教育巴巴 > 高中教案 > 數(shù)學教案 >

高中數(shù)學電子版教案2025

時間: 新華 數(shù)學教案

教案可以幫助教師了解學生的學習情況和需求,以便更好地指導教師進行教學,從而提高教學效果和學生的學習效果。高中數(shù)學電子版教案2025怎么才能寫好?這里分享一些高中數(shù)學電子版教案2025,方便大家學習。

高中數(shù)學電子版教案2025篇1

教學目標:

1、在新學期能夠以積極的學習態(tài)度投入到學習中去,并用高昂的興趣參與學習。

2、熟悉新學期音樂課的要求,并能夠有意識的遵守,以良好的學習習慣規(guī)范自己在課堂中的表現(xiàn)。

教學重點:

養(yǎng)成良好的學習習慣

教學過程:

一.師生互相問好,拉近彼此的距離。

二.師生共同演繹節(jié)目,學生表演,老師表演,增進彼此感情,與孩子打成一片。

三.講述新學期音樂課要求:

1、按時按順序進入教室,不遲到,不早退。

2、進入教室不得高聲喧嘩打鬧,保持安靜狀態(tài)。

3、認真保持教室衛(wèi)生,不亂扔果皮紙屑,不隨地吐痰。

4、課堂上發(fā)言積極有序,有禮有節(jié),爭做文明小學生。

5、做到愛護公共物品,輕拿輕放,損壞照價賠償。

6、上課保持良好的狀態(tài),以積極的態(tài)度認真學習。

四、習慣養(yǎng)成訓練,聽音樂做出相關要求:

1、起立、坐下

2、安靜

3、師生問好

4、請坐好

5、同桌面對

五、分組選撥,并對小組長提出要求

1、四人一小組

2、講述課堂要求,小組合作學習,評價真實客觀,學會欣賞別人;正當優(yōu)秀小組,小組團結合作,富有創(chuàng)新;組長根據(jù)組員的表現(xiàn),從紀律、學習習慣、上課表現(xiàn)上進行評價計分,獲得3分就可獲得一張綠卡。

小結:

希望第一節(jié)課能讓師生互相留下印象,更好的進行今后的音樂教學,把音樂課上的更加的有聲有色。

高中數(shù)學電子版教案2025篇2

教學目標:①掌握對數(shù)函數(shù)的性質。

②應用對數(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復合函數(shù)的定義域、值 域及單調性。

③ 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數(shù)函數(shù)的性質的應用。

教學過程設計:

⒈復習提問:對數(shù)函數(shù)的概念及性質。

⒉開始正課

1 比較數(shù)的大小

例 1 比較下列各組數(shù)的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?

生:這兩個對數(shù)底相等。

師:那么對于兩個底相等的對數(shù)如何比大小?

生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數(shù)函數(shù)的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9

Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),∵5.1<5.9 ∴l(xiāng)oga5.1

師:請同學們觀察一下⑵中這三個對數(shù)有何特征?

生:這三個對數(shù)底、真數(shù)都不相等。

師:那么對于這三個對數(shù)如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數(shù)值的大小常用方法:①構造對數(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調性比大小,②借用“中間量”間接比大小,③利用對數(shù)函數(shù)圖象的位置關系來比大小。

2 函數(shù)的定義域, 值 域及單調性。

例 2 ⑴求函數(shù)y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于零,如果函數(shù)中同時出現(xiàn)以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。

板書:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數(shù)大于零,

再根據(jù)對數(shù)函數(shù)的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數(shù)的值域和單調區(qū)間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數(shù)的的值域和單調區(qū)間要用及復合函數(shù)的思想方法。

下面請同學們來解⑴。

生:此函數(shù)可看作是由y= log0.5u, u= x- x2復合而成。

板書:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數(shù)y=log0.5(x- x2)的單調遞減區(qū)間(0,0.5],單調遞 增區(qū)間[0.5,1)

注:研究任何函數(shù)的性質時,都應該首先保證這個函數(shù)有意義,否則函數(shù)都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區(qū)別?

