通過生活實例激發學生的學習動機,,掃清由概念不清而造成的知識障礙,培養學生思維的主動性,為突破難點做好準備;

2.啟發誘導、探求新知

教師活動:①給出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規范地畫出這兩個指數函數的圖象③板書指數函數的性質。

學生活動:①畫出兩個簡單的指數函數圖象②交流、討論③歸納出研究函數性質涉及的方面④總結出指數函數的性質。

設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。

3.鞏固新知、反饋回授

教師活動:①板書例1②板書例2第一問③介紹有關考古的拓展知識。

2025高考數學教案篇7

教學準備

教學目標

知識目標等差數列定義等差數列通項公式

能力目標掌握等差數列定義等差數列通項公式

情感目標培養學生的觀察、推理、歸納能力

教學重難點

教學重點等差數列的概念的理解與掌握

等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用

教學過程

由__《紅高粱》主題曲“酒神曲”引入等差數列定義

問題:多媒體演示,觀察----發現?

一、等差數列定義:

一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。

例1:觀察下面數列是否是等差數列:….

二、等差數列通項公式:

已知等差數列{an}的首項是a1,公差是d。

則由定義可得:

a2-a1=d

a3-a2=d

a4-a3=d

……

an-an-1=d

即可得:

an=a1+(n-1)d

例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。

分析:知道a1,d,求an。代入通項公式

解:∵a1=3,d=2

∴an=a1+(n-1)d

=3+(n-1)×2

=2n+1

例3求等差數列10,8,6,4…的第20項。

分析:根據a1=10,d=-2,先求出通項公式an,再求出a20

解:∵a1=10,d=8-10=-2,n=20

由an=a1+(n-1)d得

∴a20=a1+(n-1)d

=10+(20-1)×(-2)

=-28

例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。

分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n-1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。

解:由題意可得

a1+5d=12

a1+17d=36

∴d=2a1=2

∴an=2+(n-1)×2=2n

練習

1.判斷下列數列是否為等差數列:

①23,25,26,27,28,29,30;

②0,0,0,0,0,0,…

③52,50,48,46,44,42,40,35;

④-1,-8,-15,-22,-29;

答案:①不是②是①不是②是

等差數列{an}的前三項依次為a-6,-3a-5,-10a-1,則a等于()

A.1B.-1C.-1/3D.5/11

提示:(-3a-5)-(a-6)=(-10a-1)-(-3a-5)

3.在數列{an}中a1=1,an=an+1+4,則a10=.

提示:d=an+1-an=-4

教師繼續提出問題

已知數列{an}前n項和為……

作業

P116習題3.21,2

2025高考數學教案篇8

加法原理和乘法原理

教學目標

正確理解和掌握加法原理和乘法原理,并能準確地應用它們分析和解決一些簡單的問題,從而發展學生的思維能力,培養學生分析問題和解決問題的能力.

教學重點和難點

重點:加法原理和乘法原理.

難點:加法原理和乘法原理的準確應用.

教學用具

投影儀.

教學過程設計

(一)引入新課

從本節課開始,我們將要學習中學代數內容中一個獨特的部分——排列、組合、二項式定理.它們研究對象獨特,研究問題的方法不同一般.雖然份量不多,但是與舊知識的聯系很少,而且它還是我們今后學習概率論的基礎,統計學、運籌學以及生物的選種等都與它直接有關.至于在日常的工作、生活上,只要涉及安排調配的問題,就離不開它.

今天我們先學習兩個基本原理.

(二)講授新課

1.介紹兩個基本原理

先考慮下面的問題:

問題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個班次,汽車有2個班次,輪船有3個班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?

因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.

這個問題可以總結為下面的一個基本原理(打出片子——加法原理):

加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1+m2+…+mn種不同的方法.

請大家再來考慮下面的問題(打出片子——問題2):

問題2:由A村去B村的道路有3條,由B村去C村的道路有2條(見下圖),從A村經B村去C村,共有多少種不同的走法?

這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達B村后,再從B村到C村又各有2種不同的走法,因此,從A村經B村去C村共有3×2=6種不同的走法.

一般地,有如下基本原理(找出片子——乘法原理):

乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法.

2.淺釋兩個基本原理

兩個基本原理的用途是計算做一件事完成它的所有不同的方法種數.

比較兩個基本原理,想一想,它們有什么區別?

兩個基本原理的區別在于:一個與分類有關,一個與分步有關.

看下面的分析是否正確(打出片子——題1,題2):

題1:找1~10這10個數中的所有合數.第一類辦法是找含因數2的合數,共有4個;第二類辦法是找含因數3的合數,共有2個;第三類辦法是找含因數5的合數,共有1個.

1~10中一共有N=4+2+1=7個合數.

題2:在前面的問題2中,步行從A村到B村的北路需要8時,中路需要4時,南路需要6時,B村到C村的北路需要5時,南路需要3時,要求步行從A村到C村的總時數不超過12時,共有多少種不同的走法?

第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.

題2中的合數是4,6,8,9,10這五個,其中6既含有因數2,也含有因數3;10既含有因數2,也含有因數5.題中的分析是錯誤的.

從A村到C村總時數不超過12時的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.

(此時給出題1和題2的目的是為了引導學生找出應用兩個基本原理的注意事項,這樣安排,不但可以使學生對兩個基本原理的理解更深刻,而且還可以培養學生的學習能力)

進行分類時,要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨完成這件事.只有滿足這個條件,才能直接用加法原理,否則不可以.

