教育巴巴 > 高中教案 > 數學教案 >

高中數學的教案

時間: 新華 數學教案

教案中的教學目標應該清晰明確,具體可行,并與學生的實際情況相結合。這里分享一些高中數學的教案下載,供大家寫高中數學的教案參考。

高中數學的教案篇1

教學目標:

(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.

(2)理解直線與二元一次方程的關系及其證明

(3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.

教學重點、難點:直線方程的一般式.直線與二元一次方程(、不同時為0)的對應關系及其證明.

教學用具:計算機

教學方法:啟發引導法,討論法

教學過程:

下面給出教學實施過程設計的簡要思路:

教學設計思路:

(一)引入的設計

前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:

問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

肯定學生回答,并糾正學生中不規范的表述.再看一個問題:

問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?

答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.

肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.

啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.

學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:

【問題1】“任意直線的方程都是二元一次方程嗎?”

(二)本節主體內容教學的設計

這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.

學生或獨立研究,或合作研究,教師巡視指導.

經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:

思路一:…

思路二:…

……

教師組織評價,確定最優方案(其它待課下研究)如下:

按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.

當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.

當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?

學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:

平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

綜合兩種情況,我們得出如下結論:

在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程.

至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”.

同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?

學生們不難得出:二者可以概括為統一的形式.

這樣上邊的結論可以表述如下:

在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.

啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?

【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?

不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?

師生共同討論,評價不同思路,達成共識:

回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即

(1)當時,方程可化為

這是表示斜率為、在軸上的截距為的直線.

(2)當時,由于、不同時為0,必有,方程可化為

這表示一條與軸垂直的直線.

因此,得到結論:

在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.

為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的.

【動畫演示】

演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.

至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.

(三)練習鞏固、總結提高、板書和作業等環節的設計

高中數學的教案篇2

一、學習目標與自我評估

1 掌握利用單位圓的幾何方法作函數 的圖象

2 結合 的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期

3 會用代數方法求 等函數的周期

4 理解周期性的幾何意義

二、學習重點與難點

“周期函數的概念”, 周期的求解。

三、學法指導

1、 是周期函數是指對定義域中所有 都有,即 應是恒等式。

2、周期函數一定會有周期,但不一定存在最小正周期。

四、學習活動與意義建構

五、重點與難點探究

例1、若鐘擺的高度 與時間 之間的函數關系如圖所示

(1)求該函數的周期;

(2)求 時鐘擺的高度。

例2、求下列函數的周期。

(1) (2)

總結:(1)函數 (其中 均為常數,且的周期T= 。

(2)函數 (其中 均為常數,且的周期T= 。

例3、求證: 的周期為 。

例4、(1)研究 和 函數的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數,

總結:函數 (其中 均為常數,且__的周期T= 。

例5、(1)求 的周期。

(2)已知 滿足 ,求證: 是周期函數

課后思考:能否利用單位圓作函數 的圖象。

六、作業:

七、自主體驗與運用

1、函數 的周期為 ( )

A、 B、 C、 D、

2、函數 的最小正周期是 ( )

A、 B、 C、 D、

3、函數 的最小正周期是 ( )

A、 B、 C、 D、

4、函數 的周期是 ( )

A、 B、 C、 D、

5、設 是定義域為R,最小正周期為 的函數,若 ,則 的值等于 (  )

A、1 B、 C、0 D、

6、函數 的最小正周期是 ,則

7、已知函數 的最小正周期不大于2,則正整數

的最小值是

8、求函數 的最小正周期為T,且 ,則正整數的值是

9、已知函數 是周期為6的奇函數,且 則

10、若函數 ,則

11、用周期的定義分析 的周期。

12、已知函數 ,如果使 的周期在 內,求正整數 的值

13、一機械振動中,某質子離開平衡位置的位移 與時間 之間的函數關系如圖所示:

(1) 求該函數的周期;

(2) 求 時,該質點離開平衡位置的位移。

14、已知 是定義在R上的函數,且對任意 有成立,

(1) 證明: 是周期函數;

(2) 若 求 的值。

高中數學的教案篇3

教學目標:1、理解集合的概念和性質.

2、了解元素與集合的表示方法.

3、熟記有關數集.

4、培養學生認識事物的能力.

教學重點:集合概念、性質

教學難點:集合概念的理解

教學過程:

1、定義:

集合:一般地,某些指定的對象集在一起就成為一個集合(集).元素:集合中每個對象叫做這個集合的元素.

由此上述例中集合的元素是什么?

例(1)的元素為1、3、5、7,

例(2)的元素為到兩定點距離等于兩定點間距離的點,

例(3)的元素為滿足不等式3x-2>x+3的實數x,

例(4)的元素為所有直角三角形,

例(5)為高一·六班全體男同學.

一般用大括號表示集合,{?}如{我校的籃球隊員},{太平洋、大西洋、印度洋、北冰洋}。則上幾例可表示為??

為方便,常用大寫的拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(1)確定性;(2)互異性;(3)無序性.

3、元素與集合的關系:隸屬關系

元素與集合的關系有“屬于∈”及“不屬于?(?也可表示為)兩種。如A={2,4,8,16},則4∈A,8∈A,32?A.

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集A記作a?A,相反,a不屬于集A記作a?A(或)

注:1、集合通常用大寫的拉丁字母表示,如A、B、C、P、Q??

元素通常用小寫的拉丁字母表示,如a、b、c、p、q??

2、“∈”的開口方向,不能把a∈A顛倒過來寫。

4

注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0。

(2)非負整數集內排除0的集。記作N_或N+。Q、Z、R等其它數集內排除0

的集,也是這樣表示,例如,整數集內排除0的集,表示成Z_

請回答:已知a+b+c=m,A={xax2+bx+c=m},判斷1與A的關系。

1.1.2集合間的基本關系

教學目標:1.理解子集、真子集概念;

2.會判斷和證明兩個集合包含關系;

3.理解“?”、“?”的含義;≠

4.會判斷簡單集合的相等關系;

5.滲透問題相對的觀點。

教學重點:子集的概念、真子集的概念

教學難點:元素與子集、屬于與包含間區別、描述法給定集合的運算教學過程:

觀察下面幾組集合,集合A與集合B具有什么關系?

(1)A={1,2,3},B={1,2,3,4,5}.

(2)A={__>3},B={x3x-6>0}.

(3)A={正方形},B={四邊形}.

(4)A=?,B={0}.

(5)A={銀川九中高一(11)班的女生},B={銀川九中高一(11)班的學生}。

1.子集

定義:一般地,對于兩個集合A與B,如果集合A中的任何一個元素都是集合B的元素,我們就說集合A包含于集合B,或集合B包含集合A,記作A?B(或B?A),即若任意x?A,有x?B,則A?B(或A?B)。

這時我們也說集合A是集合B的子集(subset)。

如果集合A不包含于集合B,或集合B不包含集合A,就記作A?B(或B?A),即:若存在x?A,有x?B,則A?B(或B?A)

說明:A?B與B?A是同義的,而A?B與B?A是互逆的。

規定:空集?是任何集合的子集,即對于任意一個集合A都有??A。

(2)除去?與A本身外,集合A的其它子集與集合A的關系如何?

3.真子集:

由“包含”與“相等”的關系,可有如下結論:

(1)A?A(任何集合都是其自身的子集);

(2)若A?B,而且A?B(即B中至少有一個元素不在A中),則稱集合A是集合B的真子集(propersubset),記作A≠B。(空集是任何非空集合的真

子集)

(3)對于集合A,B,C,若A?B,B?C,即可得出A?C;對A?B,B?C,同樣≠≠

?有A≠C,即:包含關系具有“傳遞性”。

4.證明集合相等的方法:

?