生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數(shù)函數(shù)的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業(yè)

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))

⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)

①求它的單調區(qū)間;②當0

⑶已知函數(shù)y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調性。

⑷已知函數(shù)y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當x為何值時,函數(shù)值大于1;③討論它的單調性。

5.課堂教學設計說明

這節(jié)課是安排為習題課,主要利用對數(shù)函數(shù)的性質解決一些問題,整個一堂課分兩個部分:一 .比較數(shù)的大小,想通過這一部分的練習,培養(yǎng)同學們構造函數(shù)的思想和分類討論、數(shù)形結合的思想。二.函數(shù)的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數(shù)的定義域。因為學生在求函數(shù)的值域和單調區(qū)間時,往往不考慮函數(shù)的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

高中數(shù)學電子版教案2025篇3

教學內容:簡單的排列和組合

教學目標:

1.知識能力目標:

①通過觀察、猜測、比較、實驗等活動,找出最簡單的事物的排列數(shù)和組合數(shù)。

②初步培養(yǎng)有序地全面地思考問題的能力。

③培養(yǎng)初步的觀察、分析、及推理能力。

2.情感態(tài)度目標:

①感受數(shù)學與生活的密切聯(lián)系,激發(fā)學習數(shù)學、探索數(shù)學的濃厚興趣。

②初步培養(yǎng)有順序地、全面地思考問題的意識。

③使學生在數(shù)學活動中養(yǎng)成與人合作的良好習慣。

教學重點:

經歷探索簡單事物排列與組合規(guī)律的過程。

教學難點:

初步理解簡單事物排列與組合的不同。

教學準備:

多媒體課件、數(shù)字卡片、1角、2角、5角的人民幣。

教學過程:

一、創(chuàng)設情境,引發(fā)探究

師:今天老師帶你們去一個很有趣的地方,哪呢?我們今天要到“數(shù)學廣角”里去走一走、看一看。

二、操作探究,學習新知。

(一)組合問題

l、看一看,說一說

師:今天老師給大家?guī)砹藥准恋囊路銈儊硖暨x吧。(課件出示主題圖)

師引導思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學生說一說)

2、想一想,擺一擺

(l)引導討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復呢?

①學生小組討論交流,老師參與小組討論。

②學生匯報

(2)引導操作:小組同學互相合作,把你們設計的穿法有序的貼在紙板上。(要求:小組長拿出學具衣服圖片、紙板。)

①學生小組合作操作擺,教師巡視參與小組活動。

②學生展示作品,介紹搭配方案。

③生生互相評價。

(3)師引導觀察:

第一種方案(按上裝搭配下裝)有幾種穿法?(4種)

第二種方案(按下裝搭配上裝)有幾種穿法?(4種)

師小結:不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復、不遺漏的把所有的方法找出來。在今后的學習和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。、操作探究,學習新知。

(二)排列問題

1、初步感知排列

(1)師:我們穿上漂亮的衣服,來到了數(shù)學廣角,可是這有一扇密碼門,(出示課件:密碼門)我們只要說對密碼,就可以到數(shù)學廣角游玩了。看小精靈給了我們提示(點小精靈)你們猜密碼是什么?

(2)學生猜密碼(情景預設:有的學生說是12,有的學生說是21。)

(3)試密碼,打開密碼門,進入數(shù)學廣角樂園。

2、合作探究排列

(1)師問:數(shù)學廣角樂園美不美呀?(學生回答)它雖然很美,可處處充滿著挑戰(zhàn),你們愿意接受嗎?(學生回答)那么我們先到數(shù)學樂園里去看一看吧!(點數(shù)學樂園)

(2)師:同學們,我們到了數(shù)學樂園里看到了什么呀?(回答)現(xiàn)在我們每個人都當一個小魔術師看誰的本領大?誰能把1、2、3這三個數(shù)字變成兩位數(shù),看誰變得最多?