如果完成一件事需要分成幾個步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨立,即相對于前一步的每一種方法,下一步都有m種不同的方法,那么計算完成這件事的方法數時,就可以直接應用乘法原理.

也就是說:類類互斥,步步獨立.

(在學生對問題的分析不是很清楚時,教師及時地歸納小結,能使學生在應用兩個基本原理時,思路進一步清晰和明確,不再簡單地認為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯系就用乘法.從而深入理解兩個基本原理中分類、分步的真正含義和實質)

(三)應用舉例

現在我們已經有了兩個基本原理,我們可以用它們來解決一些簡單問題了.

例1書架上放有3本不同的數學書,5本不同的語文書,6本不同的英語書.

(1)若從這些書中任取一本,有多少種不同的取法?

(2)若從這些書中,取數學書、語文書、英語書各一本,有多少種不同的取法?

(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?

(讓學生思考,要求依據兩個基本原理寫出這3個問題的答案及理由,教師巡視指導,并適時口述解法)

(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數學書中任取1本,有3種方法;第二類辦法是從5本不同的語文書中任取1本,有5種方法;第三類辦法是從6本不同的英語書中任取一本,有6種方法.根據加法原理,得到的取法種數是

N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.

(2)從書架上任取數學書、語文書、英語書各1本,需要分成三個步驟完成,第一步取1本數學書,有3種方法;第二步取1本語文書,有5種方法;第三步取1本英語書,有6種方法.根據乘法原理,得到不同的取法種數是N=m1×m2×m3=3×5×6=90.故,從書架上取數學書、語文書、英語書各1本,有90種不同的方法.

(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數學書、語文書各取1本,需要分兩個步驟,有3×5種方法;第二類辦法是數學書、英語書各取1本,需要分兩個步驟,有3×6種方法;第三類辦法是語文書、英語書各取1本,有5×6種方法.一共得到不同的取法種數是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.

例2由數字0,1,2,3,4可以組成多少個三位整數(各位上的數字允許重復)?

解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法.根據乘法原理,得到可以組成的三位整數的個數是N=4×5×5=100.

答:可以組成100個三位整數.

教師的連續發問、啟發、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高.教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規范的書寫,對于學生周密思考、準確表達、規范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎.

(四)歸納小結

歸納什么時候用加法原理、什么時候用乘法原理:

分類時用加法原理,分步時用乘法原理.

應用兩個基本原理時需要注意分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的.

(五)課堂練習

P222:練習1~4.

(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)

(六)布置作業

P222:練習5,6,7.

補充題:

1.在所有的兩位數中,個位數字小于十位數字的共有多少個?

(提示:按十位上數字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)

2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數.

(提示:需要按三個志愿分成三步,共有m(m-1)(m-2)種填寫方式)

3.在所有的三位數中,有且只有兩個數字相同的三位數共有多少個?

(提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數字相同的三位數)

4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?

(提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語.

(1)N=5+2+3;(2)N=5×2+5×3+2×3)

2025高考數學教案篇9

教學目標:

(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題。

(2)進一步理解曲線的方程和方程的曲線。

(3)初步掌握求曲線方程的方法。

(4)通過本節內容的教學,培養學生分析問題和轉化的能力。

教學重點、難點:

求曲線的方程。

教學用具:

計算機。

教學方法:

啟發引導法,討論法。

教學過程:

【引入】

1、提問:什么是曲線的方程和方程的曲線。

學生思考并回答。教師強調。

2、坐標法和解析幾何的意義、基本問題。

對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何。解析幾何的兩大基本問題就是:

(1)根據已知條件,求出表示平面曲線的方程。

(2)通過方程,研究平面曲線的性質。

事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節課就初步研究曲線方程的求法。

【問題】

如何根據已知條件,求出曲線的方程。

【實例分析】

例1:設、兩點的坐標是、(3,7),求線段的垂直平分線的方程。

首先由學生分析:根據直線方程的知識,運用點斜式即可解決。

解法一:易求線段的中點坐標為(1,3),

由斜率關系可求得l的斜率為

于是有

即l的方程為

分析、引導:上述問題是我們早就學過的,用點斜式就可解決。可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線的方程?根據是什么,有證明嗎?

(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據就是定義中的兩條)。

證明:(1)曲線上的點的坐標都是這個方程的解。

設是線段的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點的坐標是方程的解。

(2)以這個方程的解為坐標的點都是曲線上的點。

設點的坐標是方程①的任意一解,則

到、的距離分別為

所以,即點在直線上。

綜合(1)、(2),①是所求直線的方程。

至此,證明完畢。回顧上述內容我們會發現一個有趣的現象:在證明(1)曲線上的點的坐標都是這個方程的解中,設是線段的垂直平分線上任意一點,最后得到式子,如果去掉腳標,這不就是所求方程嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設是線段的垂直平分線上任意一點,也就是點屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當然也不要忘了證明,即驗證兩條是否都滿足。顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優越一些);至于第二條上邊已證。

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現了曲線方程定義中點集與對應的思想。因此是個好方法。

讓我們用這個方法試解如下問題:

例2:點與兩條互相垂直的直線的距離的積是常數求點的軌跡方程。

分析:這是一個純粹的幾何問題,連坐標系都沒有。所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系。然后仿照例1中的解法進行求解。