第3/7頁

(1)證明集合A,B中的元素完全相同;(具體數據)

(2)分別證明A?B和B?A即可。(抽象情況)

對于集合A,B,若A?B而且B?A,則A=B。

1.1.3集合的基本運算

教學目的:(1)理解兩個集合的并集與交集的的含義,會求兩個簡單集合的并

集與交集;

(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補

集;

(3)能用Venn圖表達集合的關系及運算,體會直觀圖示對理解抽

象概念的作用。

教學重點:集合的交集與并集、補集的概念;

教學難點:集合的交集與并集、補集“是什么”,“為什么”,“怎樣做”;

【知識點】

1.并集

一般地,由所有屬于集合A或屬于集合B的元素所組成的集合,稱為集合A與B的并集(Union)

記作:A∪B讀作:“A并B”

即:A∪B={__∈A,或x∈B}

Venn圖表示:

第4/7頁

A與B的所有元素來表示。A與B的交集。

2.交集

一般地,由屬于集合A且屬于集合B的元素所組成的集合,叫做集合A與B的交集(intersection)。

記作:A∩B讀作:“A交B”

即:A∩B={x∈A,且x∈B}

交集的Venn圖表示

說明:兩個集合求交集,結果還是一個集合,是由集合A與B的公共元素組成的集合。

拓展:求下列各圖中集合A與B的并集與交集

A

說明:當兩個集合沒有公共元素時,兩個集合的交集是空集,不能說兩個集合沒有交集

3.補集

全集:一般地,如果一個集合含有我們所研究問題中所涉及的所有元素,那么就稱這個集合為全集(Universe),通常記作U。

補集:對于全集U的一個子集A,由全集U中所有不屬于集合A的所有元素組成的集合稱為集合A相對于全集U的補集(complementaryset),簡稱為集合A的補集,

記作:CUA

即:CUA={__∈U且x∈A}

第5/7頁

補集的Venn圖表示

說明:補集的概念必須要有全集的限制

4.求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區分

交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法。

5.集合基本運算的一些結論:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,則A?B,反之也成立

若A∪B=B,則A?B,反之也成立

若x∈(A∩B),則x∈A且x∈B

若x∈(A∪B),則x∈A,或x∈B

¤例題精講:

【例1】設集合U?R,A?{x?1?x?5},B?{x3?x?9},求A?B,?U(A?B).解:在數軸上表示出集合A、B

【例2】設A?{x?Zx?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C).

【例3】已知集合A?{x?2?x?4},B?{__?m},且A?B?A,求實數m的取值范圍.

_且x?N}【例4】已知全集U?{__?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比較它們的關系.

高中數學的教案篇4

一、指導思想

1、培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力.使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力.

2、根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神.

3、使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯系和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀.

二、目的要求

1.深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系和網絡結構,細致領會教材改革的精髓,把握通性通法,逐步明確教材對教學形式、內容和教學目標的影響.

2.因材施教,以學生為學習的主體,構建新的認知體系,營造有利于學生學習的氛圍.

3.加強課堂教學研究,科學設計教學方法,扎實有效的提高課堂教學效果,全面提高數學教學質量.

三、具體措施

1.不孤立記憶和認識各個知識點,而要將其放到相應的體系結構中,在比較、辨析的過程中尋求其內在聯系,達到理解層次,注意知識塊的復習,構建知識網路.注重基礎知識和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運用;力求有意識的分析理解能力;尤其是數學語言的表達形式,推力論證要思路清晰、整體完整.

2.學會分析,首先是閱讀理解,側重于解題前對信息的捕捉和思路的探索;其次是解題回顧,側重于經驗及教訓的總結,重視常見題型及通法通解.

3.以“錯”糾錯,查缺補漏,反思錯誤,嚴格訓練,規范解題,養成:想明白,寫清楚,算準確的習慣,注意思路的清晰性、思維的嚴謹性、敘述的條理性、結果的準確性,注重書寫過程,舉一反三,及時歸納,觸類旁通,加強數學思想和數學方法的應用.

4.協調好講、練、評、輔之間的關系,追求數學復習的效果,注重實效,努力提高復習教學的效率和效益;精心設計教學,做到精講精練,不加重學生的負擔,避免“題海戰” ,精心準備,講評到為,做到講評試卷或例題時:講清考察了那些知識點,怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關鍵步驟在那里,哪些是典型錯誤,是知識和是邏輯,是方法、是心理上、策略上的錯誤,針對學生的錯誤調整復習策略,使復習更加有重點、針對性,加快教學節奏,提高教學效率.

5.周密計劃合理安排,現數學學科特點,注重知識能力的提高,提升綜合解題能力,加強解題教學,使學生在解題探究中提高能力.

6.多從“貼近教材、貼近學生、貼近實際”角度,選擇典型的數學聯系生活、生產、環境和科技方面的問題,對學生進行有計劃、針對性強的訓練,多給學生鍛煉各種能力的機會,從而達到提升學生數學綜合能力之目的.不脫離基礎知識來講學生的能力,基礎扎實的學生不一定能力 強.教學中,不斷地將基礎知識運用于數學問題的解決中,努力提高學生的學科綜合能力.

新的學期是新的起點,新的希望。通過這份高二數學上學期教學工作計劃,我相信自己在本學期一定能夠將兩個班的數學成績帶上去,我相信,我能行。

高中數學的教案篇5

一、教學內容分析

二面角是我們日常生活中經常見到的一個圖形,它是在學生學過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念。掌握好本節課的知識,對學生系統地理解直線和平面的知識、空間想象能力的培養,乃至創新能力的培養都具有十分重要的意義。

二、教學目標設計

理解二面角及其平面角的概念;能確認圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關問題。

三、教學重點及難點

二面角的平面角的概念的形成以及二面角的平面角的作法。

四、教學流程設計

五、教學過程設計

一、新課引入

1。復習和回顧平面角的有關知識。

平面中的角

定義從一個頂點出發的兩條射線所組成的圖形,叫做角

圖形

結構射線點射線

表示法AOB,O等

2。復習和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉化為平面角)

3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關,而山坡面與水平面所成的角就是兩個平面所成的角。在實際生活當中,能夠轉化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關。)從而,引出二面角的定義及相關內容。

二、學習新課

(一)二面角的定義

平面中的角二面角

定義從一個頂點出發的兩條射線所組成的圖形,叫做角課本P17

圖形

結構射線點射線半平面直線半平面

表示法AOB,O等二面角a或—AB—

(二)二面角的圖示

1。畫出直立式、平臥式二面角各一個,并分別給予表示。

2。在正方體中認識二面角。

(三)二面角的平面角

平面幾何中的角可以看作是一條射線繞其端點旋轉而成,它有一個旋轉量,它的大小可以度量,類似地,二面角也可以看作是一個半平面以其棱為軸旋轉而成,它也有一個旋轉量,那么,二面角的大小應該怎樣度量?

1。二面角的平面角的定義(課本P17)。

2。AOB的大小與點O在棱上的位置無關。

[說明]①平面與平面的位置關系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題。

②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。

③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內;角的兩邊分別與棱垂直。

3。二面角的平面角的范圍:

(四)例題分析

例1一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個的二面角,求此時B、C兩點間的距離。

[說明]①檢查學生對二面角的平面角的定義的掌握情況。

②翻折前后應注意哪些量的位置和數量發生了變化,哪些沒變?

例2如圖,已知邊長為a的等邊三角形所在平面外有一點P,使PA=PB=PC=a,求二面角的大小。

[說明]①求二面角的步驟:作證算答。

②引導學生掌握解題可操作性的通法(定義法和線面垂直法)。

例3已知正方體,求二面角的大小。(課本P18例1)

[說明]使學生進一步熟悉作二面角的平面角的方法。

(五)問題拓展

例4如圖,山坡的傾斜度(坡面與水平面所成二面角的度數)是,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是,沿這條路上山,行走100米后升高多少米?