(3)學生活動,師巡視指導

(4)學生匯報擺法,師板書。。

方法一:每次拿出兩張數(shù)字卡片能擺出不同的兩位數(shù);

方法二:固定十位上的數(shù)字,交換個位數(shù)字得到不同的.兩位數(shù);

方法三:固定個位上的數(shù)字,交換十位數(shù)字得到不同的兩位

(5)小結。

三、課堂實踐,鞏固新知

1、握手游戲:

師:同學們真棒!都能把數(shù)字1、2、3組成不同的兩位數(shù),而且不重復、不遺漏。下面老師帶大家到運動樂園去看一看。(出示課件)看小朋友們在干什么?(生回答)

師:看到他們握手,老師有一個問題需要大家?guī)椭鉀Q一下。

(1)出示問題

(2)小組活動:握手

(3)抽生上臺表演

(4)小結。

2、乒乓球比賽

三個人進行乒乓球比賽要舉行幾場?

(1)小組討論

(2)學生匯報

(3)小結

3、生活樂園

看來數(shù)學廣角處處充滿挑戰(zhàn)一點不假,你們愿不愿意接受新的挑戰(zhàn)?(生)那我們一起到生活樂園去看一看吧!出示《生活樂園》課件。

(1)看課件

(2)學生活動

(3)學生匯報,師相機演示課件。

四、全課總結

今天我們到數(shù)學樂園玩的開不開心?看到了什么?你有什么收獲?

高中數(shù)學電子版教案2025篇4

在前一段我講了30度、45度、60度特殊角的三角函數(shù)值,它是北師大版九年級數(shù)學下冊的一節(jié)課,在前一節(jié)剛講過正弦、余弦、正切三角函數(shù)的定義和求法。現(xiàn)把我對本節(jié)課的做法和想法與大家交流一下,希望能得到同行和專家的指點,以期取得更大的進步。

一、說教學目標

1、經歷探索30°、45°、60°角的三角函數(shù)值的過程,能夠進行有關的推理。進一步體會三角函數(shù)的意義;能夠進行30°、45°、60°角的三角函數(shù)值的計算;能夠根據(jù)30°、45°、60°的三角函數(shù)值說明相應的銳角的大小。

2、發(fā)展學生觀察、分析、發(fā)現(xiàn)的能力;培養(yǎng)學生把實際問題轉化為數(shù)學問題的能力。

3、積極參與數(shù)學活動,對數(shù)學產生好奇心。培養(yǎng)學生獨立思考問題的習慣。

二、說教學重點

教學重點:探索特殊銳角三角函數(shù)值的過程,進行這些三角函數(shù)值的計算并會比較不同銳角三角函數(shù)值大小

在引入時我采用創(chuàng)設情境法,“為了測量一棵大樹的高度,準備了如下測量工具:(1)含30、60度角的直角三角尺(2)皮尺。請你設計一個方案,來測量一棵大樹的高度。這樣會增強學生的學習欲望,使學生對本節(jié)內容更感興趣。

三、說教學設計:

1、讓學生自主研習,獨立探究。

(1)觀察一副三角尺,其中有幾個銳角?他們分別等于多少度?

(2)sin30度等于多少呢?你是怎樣得到的?cos30度呢,tan30度呢?

2、讓學生合作學習、生生互動

(1)請同學們完成下表:30°、45°、60°角的三角函數(shù)值(表格略)

(2)觀察表格中函數(shù)值的特點。先看第一列30°、45°、60°角的正弦值,你能發(fā)現(xiàn)什么規(guī)律呢?第二列、第三列呢?

(3)同桌之間可互相檢查一下對30°、45°、60°角的三角函數(shù)值的記憶情況。

3、精講細評,師生合作(先由學生獨立完成)

(1)計算:sin30°+cos45°;sin260°+cos260°—tan45°。

(2)鐘表上的鐘擺長度為25Cm,當鐘擺向兩邊擺動時,擺角恰好為60°,且兩邊的擺動角度相同,求它擺至最高位置時與其擺至最低位置時的高度之差。(結果精確到0。1Cm)

分析:引導學生自己根據(jù)題意畫出示意圖,培養(yǎng)學生把實際問題轉化為數(shù)學問題的能力

4、延伸遷移,形成技能

(1)計算:sin60°—tan45°;cos60°+tan60°;

(2)某商場有一自動扶梯,其傾斜角為30°。高為7m,扶梯的長度是多少?