求解過程略。

【概括總結】通過學生討論,師生共同總結:

分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:

首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正。說得更準確一點就是:

(1)建立適當的坐標系,用有序實數對例如表示曲線上任意一點的坐標;

(2)寫出適合條件的點的集合

;

(3)用坐標表示條件,列出方程;

(4)化方程為最簡形式;

(5)證明以化簡后的方程的解為坐標的點都是曲線上的點。

一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點。所以,通常情況下證明可省略,不過特殊情況要說明。

上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正。

下面再看一個問題:

例3:已知一條曲線在軸的上方,它上面的每一點到點的距離減去它到軸的距離的差都是2,求這條曲線的方程。

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系。

解:設點是曲線上任意一點,軸,垂足是(如圖2),那么點屬于集合

由距離公式,點適合的條件可表示為

將①式移項后再兩邊平方,得化簡得

由題意,曲線在軸的上方,所以,雖然原點的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為,它是關于軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示。

【練習鞏固】

題目:在正三角形內有一動點,已知到三個頂點的距離分別為、、,且有,求點軌跡方程。

分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示。設、的坐標為、,則的坐標為,的坐標為。

根據條件,代入坐標可得

化簡得

由于題目中要求點在三角形內,所以,在結合①式可進一步求出、的范圍,最后曲線方程可表示為

【小結】師生共同總結:

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價。各步驟的作用,哪步重要,哪步應注意什么?

【作業】課本第72頁練習1,2,3;

2025高考數學教案篇10

“隨機抽樣”教學設計及反思

浙江省杭州市余杭高級中學吳寅靜

統計和概率的基礎知識是一個未來公民的必備常識①,它是中小學數學課程的重要內容.

在高中階段,統計的學習從《必修3》第二章開始,本節課是開篇.好的開端等于成功的一半,因此本課很重要.筆者有幸承擔本次課題會研究課的教學任務,在接受專家、同行的點評和指導中,對高中階段的統計教學有了更深的認識.

下面分教學準備、教學設計和教后反思與大家共享我的心得.

教學準備

接到任務后,筆者首先查閱了一些統計論著.可惜,統計專業知識介紹的書籍多,統計教學的論著少之又少.這也從一個側面反映了我國對中學統計教學研究的不足.

一、教什么

起始課究竟上什么內容?筆者征詢了同事們的意見,絕大多數人認為,由于義教階段學生對全面調查、抽樣調查、樣本、樣本容量等概念都已很熟悉,沒必要再糾纏.因此,第一堂課除了簡單介紹本章學習內容以及隨機抽樣的必要性和重要性外,應將“2.1.1簡單隨機抽樣”作為重點,這樣整堂課就比較充實,不至于沒有內容可講.也有人認為,《教師教學用書》建議“2.1隨機抽樣”約為5課時,因此第一課時應只介紹隨機抽樣而不必涉及抽樣方法.

筆者在聽取了這些建議,經過再三思考后,決定把本課的教學內容定位于章引言和“隨機抽樣”的開篇,但不涉及具體抽樣方法.理由如下:

1.章引言是整章內容的概括和介紹,既有先行組織者的作用,同時也能以此引出本課需要學習的內容.作為起始課,章引言的作用不可忽略.

2.雖然學生在小學、初中都學過統計,但對為什么要隨機抽樣,怎么進行隨機抽樣等的認識還不足.

3.作為統計的起始課,更重要的是讓學生通過一些具體的實例感受隨機抽樣的必要性和重要性,而不是介紹一些具體的抽樣方法.

二、怎么教

上述內容定位對教師提出的最大挑戰就是如何尋找合適的素材,這個素材既要貼近學生的生活,又能讓學生比較容易地參與到抽樣活動中,在活動中體會隨機抽樣.幾經選擇后,筆者從教材中近視率的背景圖中得到啟發,設置了一系列關于調查學生近視率的問題串,以此開展整堂課的教學.整個教學過程分解為以下幾個部分:

1.通過章頭圖提供的信息讓學生感受數據,提出質疑即:這些數據是怎么來的?

2.讓學生調查班級的近視率,感受普查的作用.

3.通過調查年級和全市高一學生的近視率,感受抽樣調查的必要性,感受如何才能使樣本具有代表性.

4.在小組討論和師生交流中體會統計結果的不確定性.

5.在小結中結合章頭圖進行總結回顧,引出本章的知識框架.

?教學設計

一、內容和內容解析

1.內容

本課主要內容是讓學生了解:認識客觀現象的第一步就是通過觀察或試驗取得觀測資料,然后分析這些資料來認識此現象.獲取有代表性的觀測資料并正確地加以分析是正確認識未知現象的基礎,也是統計所研究的基本問題.

2.內容解析

本課是高中統計的第一節課,統計是研究如何合理收集、整理、分析數據的學科,它可以為人們制定決策提供依據.學生在義教階段已學了收集、整理、描述和分析數據等處理數據的基本方法.高中的統計學習將逐步讓學生體會確定性思維與統計思維的差異,了解統計結果的隨機性特征,知道統計推斷可能出錯.統計有兩種:一種是把所有個體的信息都收集起來,然后進行描述,這種統計方法稱為描述性統計,例如人口普查.但在很多情況下我們無法采用描述性統計對所有個體進行調查,通常是在總體中抽取一定的樣本為代表,從樣本的信息來推斷總體的特征,這稱為推斷性統計.例如有的產品數量非常大,或者質量檢查具有破壞性.