[說明]使學生明白數學既來源于實際又服務于實際。

三、鞏固練習

1。在棱長為1的正方體中,求二面角的大小。

2。若二面角的大小為,P在平面上,點P到的距離為h,求點P到棱l的距離。

四、課堂小結

1。二面角的定義

2。二面角的平面角的定義及其范圍

3。二面角的平面角的常用作圖方法

4。求二面角的大小(作證算答)

五、作業布置

1。課本P18練習14。4(1)

2。在二面角的一個面內有一個點,它到另一個面的距離是10,求它到棱的距離。

3。把邊長為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成的二面角,求A、C兩點的距離。

六、教學設計說明

本節課的設計不是簡單地將概念直接傳受給學生,而是考慮到知識的形成過程,設法從學生的數學現實出發,調動學生積極參與探索、發現、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運用了類比的手段和方法。教學過程中通過教師的層層鋪墊,學生的主動探究,使學生經歷概念的形成、發展和應用過程,有意識地加強了知識形成過程的教學。

高中數學的教案篇6

一、教學背景

《同角三角函數基本關系式》是人教版高中數學必修第四冊第一章第二節中的內容。本節課的內容在教材中有著承上啟下的作用,是在學習了任意角和弧度,并了解正弦、余弦、正切的基本概念之后進行教學的,同時同角三角函數的基本關系也為之后學習兩角和差公式奠定了基礎,起著銜接作用。運用同角三角函數關系,能夠更好的解決有關三角函數中求同角的其他三角函數值使解題更方便。學生在獲得三角函數定義的過程中已經充分認識到了借助單位圓、利用數形結合思想是研究三角函數的重要工具。本節課內容中所體現的數學思想與方法在整個中學數學學習中起重要作用。

高中學生已經具備了初等代數、初等幾何的相關知識,以及一定的抽象思維能力和邏輯推理能力。學生已經比較熟練的掌握了三角函數定義的兩種推導方法,從方法上看,學生已經對數形結合,猜想證明有所了解。從學習情感方面看,大部分學生愿意主動學習。從能力上看,學生主動學習能力、探究能力較弱。因而通過本節課的學習,學生能較好地培養學生的思維能力、推理能力、探究能力及創新意識。

根據新課標的要求,以及對教材和學情的分析,我確立了如下三維教學目標:

1、知識與技能目標:掌握三種基本關系式之間的聯系,熟練掌握已知一個角的三角函數值求其它三角函數值的方法。

2、過程與方法目標:牢固掌握同角三角函數的八個關系式,并能靈活運用于解題,提高學生分析、解決三角的思維能力,能靈活運用同角三角函數關系式的不同變形,提高三角恒等變形的能力。

3、情感與態度目標:通過用數學知識解決實際問題,讓學生體會數學與自然及人類社會的密切聯系,激發學生學習數學的興趣,增強學生學習數學的信心。

根據本節課的地位和作用以及新課程標準的具體要求,確定本節課的重點為:同角三角函數基本關系式sin2α+cos2α=1;tanα=sinα/cosα的運用。教學難點為:理三角函數值的符號的確定,同角三角函數的基本關系式的變式應用。

二、活動評價

在課堂教學過程中,我將對學生的學習情況進行及時而有效的評價。注重課程中的過程性評價,無論是在學生開始遇到問題、產生疑惑、給出猜想的時候,還是在逐步思考、交流、探索的教學過程中,我都會注重對于學生學習成果的評價。比如,在課堂討論較難理解的問題時,我將先請一位平時善于解決數學問題的學生來回答,并請其他同學對其進行評價,然后再請大家給出不同的意見,從而形成良性的互動,在學生們的思維碰撞之中,正確、完善的結論將自然形成。從始至終,我都將貫徹以學生為主體、教師為主導的教學思想。

三、課程設計

在新課改理念的指導下,針對本課的教學目標和重難點,我將采用故事法、探究法、自主學習和合作探究等教學法,先從一個情境問題出發,然后引導學生循序漸進地對一組問題進行思考和探究,逐步歸納總結出同角三角函數的基本關系式,并在期間采用學生自評、小組互評、教師評價等多種方式,培養學生積極主動參與學習的興趣。下面我將詳細闡述本節課的教學過程。

1、趣味導入:上課伊始,我會通過多媒體講述“蝴蝶效應”的故事,引導學生理解事物是普遍聯系的觀點,如果說南美亞馬遜雨林中的一只蝴蝶與北美德克薩斯的龍卷風這兩種看來是毫不相干的事物,都會有這樣的聯系,那么同一個角的三角函數應當也會有著非常密切的關系。通過這樣的故事導入,能夠激發學生的學習興趣和探索熱情,活躍其思維,為本節課的學習埋下伏筆。

2、溫故知新:在這一環節,我將引導學生回顧三種常見三角函數的概念,單位圓中的任意角概念,以及初中學段學習的同角三角函數的兩個基本關系式,進而引導學生思考如何證明任意角的三角函數也具備相應的基本關系。在這個過程中,我會請不同層次的學生起來回答,并請其他學生進行補充,引導全體學生進行復習和思考。學生依據以往證明三角函數平方關系的思路,能夠較快想到利用單位圓中的勾股定理關系,證明得到sin2α+cos2α=1,同樣的,根據任意角的正切函數定義,得到tanα=sinα/cosα。

接下來,我將引導學生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)學生可能會躍躍欲試,先用平方關系式計算余弦值,但卻會遇到開方時判別正負號的問題,于是才會根據α是第二象限角這個條件進行判斷。這時我將會引導學生學會先判斷任意角的區間及其三角函數的符號,再利用公式進行計算的解題思路。這樣學生就能夠更輕松地探索出例2的解答方法。例2當中,由于根據余弦值的范圍,確定α可能在第二或第三象限出現,于是學生就能夠想到采用分類思想進行解答。通過學生的自主思考和我的適當引導,可以自然而然地突破本課的難點。

3、歸納總結

經過前面的師生共同參與的探究討論,就逐步歸納總結出了同角三角函數的基本關系式。在這個過程中,我會根據不同學生的特點,分別請他們發言,并請其他同學進行補充,在師生互動中,共同推導出結論,這種方法既可以有效地突出本課的重點,又自然而然地突破了本課的難點。

4、實踐應用

為鞏固所學知識,我會從教材中分梯度選取習題,給學生進行課堂練習,并請2-3位同學在黑板上完成,在練習后我會進行及時講解。

在布置作業時,為了使所有學生都能夠根據自身情況鞏固所學知識,我將布置一類“必做題”和一類“探究題”,其中“探究題”是提供給那些學有余力的學生在課余時間完成的,幫助其拓展思維,培養興趣。

5、課程總結

本節課的內容是極富探索性,我通過提問式復習和情境問題導入,學生產生好奇心和探索熱情。接著,以學生為主體,我來引導學生根據已學的知識和方法,循序漸進地進行探究,逐步歸納總結出同角三角函數的基本關系式,從而自然地完成本課的教學過程,同時幫助學生體會數形結合的思想方法。

在板書設計方面,我會用簡潔、工整的方式給出相關探究問題,同時以多媒體輔助展示平移動畫,便于學生進行觀察和探究。

四、教學體會

本節課我主要采用的是“引導發現、合作探究”的教學方法,以學生熟知的足球運動為情境引入新課,以問題為載體,以師生合作探究為主線,以思維訓練為核心,以能力發展為目標,充分調動一切可利用的因素,激發學生的參與意識,使學生經歷知識的形成、發展和應用的過程,在和諧、愉悅的氛圍中獲取知識,掌握方法。整個教學中既突出了學生的主體地位,又發揮了教師的指導作用。在課堂隨機提問以及討論結果的過程中,我采用多層次多角度的評價方式,不僅能促使學生思考問題,掌握學習知識的技巧和方法,還能調動學生積極性,激發課堂氣氛。

高中數學的教案篇7

教學內容

義務教育課程標準實驗教科書(人教版)二年級上冊第八單元第一課時

教學目標:

知識目標:

使學生通過觀察、猜測、實驗等活動,找出簡單事物的排列數和組合數。

能力目標:

培養學生有順序地、全面地思考問題的意識。

情感目標:

使學生感受到數學在現實生活中的應用價值,嘗試用數學的方法來解決實際生活中的問題。

教學重點:

經歷探索簡單事物排列與組合規律的過程。教學難點:初步理解簡單事物排列與組合的不同。教學環節

一、創設情境,導入新課

今天,我們來上一節數學活動課,大家樂意嗎?(板書課題)現在大家來看一下我們的活動目標。(課件出示活動目標)

師:老師給大家帶來了一個新朋友,課件出示圣誕老人畫面,圣誕老人過生日了,想請大家參加他的生日聚會,但是他有要求。通過圣誕老人提出本節課任務。

二、合作學習,構建模型

(一)初步感知。課件出示:

第一關:擺一擺,猜密碼。(用數字卡片

1、2能排成幾個兩位數自己動手擺一擺)讓學生自己動手擺卡片后,指名匯報。

(二)合作探究。課件出示:

第二關:擺一擺,比一比(用數字卡片1、2、3能擺成幾個不同的兩位數)比比看,哪個組找的最多。

小組探討,組長把大家的討論結果記錄在練習本上。(活動開始,教師巡視。)

以組為單位派代表匯報。

師:有的組擺出了4個不同的兩位數,有的組擺出了6個不同的兩位數,你們是怎么擺的?有什么好辦法?