自主小結:

講課后我讓學生自主小結本節(jié)收獲,并給他們提出困惑的時間和機會

在本節(jié)課中我感覺學生整體來說收獲不小,有百分之八十的學生都會進行計算,只是對這些三角函數(shù)值的記憶還有欠缺,課下還需時間加以鞏固。課堂中學生積極性也很高,能體會到數(shù)學在生活中的應用廣泛,學習數(shù)學對解決實際生活問題的幫助,體會到學習數(shù)學的重要性。

高中數(shù)學電子版教案2025篇5

一、教材分析(說教材):

1.教材所處的地位和作用:

本節(jié)內容在全書和章節(jié)中的作用是:《》是中數(shù)學教材第冊第章第節(jié)內容。在此之前學生已學習了基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內容是在中,占據(jù)的地位。以及為其他學科和今后的學習打下基礎。

2.教育教學目標:

根據(jù)上述教材分析,考慮到學生已有的認知結構心理特征,制定如下教學目標:

(1)知識目標:

(2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過的教學引導學生從現(xiàn)實的生活經歷與體驗出發(fā),激發(fā)學生學習興趣。

3.重點,難點以及確定依據(jù):

下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談:

二、教學策略(說教法)

1.教學手段:

如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法。基于本節(jié)課的特點:應著重采用的教學方法。

2.教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

3.學情分析:(說學法)

(1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散

(2)知識障礙上:知識掌握上,學生原有的知識,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙,知識學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

(3)動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發(fā)來自學生主體的最有力的動力

最后我來具體談談這一堂課的教學過程:

4.教學程序及設想:

(1)由引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

(2)由實例得出本課新的知識點

(3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。

(4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

(5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識盡快化為學生的素質,數(shù)學思想方法的小結,可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質目標。

(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。

(7)板書

(8)布置作業(yè)。

針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

教學程序:

(一)課堂結構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分

高中數(shù)學集合教學反思

集合這章內容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內容很廣,學生學習本章內容時,不僅要理解本章的概念,還要理解與本章內容相關聯(lián)的其他內容,這些內容有初中學習過的內容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質:確定性、互異性、無序性。集合的關系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質進行分析,反復訓練,讓學生通過實例體會這三個性質。

第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結合思想,集合間的關系和運算,以數(shù)形結合思想為指導,借助圖形思考,可以使各集合間的關系直觀明了,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。

第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉換,可以幫助學生提高分析問題,解決問題的能力。

第四,集合問題涉及到的其他內容,遇到了講透,不拓展。

高中數(shù)學電子版教案2025篇6

教學目標

1、明確等差數(shù)列的定義。

2、掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

3、培養(yǎng)學生觀察、歸納能力。

教學重點

1、等差數(shù)列的概念;

2、等差數(shù)列的通項公式

教學難點

等差數(shù)列“等差”特點的理解、把握和應用

教具準備

投影片1張

教學過程

(I)復習回顧

師:上兩節(jié)課我們共同學習了數(shù)列的定義及給出數(shù)列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數(shù)列有什么共同的特點?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數(shù)列共同特點。

對于數(shù)列①(1≤n≤6);(2≤n≤6)

對于數(shù)列②-2n(n≥1)(n≥2)

對于數(shù)列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

一、定義:

等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2。

二、等差數(shù)列的通項公式

師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關系而得。若一等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

如數(shù)列①(1≤n≤6)

數(shù)列②:(n≥1)

數(shù)列③:(n≥1)

由上述關系還可得:即:則:=如:

三、例題講解

例1:(1)求等差數(shù)列8,5,2…的第20項

(2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數(shù)列通項公式為:由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結

師:本節(jié)主要內容為:

①等差數(shù)列定義。

即(n≥2)

②等差數(shù)列通項公式(n≥1)

推導出公式:

(V)課后作業(yè)

一、課本P118習題3.21,2

二、1、預習內容:課本P116例2P117例4

2、預習提綱:

①如何應用等差數(shù)列的定義及通項公式解決一些相關問題?