抽樣調查是收集數據的一種重要途徑,是一種重要的、科學的非全面調查方法.它根據調查的目的和任務要求,按照隨機原則,從若干單位組成的事物總體中,抽取部分樣本單位來進行調查、觀察,用樣本數據來推斷總體.其中蘊涵了重要的統計思想——樣本估計總體.而樣本代表性的好壞直接影響統計結論的準確性,所以抽樣過程中,考慮的最主要原則是保證樣本能很好地代表總體.而隨機抽樣的出發點是使每個個體都有相同的機會被抽中,這是基于對樣本數據代表性的考慮.

本節課重點:能從現實生活或其他學科中提出具有一定價值的統計問題,理解隨機抽樣的必要性與重要性.

二、目標和目標解析

1.目標

(1)通過具體案例的分析,逐步學會從現實生活中提出具有一定價值的統計問題;

(2)結合實際問題情境,理解隨機抽樣的必要性和重要性,深刻理解樣本的代表性.

2.目標解析

章引言列舉了我國水資源缺乏問題、土地沙漠化問題等情境,提出了學習統計的意義.通過具體實例,引導學生嘗試從實際問題中發現并提出統計問題.以培養學生從現實生活或其他學科中發現問題、提出問題的能力、意識和習慣.

對某個問題的調查最簡單的方法就是普查,但是這種方法的局限性很大.出于費用和時間的考慮,有時一個精心設計的抽樣方案,其實施效果甚至可以勝過普查.教學中要通過一定實例讓學生體會隨機抽樣的必要性和重要性.為了使由樣本到總體的推斷有效,樣本必須是總體的代表.在對實例的分析過程中,探討獲取有代表性的樣本的方法,得到隨機樣本的概念,逐步理解樣本的代表性與統計推斷結論可靠性之間的關系.

三、教學問題診斷分析

學生在初中已有對統計活動的認識,并學習了統計圖表、收集數據的方法,但對設計合理的抽樣方法,以使樣本具有好的代表性的意識還不強.在已有學習中,學習內容多以確定性數學為主;學生對全面調查,即普查有所了解,它在經驗上更接近確定性數學;這里,我們要通過具體問題,讓學生體會統計的重要思想——用樣本估計總體以及統計結果的不確定性.因此,學生已有知識經驗與本節要達成的教學目標之間有較大差距.主要的困難有:對樣本估計總體的思想、對統計結果的“不確定性”產生懷疑,對統計的科學性有所質疑;對抽樣應該具有隨機性,每個樣本的抽取又都落實在某個人的具體操作上不理解,因此教學中要通過具體實例的研究給學生釋疑.

教學中,可以鼓勵學生從自己的生活中提出與典型案例類似的統計問題,如每天完成家庭作業所需的時間,每天的體育鍛煉時間,學生的近視率,一批燈泡的壽命等.在學生提出這些問題后,要引導學生考慮問題中的總體是什么,要觀測的變量是什么,如何獲取樣本等,這樣可以培養學生提出統計問題的能力.

因此,本課的教學難點是:理解怎樣的抽樣才是隨機抽樣,如何抽樣才能更好地代表總體.

四、教學支持條件分析

準備一些隨機抽樣成功或失敗的事例,利用實物投影或放映的多媒體設備輔助教學.

五、教學過程設計

(一)感悟數據、引入課題

問題1:請同學們看章頭圖中的有關沙漠化和缺水量的數據,你有什么感受?

師生活動:讓學生充分思考和探討,并逐步引導學生產生質疑:這些數據是怎么來的?

設計意圖:通過一些數據讓學生充分感受我們生活在一個數字化時代,要學會與數據打交道,養成對數據產生的背景進行思考的習慣.

問題2:我們班級有很多同學都是戴眼鏡的,你知道我們班的近視率嗎?你是怎么知道的?

設計意圖:通過與學生比較貼近的案例,讓他們體會統計與日常生活的關系.

(二)操作實踐、展開課題

問題3:如果我想了解我校所有高一學生的近視率,你打算怎么做呢?

師生活動:以四人小組為單位進行討論,每個小組派一個代表匯報方案.

設計意圖:從這個問題中引出抽樣調查和樣本的概念,使學生對于如何產生樣本進行一定的思考,同時也使學生認識到樣本選擇的好壞對于用樣本估計總體的精確度是有所不同的.

問題4:你認為下列預測結果出錯的原因是什么?

在1936年美國總統選舉前,一份頗有名氣的雜志(LiteraryDigest)的工作人員做了一次民意測驗.調查蘭頓(A.Landon)(當時任堪薩斯州州長)和羅斯福(F.D.Roosevelt)(當時的總統)中誰將當選下一屆總統.為了了解公眾意向,調查者通過電話簿和車量登記簿上的名單給一大批人發了調查表(注意在1936年電話和汽車只有少數富人擁有).通過分析收回的調查表,顯示蘭頓非常受歡迎,于是雜志預測蘭頓將在選舉中獲勝.實際選舉結果正好相反,最后羅斯福在選舉中獲勝,其數據如下:

?

設計意圖:通過案例讓學生進一步體會到:在抽樣調查中,樣本的選擇是至關重要的,樣本能否代表總體,直接影響著統計結果的可靠性.