(鼓勵方法的多樣化,對各組的不同方法進行肯定和表揚。)結合發言,引導學生進行評價,選出優勝組。

師生共同歸納:用數字排列組成數,要按照一定的順序確定十位上的數,然后考慮個位上有哪些數可以與其搭配。

(三)握一握。課件出示:小精靈說的話。

恭喜你們成功的度過了前兩關,現在,我們握手祝賀一下。師:每兩人握一次手,三人一共握幾次手?(小組活動,教師巡視)活動后,小組指名匯報。

師:究竟是幾次呢?請大家互相握握看吧!請一個組的同學上臺演示,其他同學一起數數。

(四)課件出示:

師:圣誕老人決定獎勵你們兩件上衣、兩條褲子,那么一共有幾種搭配方法呢?(課件出示圖片。)

學生拿出學具卡片,小組活動解決問題。匯報交流,說說自己為什么這樣設計。

三、分層練習,鞏固新知

(一)付錢問題。

課件出示:99頁做一做2題

小組討論,小組長統計本組學生答題情況,并由小組代表匯報。

(二)拍照站法。

小麗、小芳、小美在風景如畫的郊外游玩,三人想站成一排拍照留念,她們有幾種站法?

小組討論后,由一組學生上臺演示,其他學生數一數。

高中數學的教案篇8

教學過程:

一、復習引入:

1.簡介數集的發展,復習最大公約數和最小公倍數,質數與和數;

2.教材中的章頭引言;

3.集合論的創始人——康托爾(德國數學家)(見附錄);

4.“物以類聚”,“人以群分”;

5.教材中例子(P4)。

二、講解新課:

閱讀教材第一部分,問題如下:

(1)有那些概念?是如何定義的?

(2)有那些符號?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有關概念:由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。

定義:一般地,某些指定的對象集在一起就成為一個集合。

1、集合的概念

(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)

(2)元素:集合中每個對象叫做這個集合的元素

2、常用數集及記法

(1)非負整數集(自然數集):全體非負整數的集合,記作N,N={0,1,2,…}

(2)正整數集:非負整數集內排除0的集,記作N__或N+,N__={1,2,3,…}

(3)整數集:全體整數的集合,記作Z,Z={0,±1,±2,…}

(4)有理數集:全體有理數的集合,記作Q,Q={整數與分數}

(5)實數集:全體實數的集合,記作R,R={數軸上所有點所對應的數}

注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0

(2)非負整數集內排除0的集,記作N__或N+

Q、Z、R等其它數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z__

3、元素對于集合的隸屬關系

(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A

(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA

4、集合中元素的特性

(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可

(2)互異性:集合中的元素沒有重復

(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)

5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……

元素通常用小寫的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的開口方向,不能把a∈A顛倒過來寫。

高中數學的教案篇9

如何在高二這一關鍵性的一年中與這些同學一齊共同進步縮小差距,我選取了從課堂教學、作業布置、評價方式這三個方面入手,激發學生的學習用心性,盡量向學生帶給從事數學活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基礎的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。

第一,用多變的課堂教學,充分調動學生的主動性

我認為數學教學是教師思維與學生思維相互溝通的過程。從信息論的角度看,這種溝通就是指數學信息的理解、加工、傳遞的動態過程,在這個過程中充滿了師生之間的數學交流和信息的轉換,離開了學生的參與,整個過程就難以暢通。北京師范大學曹才翰教授指出“數學學習是再創造再發現的過程,務必要主體的用心參與才能實現這個過程”;從當前全面實施素質教育的要求來看,激發學生用心參與課堂教學,就是為了提高課堂教學效率,培養學生的學習潛力和創造思維潛力,這與以培養創造型人才為目的的素質教育完全一致,因此,在數學課堂教學中提高學生的參與度,不僅僅具有提高數學教學質量的近期作用,而且具有提高學生素質的遠期功效。

若要實現這個目標,在教學引入時我常常以問題作為出發點,選取的素材密切聯系學生的現實生活,運用學生的求知欲,使學生感到數學就在他們身邊,與現實世界聯系緊密,同時問題情景的設置又具有必須的挑戰性,引發了學生的思考。

如人教版初二幾何《三角形》的《關于三角形的一些概念》在引入時我提出了以下幾個問題:你能舉出生活中一些有關三角形的實例嗎?你能一筆畫一個三角形嗎?你能用語言敘述你的畫圖過程嗎?

如人教版初二幾何《三角形》的《三角形全等的判定(一)》在引入時我提出了這樣一個問題:請你任意畫一個三角形,你能否再畫一個與其全等的三角形。畫好后請你剪下來驗證一下。學生的用心性被激發,熱烈的討論,課堂上出現了許多狀況

有的學生用的是先確定一角再確定兩邊的畫法;有的一個學生是利用尺規根據三邊關系畫的(這正是后面所要學的一個三角形全等的判定公理);有的學生是利用了垂直、平行、對頂角來省去作圖中使用量角器的麻煩,學生充分利用已有的數學知識,利用自己對數學圖形的感知,很好的解決了這個問題,透過剪一剪試一試從直觀上驗證了自己的畫法。

如《相似形》的《相似三角形的性質》在引入時我提出了這樣的問題:提到與我國并稱為世界四大禮貌古國的埃及你會想到什么?學生們說到了法老、金字塔、木乃伊等等,說到金字塔你能測量出埃及大金字塔的高度嗎?學生幾乎是異口同聲地告訴我用影長,當時我稱贊他們與我們的幾何學之父古希臘人歐幾里得的測量方法一樣,并講述了歐幾里得的故事,他等到自己在陽光下的影長與他的身高正好相等的時候,測量了金字塔的塔影的長度,這時,他宣布,“這就是大金字塔的高度。”從而激發了學生探索相似三角形的其它性質的興趣。

我在課堂教學的過程中,為了使成績較差同學減少對于數學的恐懼感,課堂上放慢教學速度,變換教學方法,如人教版初二幾何《三角形》的《關于三角形的一些概念》我是這樣處理的:1、請學生講解三角形的有關概念;2、請學生用折紙的方法講解角平分線和中線,折紙的過程中你還發現了什么?3、請學生任意作一個三角形,并做出這個三角形的一條角平分線和一條中線。三個要求層層深入了學生對于基本概念的理解,變教師講為學生講,取得了較好的效果。

我在課堂上放慢教學速度是能夠照顧到大部分學生的,但一小批優等生就會出現沒事做的狀況,這時學習小組就是他們發揮余熱的地方,在具體的教學過程中給學生建立了數學學習小組,讓學生在各自的小組中相互幫忙,讓每一個學生都能從事小組中不同的工作,并最終完成一個共同的目標。透過小組學習,使學生樹立正確的團隊觀,尊重他人、尊重自己,敢于發表自己的觀點,又不固執己見,對同學的見解,既要樂于理解合理成分,又要勇于表達自己不同的看法。在具體實施的過程中,我越發的認識到討論的重要性,我鼓勵學生質疑,質疑教師,質疑教科書,鼓勵學生爭論,有些知識點在學生的爭論中被突破,知識在爭論中被融會貫通,我發現學生之間的語言他們更容易理解,于是我開始嘗試讓學生講課,講過三角形的分類等。又如學習基本作圖時,教科書就如一本說明書,讓學生以學習小組為單位,閱讀、畫圖,互教互學,實際教學時取得了很好的效果。讓各層次的學生都能有所知,有所得。在認知效果和記憶效果方面比教師直接給出要好。

第二,布置多樣的作業,引導學生的用心性

讓學生作業的目的在于鞏固和消化所學的知識,并使知識轉化為技能技巧。正確組織好學生作業,對于培養學生的獨立學習的潛力和習慣,發展學生的智力和創造潛力有著重大好處。因此,教師應重視作業的布置,《數學課程標準》中明確指出:“義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現人人學有價值的數學,人人都能獲得必需的數學,不同的人在數學上得到不同的發展。”作業布置如何體現這一基本理念,如何調整作業在學生學習活動中的位置,也是提高課堂教學效率的關鍵。

課堂結束新課后,我透過作業的布置滲透數學學習方法如自學,這樣才能真正提高學生數學學習的水平,開始時每一天的第一樣作業是復習,最后一項作業是預習,而且把具體的頁數寫清楚提出具體的預習提綱,加強學生看書的針對性,開始時還帶有必須的強制性如讓家長簽字,從而提高學生閱讀理解的潛力。

對數學的興趣能激發學生的學習動機,富有情境的作業具有必須吸引力,能使學生充分發揮自己的智力水平去完成。趣味性要體現出題型多樣,方式新穎,資料有創造性,如課本習題、自編習題、計算類題目、表述類題目(如單元小結、學習體會、數學故事、小論文等)互相穿插,讓學生感受到作業資料和形式的豐富多采,使之情緒高昂,樂于思考,從而感受作業的樂趣。

根據上課資料所需經常讓學生動手做教具如剪鈍角三角形、銳角三角形、直角三角形,做教具說明三角形具有穩定性而四邊形沒有此特性等,這種做法不但能夠提高學生學習的興趣,而且會有一些意想不到的事情。如:學生做教具說明三角形具有穩定性而四邊形沒有此特性時,有的學生用線繩打結連接四邊,有的學生為了省事用訂書釘訂的,而訂的不同方法得到有的四邊形能動而有的不能,經過學生的討論得出關鍵在于連接處是一個點還是兩個點的問題,學生很受啟發。

高中數學的教案篇10

教學目標:①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,∵5.1<5.9 ∴loga5.1

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

例 2 ⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數的值域和單調區間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y= log0.5u, u= x- x2復合而成。

板書:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0

⑶已知函數y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調性。

⑷已知函數y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的單調性。

5.課堂教學設計說明

這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

高中數學的教案篇11

1.如圖,已知直線L:的右焦點F,且交橢圓C于A、B兩點,點A、B在直線上的射影依次為點D、E。

(1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;

(2)(理)連接AE、BD,試探索當m變化時,直線AE、BD是否相交于一定點N?若交于定點N,請求出N點的坐標,并給予證明;否則說明理由。

(文)若為x軸上一點,求證:

2.如圖所示,已知圓定點A(1,0),M為圓上一動點,點P在AM上,點N在CM上,且滿足,點N的軌跡為曲線E。

(1)求曲線E的方程;

(2)若過定點F(0,2)的直線交曲線E于不同的兩點G、H(點G在點F、H之間),且滿足的取值范圍。

3.設橢圓C:的左焦點為F,上頂點為A,過點A作垂直于AF的直線交橢圓C于另外一點P,交x軸正半軸于點Q,且

⑴求橢圓C的離心率;

⑵若過A、Q、F三點的圓恰好與直線

l:相切,求橢圓C的方程.

4.設橢圓的離心率為e=

(1)橢圓的左、右焦點分別為F1、F2、A是橢圓上的一點,且點A到此兩焦點的距離之和為4,求橢圓的方程.

(2)求b為何值時,過圓x2+y2=t2上一點M(2,)處的切線交橢圓于Q1、Q2兩點,而且OQ1OQ2.

5.已知曲線上任意一點P到兩個定點F1(-,0)和F2(,0)的距離之和為4.

(1)求曲線的方程;

(2)設過(0,-2)的直線與曲線交于C、D兩點,且為坐標原點),求直線的方程.

6.已知橢圓的左焦點為F,左、右頂點分別為A、C,上頂點為B.過F、B、C作⊙P,其中圓心P的坐標為(m,n).

(Ⅰ)當m+n0時,求橢圓離心率的范圍;

(Ⅱ)直線AB與⊙P能否相切?證明你的結論.

7.有如下結論:圓上一點處的切線方程為,類比也有結論:橢圓處的切線方程為,過橢圓C:的右準線l上任意一點M引橢圓C的兩條切線,切點為A、B.

(1)求證:直線AB恒過一定點;(2)當點M在的縱坐標為1時,求△ABM的面積

8.已知點P(4,4),圓C:與橢圓E:有一個公共點A(3,1),F1、F2分別是橢圓的左、右焦點,直線PF1與圓C相切.

(Ⅰ)求m的值與橢圓E的方程;

(Ⅱ)設Q為橢圓E上的一個動點,求的取值范圍.

9.橢圓的對稱中心在坐標原點,一個頂點為,右焦點與點的距離為。

(1)求橢圓的方程;

(2)是否存在斜率的直線:,使直線與橢圓相交于不同的兩點滿足,若存在,求直線的傾斜角;若不存在,說明理由。

10.橢圓方程為的一個頂點為,離心率。

(1)求橢圓的方程;

(2)直線:與橢圓相交于不同的兩點滿足,求。

11.已知橢圓的左焦點為F,左右頂點分別為A,C上頂點為B,過F,B,C三點作,其中圓心P的坐標為.

(1)若橢圓的離心率,求的方程;

(2)若的圓心在直線上,求橢圓的方程.

12.已知直線與曲線交于不同的兩點,為坐標原點.

(Ⅰ)若,求證:曲線是一個圓;

(Ⅱ)若,當且時,求曲線的離心率的取值范圍.

13.設橢圓的左、右焦點分別為、,A是橢圓C上的一點,且,坐標原點O到直線的距離為.

(1)求橢圓C的方程;

(2)設Q是橢圓C上的一點,過Q的直線l交x軸于點,較y軸于點M,若,求直線l的方程.

14.已知拋物線的頂點在原點,焦點在y軸的負半軸上,過其上一點的切線方程為為常數).

(I)求拋物線方程;

(II)斜率為的直線PA與拋物線的另一交點為A,斜率為的直線PB與拋物線的另一交點為B(A、B兩點不同),且滿足,求證線段PM的中點在y軸上;

(III)在(II)的條件下,當時,若P的坐標為(1,-1),求PAB為鈍角時點A的縱坐標的取值范圍.

15.已知動點A、B分別在x軸、y軸上,且滿足AB=2,點P在線段AB上,且

設點P的軌跡方程為c。

(1)求點P的軌跡方程C;

(2)若t=2,點M、N是C上關于原點對稱的兩個動點(M、N不在坐標軸上),點Q

坐標為求△QMN的面積S的最大值。

16.設上的兩點,

已知,,若且橢圓的離心率短軸長為2,為坐標原點.

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線AB過橢圓的焦點F(0,c),(c為半焦距),求直線AB的斜率k的值;

(Ⅲ)試問:△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由

17.如圖,F是橢圓(a0)的一個焦點,A,B是橢圓的兩個頂點,橢圓的離心率為.點C在x軸上,BCBF,B,C,F三點確定的圓M恰好與直線l1:相切.

(Ⅰ)求橢圓的方程:

(Ⅱ)過點A的直線l2與圓M交于PQ兩點,且,求直線l2的方程.

18.如圖,橢圓長軸端點為,為橢圓中心,為橢圓的右焦點,且.

(1)求橢圓的標準方程;

(2)記橢圓的上頂點為,直線交橢圓于兩點,問:是否存在直線,使點恰為的垂心?若存在,求出直線的方程;若不存在,請說明理由.

19.如圖,已知橢圓的中心在原點,焦點在軸上,離心率為,且經過點.直線交橢圓于兩不同的點.

20.設,點在軸上,點在軸上,且

(1)當點在軸上運動時,求點的軌跡的方程;

(2)設是曲線上的點,且成等差數列,當的垂直平分線與軸交于點時,求點坐標.