問題5:如果要調查下面這幾個問題,你認為應該作全面調查還是抽樣調查?大家對普查和抽樣調查是怎么看的?普查一定好嗎?請舉例.

(1)了解全班同學每周的體育鍛煉時間;

(2)調查市場上某個品牌牛奶的含鈣量;

(3)了解一批日光燈的使用壽命.

設計意圖:通過普查和抽樣調查的比較,使學生感受抽樣調查的必要性和重要性.

2025高考數學教案篇11

教學目標

(1)了解用坐標法研究幾何問題的方法,了解解析幾何的基本問題。

(2)理解曲線的方程、方程的曲線的概念,能根據曲線的已知條件求出曲線的方程,了解兩條曲線交點的概念。

(3)通過曲線方程概念的教學,培養學生數與形相互聯系、對立統一的辯證唯物主義觀點。

(4)通過求曲線方程的教學,培養學生的轉化能力和全面分析問題的能力,幫助學生理解解析幾何的思想方法。

(5)進一步理解數形結合的思想方法。

教學建議

教材分析

(1)知識結構

曲線與方程是在初中軌跡概念和本章直線方程概念之后的解析幾何的基本概念,在充分討論曲線方程概念后,介紹了坐標法和解析幾何的思想,以及解析幾何的基本問題,即由曲線的已知條件,求曲線方程;通過方程,研究曲線的性質。曲線方程的概念和求曲線方程的問題又有內在的邏輯順序。前者回答什么是曲線方程,后者解決如何求出曲線方程。至于用曲線方程研究曲線性質則更在其后,本節不予研究。因此,本節涉及曲線方程概念和求曲線方程兩大基本問題。

(2)重點、難點分析

①本節內容教學的重點是使學生理解曲線方程概念和掌握求曲線方程方法,以及領悟坐標法和解析幾何的思想。

②本節的難點是曲線方程的概念和求曲線方程的方法。

教法建議

(1)曲線方程的概念是解析幾何的核心概念,也是基礎概念,教學中應從直線方程概念和軌跡概念入手,通過簡單的實例引出曲線的點集與方程的解集之間的對應關系,說明曲線與方程的對應關系。曲線與方程對應關系的基礎是點與坐標的對應關系。注意強調曲線方程的完備性和純粹性。

(2)可以結合已經學過的直線方程的知識幫助學生領會坐標法和解析幾何的思想,學習解析幾何的意義和要解決的問題,為學習求曲線的方程做好邏輯上的和心理上的準備。

(3)無論是判斷、證明,還是求解曲線的方程,都要緊扣曲線方程的概念,即始終以是否滿足概念中的兩條為準則。

(4)從集合與對應的觀點可以看得更清楚:

設表示曲線上適合某種條件的點的集合;

表示二元方程的解對應的點的坐標的集合。

可以用集合相等的概念來定義“曲線的方程”和“方程的曲線”,即

(5)在學習求曲線方程的方法時,應從具體實例出發,引導學生從曲線的幾何條件,一步步地、自然而然地過渡到代數方程(曲線的方程),這個過渡是一個從幾何向代數不斷轉化的過程,在這個過程中提醒學生注意轉化是否為等價的,這將決定第五步如何做。同時教師不要生硬地給出或總結出求解步驟,應在充分分析實例的基礎上讓學生自然地獲得。教學中對課本例2的解法分析很重要。

這五個步驟的實質是將產生曲線的幾何條件逐步轉化為代數方程,即

文字語言中的幾何條件數學符號語言中的等式數學符號語言中含動點坐標,的代數方程簡化了的,的代數方程

由此可見,曲線方程就是產生曲線的幾何條件的一種表現形式,這個形式的特點是“含動點坐標的代數方程。”

(6)求曲線方程的問題是解析幾何中一個基本的問題和長期的任務,不是一下子就徹底解決的,求解的方法是在不斷的學習中掌握的,教學中要把握好“度”。

2025高考數學教案篇12

一、導入新課,探究標準方程

二、掌握知識,鞏固練習

練習:

1、說出下列圓的方程

⑴圓心(3,—2)半徑為5

⑵圓心(0,3)半徑為3

2、指出下列圓的圓心和半徑

⑴(x—2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2—6x+4y+12=0

3、判斷3x—4y—10=0和x2+y2=4的位置關系

4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程

三、引伸提高,講解例題

例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數的數學方法)

練習:

1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

四、小結練習P771,2,3,4

五、作業P811,2,3,4

2025高考數學教案篇13

一、目標

1、知識與技能

(1)理解流程圖的順序結構和選擇結構。

(2)能用字語言表示算法,并能將算法用順序結構和選擇結構表示簡單的流程圖

2、過程與方法

學生通過模仿、操作、探索、經歷設計流程圖表達解決問題的過程,理解流程圖的結構。

3、情感、態度與價值觀

學生通過動手作圖,用自然語言表示算法,用圖表示算法。進一步體會算法的基本思想——程序化思想,在歸納概括中培養學生的邏輯思維能力。

二、重點、難點

重點:算法的順序結構與選擇結構。

難點:用含有選擇結構的流程圖表示算法。

三、學法與教學用具

學法:學生通過動手作圖,用自然語言表示算法,用圖表示算法,體會到用流程圖表示算法,簡潔、清晰、直觀、便于檢查,經歷設計流程圖表達解決問題的過程。進而學習順序結構和選擇結構表示簡單的流程圖。

教學用具:尺規作圖工具,多媒體。

四、教學思路

(一)、問題引入揭示題

例1尺規作圖,確定線段的一個5等分點。

要求:同桌一人作圖,一人寫算法,并請學生說出答案。

提問:用字語言寫出算法有何感受?

引導學生體驗到:顯得冗長,不方便、不簡潔。

教師說明:為了使算法的表述簡潔、清晰、直觀、便于檢查,我們今天學習用一些通用圖型符號構成一張圖即流程圖表示算法。

本節要學習的是順序結構與選擇結構。

右圖即是同流程圖表示的算法。

(二)、觀察類比理解題

1、投影介紹流程圖的符號、名稱及功能說明。

符號符號名稱功能說明

終端框算法開始與結束

處理框算法的各種處理操作

判斷框算法的各種轉移

輸入輸出框輸入輸出操作

指向線指向另一操作

2、講授順序結構及選擇結構的概念及流程圖

(1)順序結構

依照步驟依次執行的一個算法

流程圖:

(2)選擇結構

對條進行判斷決定后面的步驟的結構

流程圖:

3、用自然語言表示算法與用流程圖表示算法的比較

(1)半徑為r的圓的面積公式當r=10時寫出計算圓的面積的算法,并畫出流程圖。

解:

算法(自然語言)

①把10賦與r

②用公式求s

③輸出s

流程圖

(2)已知函數對于每輸入一個X值都得到相應的函數值,寫出算法并畫流程圖。

算法:(語言表示)

①輸入X值

②判斷X的范圍,若,用函數Y=x+1求函數值;否則用Y=2-x求函數值

③輸出Y的值

流程圖

小結:含有數學中需要分類討論的或與分段函數有關的問題,均要用到選擇結構。

學生觀察、類比、說出流程圖與自然語言對比有何特點?(直觀、清楚、便于檢查和交流)

(三)模仿操作經歷題

1、用流程圖表示確定線段AB的一個16等分點

2、分析講解例2;

分析:

思考:有多少個選擇結構?相應的流程圖應如何表示?

流程圖:

(四)歸納小結鞏固題

1、順序結構和選擇結構的模式是怎樣的?

2、怎樣用流程圖表示算法。

(五)練習P992

(六)作業P991

2025高考數學教案篇14

1.幽默風趣的你,平時在班里話語不多,也不張揚,但是,你在無意中的表現仍然贏得了很好的人際關系,學習上你認真刻苦,也能及時的完成作業,但是我覺得你總是沒把全部的心思用在學習上,不然以你的聰明,應該保持在前三名才對啊,加油吧,也許關注學習成績對你才是更有意義的事!

2.身為紀律委員的你,認真負責,以身作則,生活上的你平易近人,與同學關系融洽,學習上你勤奮刻苦,尤其在英語的學習上,顯示出了你的語言天賦,我覺得,假如你能把這份自信和興趣用到其他的學科學習中,也一定會收獲很多的!加油吧!

3.你能嚴格遵守校規,上課認真聽講,作業完成認真,樂于助人,愿意幫助同學,大掃除時你不怕苦,不怕累,但是英語方面還不夠給力,所以,如果再投入一點,定會取得更好的結果,而且你還是一個愿意動腦筋的好學生,如果繼續保持下去定會取得驕人的成績!

4.你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學習態度端正,上課能夠專心聽講,課下能夠認真完成作業。你的學習方法有待改進,若能做到學習時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養和提高,平時善于多動筆認真作好筆記,多開動腦筋,相信你一定能在下學期更得更大的進步!你學習認真刻苦,也能善于思考,更十分活潑,并能嚴格遵守班級和宿舍紀律,上課你能認真聽講,做作業時你十分專注,常常愿意花功夫鉆研難題,與同學相處也十分融洽,但若能在認真做作業的同時,將速度提上去,我相信你會做得更好。要多講究學習方法,不能靠熬夜來完成學習任務,提高學習效率,老師相信你一定能通過自己的努力取得更好的成績!

5.雖然你個頭小,但每次你領讀時的那股認真勁兒,令老師暗暗稱贊。你尊敬老師,和同學能和睦相處。甜美可愛的你,經過不斷的努力,你會更出色的!

6.你是個活潑可愛的孩子,課堂上,你非常投入地學習著,朗讀課文時數你最有感情。中午你還主動給老師捶背,真是個會關心人的孩子,老師謝謝你。你十分喜愛讀課外書,不過課上可不能偷看啊!愿書成為你的好朋友。

7.學習中你能嚴格要求自己,這是你永不落敗的秘訣。老師希望你能借助良好的學習方法,抓緊一切時間,笑在最后的一定是你!

8.許麗君——你思想上進,踏實穩重,誠實謙虛,尊敬老師。黑板報中有你傾注的心血,集體榮譽簿里有你的功勞。但學習的主動精神不夠,競爭意識不強,也很少看到你向老師請教,成績進步不明顯。請相信:世上沒有比腳更長的路,也沒有比心更高的山!望今后大膽進取,多思多問,發揮你的聰明才智,進一步激發活力,提高學習效率,持之以恒,美好的明天屬于你!

9.每天你都背著書包高高興興地來上學,學到了不少的知識,可惜只能記住很少的一部分。希望你改進學習方法,提高學習效率,在下學期有更大的進步!