21.已知點是平面上一動點,且滿足

(1)求點的軌跡對應的方程;

(2)已知點在曲線上,過點作曲線的兩條弦和,且,判斷:直線是否過定點?試證明你的結論.

22.已知橢圓的中心在坐標原點,焦點在坐標軸上,且經過、、三點.

(1)求橢圓的方程:

(2)若點D為橢圓上不同于、的任意一點,,當內切圓的面積最大時。求內切圓圓心的坐標;

(3)若直線與橢圓交于、兩點,證明直線與直線的交點在直線上.

23.過直角坐標平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點。

(1)用表示A,B之間的距離;

(2)證明:的大小是與無關的定值,

并求出這個值。

24.設分別是橢圓C:的左右焦點

(1)設橢圓C上的點到兩點距離之和等于4,寫出橢圓C的方程和焦點坐標

(2)設K是(1)中所得橢圓上的動點,求線段的中點B的軌跡方程

(3)設點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,當直線PM,PN的斜率都存在,并記為試探究的值是否與點P及直線L有關,并證明你的結論。

25.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.

(I)求橢圓的方程;

(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;

(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.

26.如圖所示,已知橢圓:,、為

其左、右焦點,為右頂點,為左準線,過的直線:與橢圓相交于、

兩點,且有:(為橢圓的半焦距)

(1)求橢圓的離心率的最小值;

(2)若,求實數的取值范圍;

(3)若,,

求證:、兩點的縱坐標之積為定值;

27.已知橢圓的左焦點為,左右頂點分別為,上頂點為,過三點作圓,其中圓心的坐標為

(1)當時,橢圓的離心率的取值范圍

(2)直線能否和圓相切?證明你的結論

28.已知點A(-1,0),B(1,-1)和拋物線.,O為坐標原點,過點A的動直線l交拋物線C于M、P,直線MB交拋物線C于另一點Q,如圖.

(I)證明:為定值;

(II)若△POM的面積為,求向量與的夾角;

(Ⅲ)證明直線PQ恒過一個定點.

29.已知橢圓C:上動點到定點,其中的距離的最小值為1.

(1)請確定M點的坐標

(2)試問是否存在經過M點的直線,使與橢圓C的兩個交點A、B滿足條件(O為原點),若存在,求出的方程,若不存在請說是理由。

30.已知橢圓,直線與橢圓相交于兩點.

(Ⅰ)若線段中點的橫坐標是,求直線的方程;

(Ⅱ)在軸上是否存在點,使的值與無關?若存在,求出的值;若不存在,請說明理由.

31.直線AB過拋物線的焦點F,并與其相交于A、B兩點。Q是線段AB的中點,M是拋物線的準線與y軸的交點.O是坐標原點.

(I)求的取值范圍;

(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:∥;

(Ⅲ)若P是不為1的正整數,當,△ABN的面積的取值范圍為時,求該拋物線的方程.

32.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.

(Ⅰ)當時,求橢圓的方程及其右準線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,與拋物線交于、,如果以線段為直徑作圓,試判斷點與圓的位置關系,并說明理由;

(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.

33.已知點和動點滿足:,且存在正常數,使得。

(1)求動點P的軌跡C的方程。

(2)設直線與曲線C相交于兩點E,F,且與y軸的交點為D。若求的值。

34.已知橢圓的右準線與軸相交于點,右焦點到上頂點的距離為,點是線段上的一個動點.

(I)求橢圓的方程;

(Ⅱ)是否存在過點且與軸不垂直的直線與橢圓交于、兩點,使得,并說明理由.

35.已知橢圓C:(.

(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;

(2)在(1)的條件下,設過定點的直線與橢圓C交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率k的取值范圍;

(3)如圖,過原點任意作兩條互相垂直的直線與橢圓()相交于四點,設原點到四邊形一邊的距離為,試求時滿足的條件.

36.已知若過定點、以()為法向量的直線與過點以為法向量的直線相交于動點.

(1)求直線和的方程;

(2)求直線和的斜率之積的值,并證明必存在兩個定點使得恒為定值;

(3)在(2)的條件下,若是上的兩個動點,且,試問當取最小值時,向量與是否平行,并說明理由。

37.已知點,點(其中),直線、都是圓的切線.

(Ⅰ)若面積等于6,求過點的拋物線的方程;

(Ⅱ)若點在軸右邊,求面積的最小值.

38.我們知道,判斷直線與圓的位置關系可以用圓心到直線的距離進行判別,那么直線與橢圓的位置關系有類似的判別方法嗎?請同學們進行研究并完成下面問題。

(1)設F1、F2是橢圓的兩個焦點,點F1、F2到直線的距離分別為d1、d2,試求d1d2的值,并判斷直線L與橢圓M的位置關系。

(2)設F1、F2是橢圓的兩個焦點,點F1、F2到直線

(m、n不同時為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1d2的值。

(3)試寫出一個能判斷直線與橢圓的位置關系的充要條件,并證明。

(4)將(3)中得出的結論類比到其它曲線,請同學們給出自己研究的有關結論(不必證明)。

39.已知點為拋物線的焦點,點是準線上的動點,直線交拋物線于兩點,若點的縱坐標為,點為準線與軸的交點.

(Ⅰ)求直線的方程;(Ⅱ)求的面積范圍;

(Ⅲ)設,,求證為定值.

40.已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.

(I)求橢圓的方程;

(II)設橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線垂直于點,線段垂直平分線交于點,求點的軌跡的方程;

(III)設與軸交于點,不同的兩點在上,且滿足求的取值范圍.

41.已知以向量為方向向量的直線過點,拋物線:的頂點關于直線的對稱點在該拋物線的準線上.

(1)求拋物線的方程;

(2)設、是拋物線上的兩個動點,過作平行于軸的直線,直線與直線交于點,若(為坐標原點,、異于點),試求點的軌跡方程。

42.如圖,設拋物線()的準線與軸交于,焦點為;以、為焦點,離心率的橢圓與拋物線在軸上方的一個交點為.

(Ⅰ)當時,求橢圓的方程及其右準線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經過橢圓的右焦點,

與拋物線交于、,如果以線段為直徑作圓,

試判斷點與圓的位置關系,并說明理由;

(Ⅲ)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.

43.設橢圓的`一個頂點與拋物線的焦點重合,分別是橢圓的左、右焦點,且離心率且過橢圓右焦點的直線與橢圓C交于兩點.

(Ⅰ)求橢圓C的方程;

(Ⅱ)是否存在直線,使得.若存在,求出直線的方程;若不存在,說明理由.

(Ⅲ)若AB是橢圓C經過原點O的弦,MNAB,求證:為定值.

44.設是拋物線的焦點,過點M(-1,0)且以為方向向量的直線順次交拋物線于兩點。

(Ⅰ)當時,若與的夾角為,求拋物線的方程;

(Ⅱ)若點滿足,證明為定值,并求此時△的面積

45.已知點,點在軸上,點在軸的正半軸上,點在直線上,且滿足.

(Ⅰ)當點在軸上移動時,求點的軌跡的方程;

(Ⅱ)設、為軌跡上兩點,且0,,求實數,

使,且.

46.已知橢圓的右焦點為F,上頂點為A,P為C上任一點,MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切。

(1)已知橢圓的離心率;

(2)若的最大值為49,求橢圓C的方程.

高中數學的教案篇12

教學目的

1、使學生通過觀察、猜測、實驗等活動,找出簡單事物的排列數與組合數。

2、培養學生初步的觀察、分析、推理能力以及有順序地全面思考問題的意識。

3、引導學生使用數學方法解決實際生活中的問題,學會表達解決問題的大致過程。

4、培養學生的合作意識和人際交往能力。

教學重點:

自主探究,掌握有序排列、巧妙組合的方法,并用所學知識解決實際生活的問題。

教學難點:

怎樣排列可以不重復、不遺漏。

教學準備:

三只小動物的頭像、兩頂小雨傘圖片、上鎖的大門圖片、紙條、實物投影儀等。

教學過程:

一、以故事形式引入新課

師:同學們,今天老師為大家帶來了3只可愛的小動物,你們看它們是誰呀?小刺猬、小鴨和小雞三個好朋友今天準備到企鵝博士家去做客呢,可是剛走了一半路,突然下起雨來,可是三只小動物只有兩把傘,怎么辦呢?