10.你言語不多,但待人誠懇、禮貌,作風踏實,品學兼優,熱愛班級,關愛同學,勤奮好學,思維敏捷,成績優秀。愿你扎實各科基礎,堅持不懈,!一定能考上重點!優秀的男生肯定是逗人喜歡的,老師希望你能一如既往的優秀,把這種優秀保持在你人生的每一階段中。你的人生就是輝煌如意的!

2025高考數學教案篇15

教學目標

1.了解映射的概念,象與原象的概念,和一一映射的概念.

(1)明確映射是特殊的對應即由集合,集合和對應法則f三者構成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應;

(2)能準確使用數學符號表示映射,把握映射與一一映射的區別;

(3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.

2.在概念形成過程中,培養學生的觀察,比較和歸納的能力.

3.通過映射概念的學習,逐步提高學生對知識的探究能力.

教學建議

教材分析

(1)知識結構

映射是一種特殊的對應,一一映射又是一種特殊的映射,而且函數也是特殊的映射,它們之間的關系可以通過下圖表示出來,如圖:

由此我們可從集合的包含關系中幫助我們把握相關概念間的區別與聯系.

(2)重點,難點分析

本節的教學重點和難點是映射和一一映射概念的形成與認識.

①映射的概念是比較抽象的概念,它是在初中所學對應的基礎上發展而來.教學中應特別強調對應集合B中的唯一這點要求的理解;

映射是學生在初中所學的對應的基礎上學習的,對應本身就是由三部分構成的整體,包括集合A和集合B及對應法則f,由于法則的不同,對應可分為一對一,多對一,一對多和多對多.其中只有一對一和多對一的能構成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應就必須保證讓A中之任一與B中元素相對應,所以滿足一對一和多對一的對應就能體現出“任一對唯一”.

②而一一映射又在映射的基礎上增加新的要求,決定了它在學習中是比較困難的.

教法建議

(1)在映射概念引入時,可先從學生熟悉的對應入手,選擇一些具體的生活例子,然后再舉一些數學例子,分為一對多、多對一、多對一、一對一四種情況,讓學生認真觀察,比較,再引導學生發現其中一對一和多對一的對應是映射,逐步歸納概括出映射的基本特征,讓學生的認識從感性認識到理性認識.

(2)在剛開始學習映射時,為了能讓學生看清映射的構成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學生可以比較直觀的認識映射,而后再選擇用抽象的數學符號表示映射,比如:

(3)對于學生層次較高的學校可以在給出定義后讓學生根據自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學生從中發現映射的特點,并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學生層次較低的學校,則可以由教師給出一些例子讓學生觀察,教師引導學生發現映射的特點,一起概括.最后再讓學生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

(4)關于求象和原象的問題,應在計算的過程中總結方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數解)加深對映射的認識.

(5)在教學方法上可以采用啟發,討論的形式,讓學生在實例中去觀察,比較,啟發學生尋找共性,共同討論映射的特點,共同舉例,計算,最后進行小結,教師要起到點撥和深化的作用.

教學設計方案

2.1映射

教學目標(1)了解映射的概念,象與原象及一一映射的概念.

(2)在概念形成過程中,培養學生的觀察,分析對比,歸納的能力.

(3)通過映射概念的學習,逐步提高學生的探究能力.

教學重點難點::映射概念的形成與認識.

教學用具:實物投影儀

教學方法:啟發討論式

教學過程:

一、引入

在初中,我們已經初步探討了函數的定義并研究了幾類簡單的常見函數.在高中,將利用前面集合有關知識,利用映射的觀點給出函數的定義.那么映射是什么呢?這就是我們今天要詳細的概念.

二、新課

在前一章集合的初步知識中,我們學習了元素與集合及集合與集合之間的關系,而映射是重點研究兩個集合的元素與元素之間的對應關系.這要先從我們熟悉的對應說起(用投影儀打出一些對應關系,共6個)

我們今天要研究的是一類特殊的對應,特殊在什么地方呢?

提問1:在這些對應中有哪些是讓A中元素就對應B中唯一一個元素?

讓學生仔細觀察后由學生回答,對有爭議的,或漏選,多選的可詳細說明理由進行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)

提問2:能用自己的語言描述一下這幾個對應的共性嗎?

經過師生共同推敲,將映射的定義引出.(主體內容由學生完成,教師做必要的補充)

2025高考數學教案篇16

各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節“一元二次不等式解法”。

下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養學生的觀察能力、概括能力、探究能力及創新意識。

(二)教學內容

本節內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。

二、教學目標分析

根據教學大綱的要求、本節教材的特點和高一學生的認知規律,本節課的教學目標確定為:

知識目標——理解“三個二次”的&39;關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。

能力目標——通過看圖象找解集,培養學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。

情感目標——創設問題情景,激發學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。

三、重難點分析

一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節課的重點確定為:一元二次不等式的解法。

要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。

四、教法與學法分析

(一)學法指導

教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養“創新型”人才的需要。

(二)教法分析

本節課設計的指導思想是:現代認知心理學——建構主義學習理論。

建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

本節課采用“誘思引探教學法”。把問題作為出發點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。

五、課堂設計

本節課的教學設計充分體現以學生發展為本,培養學生的觀察、概括和探究能力,遵循學生的認知規律,體現理論聯系實際、循序漸進和因材施教的教學原則,通過問題情境的創設,激發興趣,使學生在問題解決的探索過程中,由學會走向會學,由被動答題走向主動探究。

(一)創設情景,引出“三個一次”的關系

本節課開始,先讓學生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學生解,學生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構造懸念,激活學生的思維興趣。

為此,我設計了以下幾個問題:

1、請同學們解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

學生回答,我板書。

2、我指出:2x-70和2x-70的解實際上只需利用不等式基本性質就容易得到。

3、接著我提出:我們能否利用不等式的基本性質來解一元二次不等式呢?學生可能感到很困惑。

4、為此,我引入一次函數y=2x-7,借助動畫從圖象上直觀認識方程和不等式的解,得出以下三組重要關系:

①2x-7=0的解恰是函數y=2x-7的圖象與x軸

交點的橫坐標。

②2x-70的解集正是函數y=2x-7的圖象

在x軸的上方的點的橫坐標的集合。

③2x-70的解集正是函數y=2x-7的圖象

在x軸的下方的點的橫坐標的集合。

三組關系的得出,實際上讓學生找到了利用“一次函數的圖象”來解一元一次方程和一元一次不等式的方法。讓學生看到了解決一元二次不等式的希望,大大激發了學生解決新問題的興趣。此時,學生很自然聯想到利用函數y=x2-x-6的圖象來求不等式x2-x-60的解集。

(二)比舊悟新,引出“三個二次”的關系

為此我引導學生作出函數y=x2-x-6的圖象,按照“看一看說一說問一問”的思路進行探究。

看函數y=x2-x-6的圖象并說出:

①方程x2-x-6=0的解是

x=-2或x=3;

②不等式x2-x-60的解集是

{x-2,或x3};

③不等式x2-x-60的解集是

{x-23}。

此時,學生已經沖出了困惑,找到了利用二次函數的圖象來解一元二次不等式的方法。

學生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數y=x2-x-6變為y=ax2+bx+c(a0),那么圖象與x軸的位置關系又怎樣呢?(學生回答:△0時,圖象與x軸有兩個交點;△=0時,圖象與x軸只有一個交點;△0時,圖象與x輛沒有交點。)請同學們討論:ax2+bx+c0與ax2+bx+c0的解集與函數y=ax2+bx+c的圖象有怎樣的關系?

(三)歸納提煉,得出“三個二次”的關系

1、引導學生根據圖象與x軸的相對位置關系,寫出相關不等式的解集。

2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經討論之后,有的學生得出:將二次項系數由負化正,轉化為上述模式求解,教師應予以強調;也有的學生提出畫出相應的二次函數圖象,根據圖象寫出解集,教師應給予肯定。)

(四)應用新知,熟練掌握一元二次不等式的解集

借助二次函數的圖象,得到一元二次不等式的解集,學生形成了感性認識,為鞏固所學知識,我們一起來完成以下例題:

例1、解不等式2x2-3x-20

解:因為Δ0,方程2x2-3x-2=0的解是

x1=,x2=2

所以,不等式的解集是

{x,或x2}

例1的解決達到了兩個目的:一是鞏固了一元二次不等式解集的應用;二是規范了一元二次不等式的解題格式。

下面我們接著學習課本例2。

例2解不等式-3x2+6x2

課本例2的出現恰當好處,一方面突出了“對于二次項系數是負數(即a0)的一元二次不等式,可以先把二次項系數化為正數,再求解”;另一方面,學生對此例的解答極易出現寫錯解集(如出現“或”與“且”的錯誤)。

通過例1、例2的解決,學生與我一起總結了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。

例3解不等式4x2-4x+10

例4解不等式-x2+2x-30

分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學生練習,教師巡視、指導,講評學生完成情況,尋找學生中的閃光點,給予熱情表揚。

4道例題,具有典型性、層次性和學生的可接受性。為了避免學生學后“一團亂麻”、“一盤散沙”的局面,我和學生一起總結。

(五)總結

解一元二次不等式的“四部曲”:

(1)把二次項的系數化為正數

(2)計算判別式Δ

(3)解對應的一元二次方程

(4)根據一元二次方程的根,結合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集

(六)作業布置

為了使所有學生鞏固所學知識,我布置了“必做題”;又為學有余力者留有自由發展的空間,我布置了“探究題”。

(1)必做題:習題1.5的1、3題

(2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實數k的取值范圍。

(七)板書設計

一元二次不等式解法(1)

五、教學效果評價

本節課立足課本,著力挖掘,設計合理,層次分明。以“三個一次關系→三個二次關系→一元二次不等式解法”為主線,以“從形到數,從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點,突破難點。在教學思想上既注重知識形成過程的教學,還特別突出學生學習方法的指導,探究能力的訓練,創新精神的培養,引導學生發現數學的美,體驗求知的樂趣。

101250 主站蜘蛛池模板: 诏安县| 察哈| 高清| 义乌市| 土默特左旗| 灵宝市| 和硕县| 建湖县| 波密县| 万全县| 开化县| 龙井市| 乐昌市| 开平市| 全南县| 彭泽县| 普兰店市| 宣武区| 灵寿县| 乐东| 武鸣县| 滨州市| 新乐市| 图木舒克市| 清镇市| 泌阳县| 乌拉特中旗| 巴彦淖尔市| 涞水县| 桂平市| 札达县| 来安县| 东兴市| 顺义区| 朝阳市| 沂源县| 筠连县| 彝良县| 新津县| 大英县| 华容县|