▲當學生在回答以上方法時,教師根據學生的回答把相應的動物頭像帖在傘的下面。

師:大家想的辦法都不錯。的確,三只小動物都和你們一樣試了上面這三種方法,可最后它們卻選擇了第③種方法,你們知道這是為什么嗎?原來呀,當它們開始用前面兩種方法時,可沒走幾步,小刺猬身上的刺就把小鴨和小雞給刺疼了,所以只能選擇第③種方法。

二、用開密碼鎖的方法進行數的排列活動

師:三只小動物到了企鵝博士家的數學城堡,卻發現大門緊閉,門上還掛著一把鎖。想要開鎖就要找到開鎖的密碼。鎖的密碼提示是:請用數字1、2、3擺出所有的兩位數,密碼就是這些數從小到大排列中的第4個。──企鵝博士留。)

師:三只小動物都犯傻了,怎么辦呢?同學們能不能給他們幫幫忙?

(生略)

師:那么我們就先每人拿出數字卡片,自己擺一擺,邊擺邊記,完成后,再小組內交流匯總,組長把整個小組擺出的數全寫出來,當然重復的數字不用再寫,然后全組同學一起把這些兩位數從小到大排列起來,找到密碼。

▲學生先自己擺、記,然后小組匯總、排列、交流,教師進行巡視并作適當指導。

師:你們找到密碼了嗎?是多少?你們是怎么找到的呢?

▲請幾個小組的學生匯報找密碼的過程。(略)

師:那么剛才你們擺兩位數時,你擺出了幾個呢?請用手勢表示一下。

▲學生舉手后,問沒擺全的學生是怎么擺的,問全擺出的學生又是怎么擺的,學生出現的情況可能有:有把1、2組成12,然后再交換位置變成21;1、3組成13,交換位置后是31;2、3組成23,交換位置后是32。或者是隨便擺一個看一個的。或者是這樣擺12、13、23、21、31、32等。對這些擺法可讓學生去比較一下,得出這兩種方法都是可行的。

師:同學們都擺得很好,都動了腦筋,要想擺得快又不漏掉,我們應該選擇一定的順序去擺。

三、模擬小動物之間的握手來解決組合問題。

師:通過大家的幫忙,企鵝博士家的密碼鎖被打開了,歡迎各位小動物來闖關。

第一關:握握手

小明、小紅、小華三個小朋友,如果每兩人握一次手,三人一共握幾次手。

▲學生猜好后,教師指出可以以四人小組為單位,三人模擬小動物握手,一人數握手的次數,找出答案。最后通過模擬得出:3人一共握了3次手。

師:排數時用了3個數字,握手時是3個學生,都是“3”,為什么出現的結果卻不一樣呢?

第二關:購買大比拼

如果要買一本5角的練習本,你有幾種不同的付法呢?

先自己獨立思考,然后在小組中交流一下,組長負責收集不同的方法,記錄在表格中。

四、通過不同層次的練習,使知識得到鞏固。

師:同學們說得都非常好。今天,我們不僅幫3只小動物解決了不少的問題,還學到了許多的數學知識,大家高興嗎?

師:那現在我們就帶著這份興奮的心情,來做幾道題吧!

1、問有幾種不同的穿法?

2、乒乓球大賽

小明、小紅、小華、小麗想參加學校的乒乓球雙打比賽,你認為他們有多少種不同的組合方式呢?

高中數學的教案篇13

教學準備

教學目標

1·掌握平面向量的數量積及其幾何意義;

2·掌握平面向量數量積的重要性質及運算律;

3·了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;

4·掌握向量垂直的條件·

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學工具

投影儀

教學過程

一、復習引入:

1·向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ

五,課堂小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

六、課后作業

P107習題2·4A組2、7題

課后小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的.主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

課后習題

作業

P107習題2·4A組2、7題

板書

高中數學的教案篇14

教學目標:

掌握二倍角的正弦、余弦、正切公式,能用上述公式進行簡單的求值、化簡、恒等證明;引導學生發現數學規律,讓學生體會化歸這一基本數學思想在發現中所起的作用,培養學生的創新意識.

教學重點:

二倍角公式的推導及簡單應用.

教學難點:

理解倍角公式,用單角的三角函數表示二倍角的三角函數.

教學過程:

Ⅰ.課題導入

前一段時間,我們共同探討了和角公式、差角公式,今天,我們繼續探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學們試推.

先回憶和角公式

sin(α+β)=sinαcosβ+cosαsinβ

當α=β時,sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

當α=β時cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

當α=β時,tan2α=2tanα1-tan2α

Ⅱ.講授新課

同學們推證所得結果是否與此結果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

同學們是否也考慮到了呢?

另外運用這些公式要注意如下幾點:

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時才成立,否則不成立(因為當α=π2 +kπ,k∈Z時,tanα的值不存在;當α=π4 +kπ2 ,k∈Z時tan2α的值不存在).

當α=π2 +kπ(k∈Z)時,雖然tanα的值不存在,但tan2α的值是存在的,這時求tan2α的值可利用誘導公式:

即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情況下,sin2α≠2sinα

例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當且僅當α=kπ(k∈Z)時,sin2α=2sinα=0成立].

同樣在一般情況下cos2α≠2cosαtan2α≠2tanα

(3)倍角公式不僅可運用于將2α作為α的2倍的情況,還可以運用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.

高中數學的教案篇15

一、說教材

等差數列為人教版必修5第二章第二節的內容。數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的性質與應用等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。

二、說學情

對于我校的高中學生,知識經驗比較貧乏,雖然他們的智力發展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。本節課我采用啟發式、討論式以及講練結合的教學方法,通過問題激發學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題。

三、說教學目標

【知識與技能】能夠準確的說出等差數列的特點;能夠推導出等差數列的通項公式,并可以利用等差數列解決些簡單的實際問題。

【過程與方法】在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,鍛煉知識、方法遷移能力;通過階梯性練習,提高分析問題和解決問題的能力。

【情感態度價值觀】通過對等差數列的研究,激發主動探索、勇于發現的求知精神;養成細心觀察、認真分析、善于總結的良好思維習慣。

四、說教學重難點

【重點】等差數列的概念,等差數列的通項公式的推導過程及應用。

【難點】等差數列通項公式的推導,用“數學建模”的思想解決實際問題。

五、說教法與學法

數學教學是師生之間交往活動共同發展的課程,結合本節課的特點,我采取指導自主學習方法,并在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

六、說教學過程

(一)復習導入

類比函數,復習提問數列的函數意義,即數列可看作是定義域為正整數對應的一列函數值,從而數列的通項公式也就是相應函數的解析式。

設計意圖:通過復習,為本節課用函數思想研究數列問題作準備,將課堂設置成為階梯型教學,消除學生的畏難情緒。

(二)新課教學

教師創設具體情境,從具體事例中抽象出數學概念。

1.小明目前會100個單詞,他打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92

2.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25

通過練習1和2引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創設問題情境,激發學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養學生由具體到抽象、由特殊到一般的認知能力。

接下來由學生嘗試總結歸納等差數列的定義:

如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,

這個常數叫做等差數列的公差,通常用字母d來表示。

(三)深化概念

教師請學生深度剖析等差數列的概念,進一步強調

①“從第二項起”滿足條件;

②公差d一定是由后項減前項所得;

③每一項與它的前一項的差必須是同一個常數(強調“同一個常數”);

在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:an+1-an=d(n≥1)

同時為配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。其中第一個數列公差小于0,第二個數列公差大于0,第三個數列公差等于0。由此強調:公差可以是正數、負數,也可以是0。

(四)歸納通項公式

在歸納等差數列通項公式中,我采用討論式的教學方法。由學生研究,分組討論上述四個等差數列的通項公式。通過總結對比找出共同點猜想一般等差數列的通向公式應為怎樣的形式整個過程由學生完成,通過互相討論的方式既培養了學生的協作意識又化解了教學難點。

猜想等差數列的通項公式:an=a1+(n-1)d

此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養學生嚴謹的學習態度,在這里向學生介紹另外一種求數列通項公式的辦法---迭加法:

在迭加法的證明過程中,我采用啟發式教學方法。

利用等差數列概念啟發學生寫出n-1個等式。

對照已歸納出的通項公式啟發學生想出將n-1個等式相加。證出通項公式。

在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想”的教學要求

接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2,

即an=2n-1,以此來鞏固等差數列通項公式的運用。

同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。

(五)應用舉例

這一環節是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。

先讓學生求等差數列的第20項、30項等。向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。

此外還可以聯系實際建模問題,如建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

這道題我采用啟發式和討論式相結合的教學方法。啟發學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型--等差數列。

設置此題的目的:

1.加強同學們對應用題的綜合分析能力;

2.通過數學實際問題引出等差數列問題,激發了學生的興趣;

3.再者通過數學實例展示了“從實際問題出發經抽象概括建立數學模型,最后還原說明實際問題的“數學建模”的數學思想方法。

(六)小結作業

小結:(由學生總結這節課的收獲)

1.等差數列的概念及數學表達式。

強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數。

2.等差數列的通項公式:an=a1+(n-1),會知三求一。

3.用“數學建模”思想方法解決實際問題

作業:現實生活中還有哪些等差數列的實際應用呢?根據實際問題自己編寫兩道等差數列的題目并進行求解。

激發學生學習數學的興趣,以及認識到學習數學的重要性,將數學知識應用于實際問題的解決不僅回顧加深了本堂課的教學內容,開闊學生思維,還鍛煉了學生學以致用、觀察分析問題解決問題的能力。

七、說板書設計

在板書中突出本節重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。

高中數學的教案篇16

高中數學數列知識點

數列的函數理解:

①數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集N_或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。③函數不一定有解析式,同樣數列也并非都有通項公式。

通項公式:數列的第N項an與項的序數n之間的關系可以用一個公式an=f(n)來表示,這個公式就叫做這個數列的通項公式(注:通項公式不)。

數列通項公式的特點:

(1)有些數列的通項公式可以有不同形式,即不。

(2)有些數列沒有通項公式(如:素數由小到大排成一列2,3,5,7,11,...)。

遞推公式:如果數列{an}的第n項與它前一項或幾項的關系可以用一個式子來表示,那么這個公式叫做這個數列的遞推公式。

數列遞推公式特點:

(1)有些數列的遞推公式可以有不同形式,即不。

(2)有些數列沒有遞推公式。

有遞推公式不一定有通項公式。

注:數列中的項必須是數,它可以是實數,也可以是復數。

等差數列通項公式

an=a1+(n-1)d

n=1時a1=S1

n≥2時an=Sn-Sn-1

an=kn+b(k,b為常數)推導過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

等差中項

由三個數a,A,b組成的等差數列可以堪稱最簡單的等差數列。這時,A叫做a與b的等差中項(arithmeticmean)。

有關系:A=(a+b)÷2

前n項和

倒序相加法推導前n項和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

∴Sn=n(a1+an)÷2

等差數列的前n項和等于首末兩項的和與項數乘積的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差數列性質

一、任意兩項am,an的關系為:

an=am+(n-m)d

它可以看作等差數列廣義的通項公式。

二、從等差數列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq

四、對任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數列。

怎么樣提高數學成績

首先想要提升數學成績,成為數學學霸的前提是要對數學有良好的學習興趣。其次要學會課前預習,方便自己能夠更加深入的吃透課堂上的知識點。然后還要學會總結復習,總結自己課堂上的問題,復習課堂上的重要知識點,從而提高自己的數學成績。

提升數學成績還要擁有一個錯題本,和數學資料。認真對待自己的學習工具,多做練習題,找出自己的薄弱環節和自己常犯的題型,記在錯題本上,常練習,常鞏固。在自己的數學資料中摸索出適合自己的解題技巧,反復練習加以運用,一定會提升你的數學成績。

學會聽課,在課堂上勇于提問。數學最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數學課本,為自己打下一個好基礎,這樣才能更有效的提升你的數學成績。學會做課堂筆記,把每節課的重要知識點記下來,以便接下來的復習。

學好數學的方法技巧整理

預習的方法

上課之前一定要抽時間進行預習,有時預習比做作業更重要,因為通過預習我們可以初步掌握課程的大致內容,聽課就能夠把握好重點,針對性比較強,還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業也會更好更快,最終會形成良性循環。

聽懂課的習慣

注意聽教師每節課強調的學習重點,注意聽對定理、公式、法則的引入與推導的方法和過程,注意聽對例題關鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節課最后的小結,這樣,抓住重、難點,沿著知識的發生發展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉變為“會聽”。

不斷練習

不斷練習是指多做數學練習題。希望學好數學,多做練習是必不可少的。做練習的原因有以下三點:第一,熟練和鞏固學到的數學知識;二,引導同學靈活運用所學知識點以及獨立思考獨立做題的水平;第三,融會貫通。通過做題將所學的所有知識點結合起來,加深同學對數學體系化的理解。

高中數學的教案篇17

教學目標:

①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,

∵5.1<5.9 ∴loga5.1

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

高中數學的教案篇18

課題:

等比數列的概念

教學目標

1、通過教學使學生理解等比數列的概念,推導并掌握通項公式、

2、使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力、

3、培養學生勤于思考,實事求是的精神,及嚴謹的科學態度、

教學重點,難點

重點、難點是等比數列的定義的歸納及通項公式的推導、

教學用具

投影儀,多媒體軟件,電腦、

教學方法

討論、談話法、

教學過程

一、提出問題

給出以下幾組數列,將它們分類,說出分類標準、(幻燈片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列)、

二、講解新課

請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數

這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列、(這里播放變形蟲分裂的多媒體軟件的第一步)

等比數列(板書)

1、等比數列的定義(板書)

根據等比數列與等差數列的名字的區別與聯系,嘗試給等比數列下定義、學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的教師寫出等比數列的定義,標注出重點詞語、

請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列、學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例、而后請學生概括這類數列的一般形式,學生可能說形如的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當時,數列既是等差又是等比數列,當時,它只是等差數列,而不是等比數列、教師追問理由,引出對等比數列的認識:

2、對定義的認識(板書)

(1)等比數列的首項不為0;

(2)等比數列的每一項都不為0,即

問題:一個數列各項均不為0是這個數列為等比數列的什么條件?

(3)公比不為0、

用數學式子表示等比數列的定義、

是等比數列

①、在這個式子的寫法上可能會有一些爭議,如寫成

,可讓學生研究行不行,好不好;接下來再問,能否改寫為

是等比數列?為什么不能?式子給出了數列第項與第

項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、

3、等比數列的通項公式(板書)

問題:用和表示第項

①不完全歸納法

②疊乘法,…,,這個式子相乘得,所以(板書)

(1)等比數列的通項公式得出通項公式后,讓學生思考如何認識通項公式、(板書)

(2)對公式的認識

由學生來說,最后歸結:

①函數觀點;

②方程思想(因在等差數列中已有認識,此處再復習鞏固而已)、

這里強調方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)

如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究、同學可以試著編幾道題。

三、小結

1、本節課研究了等比數列的概念,得到了通項公式;

2、注意在研究內容與方法上要與等差數列相類比;

3、用方程的思想認識通項公式,并加以應用。

探究活動

將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0、01毫米。

參考答案:

30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(對數算也行)。

101098 主站蜘蛛池模板: 山西省| 鹤峰县| 新源县| 吉林市| 牡丹江市| 广西| 成武县| 察隅县| 洛宁县| 香格里拉县| 望都县| 康马县| 玉门市| 嘉峪关市| 霍州市| 洪洞县| 宁晋县| 万荣县| 丰镇市| 阜平县| 潞西市| 四会市| 九江市| 桦川县| 个旧市| 久治县| 五华县| 新昌县| 云林县| 文登市| 阳原县| 耒阳市| 霍城县| 内黄县| 大方县| 靖边县| 汽车| 临高县| 哈密市| 通道| 西和县|