②等差數(shù)列有哪些性質?

高中數(shù)學電子版教案2025篇7

一:說教材

平面向量的數(shù)量積是兩向量之間的乘法,而平面向量的坐標表示把向量之間的運算轉化為數(shù)之間的運算。本節(jié)內容是在平面向量的坐標表示以及平面向量的數(shù)量積及其運算律的基礎上,介紹了平面向量數(shù)量積的坐標表示,平面兩點間的距離公式,和向量垂直的坐標表示的充要條件。為解決直線垂直問題,三角形邊角的有關問題提供了很好的辦法。本節(jié)內容也是全章重要內容之一。

二:說學習目標和要求

通過本節(jié)的學習,要讓學生掌握

(1):平面向量數(shù)量積的坐標表示。

(2):平面兩點間的距離公式。

(3):向量垂直的坐標表示的充要條件。

以及它們的一些簡單應用,以上三點也是本節(jié)課的重點,本節(jié)課的難點是向量垂直的坐標表示的充要條件以及它的靈活應用。

三:說教法

在教學過程中,我主要采用了以下幾種教學方法:

(1)啟發(fā)式教學法

因為本節(jié)課重點的坐標表示公式的推導相對比較容易,所以這節(jié)課我準備讓學生自行推導出兩個向量數(shù)量積的坐標表示公式,然后引導學生發(fā)現(xiàn)幾個重要的結論:如模的計算公式,平面兩點間的距離公式,向量垂直的坐標表示的充要條件。

(2)講解式教學法

主要是講清概念,解除學生在概念理解上的疑惑感;例題講解時,演示解題過程!

主要輔助教學的手段(powerpoint)

(3)討論式教學法

主要是通過學生之間的相互交流來加深對較難問題的理解,提高學生的自學能力和發(fā)現(xiàn)、分析、解決問題以及創(chuàng)新能力。

四:說學法

學生是課堂的主體,一切教學活動都要圍繞學生展開,借以誘發(fā)學生的學習興趣,增強課堂上和學生的交流,從而達到及時發(fā)現(xiàn)問題,解決問題的目的。通過精講多練,充分調動學生自主學習的積極性。如讓學生自己動手推導兩個向量數(shù)量積的坐標公式,引導學生推導4個重要的結論!并在具體的問題中,讓學生建立方程的思想,更好的解決問題!

五:說教學過程

這節(jié)課我準備這樣進行:

首先提出問題:要算出兩個非零向量的數(shù)量積,我們需要知道哪些量?

繼續(xù)提出問題:假如知道兩個非零向量的坐標,是不是可以用這兩個向量的坐標來表示這兩個向量的數(shù)量積呢?

引導學生自己推導平面向量數(shù)量積的坐標表示公式,在此公式基礎上還可以引導學生得到以下幾個重要結論:

(1) 模的計算公式

(2)平面兩點間的距離公式。

(3)兩向量夾角的余弦的坐標表示

(4)兩個向量垂直的標表示的充要條件

第二部分是例題講解,通過例題講解,使學生更加熟悉公式并會加以應用。

例題1是書上122頁例1,此題是直接用平面向量數(shù)量積的坐標公式的題,目的是讓學生熟悉這個公式,并在此題基礎上,求這兩個向量的夾角?目的是讓學生熟悉兩向量夾角的余弦的坐標表示公式例題2是直接證明直線垂直的題,雖然比較簡單,但體現(xiàn)了一種重要的證明方法,這種方法要讓學生掌握,其實這一例題也是兩個向量垂直坐標表示的充要條件的一個應用:即兩個向量的數(shù)量積是否為零是判斷相應的兩條直線是否垂直的重要方法之一。

例題3是在例2的基礎上稍微作了一下改變,目的是讓學生會應用公式來解決問題,并讓學生在這要有建立方程的思想。

再配以練習,讓學生能熟練的應用公式,掌握今天所學內容。

高中數(shù)學電子版教案2025篇8

2。2。1等差數(shù)列學案

一、預習問題:

1、等差數(shù)列的定義:一般地,如果一個數(shù)列從起,每一項與它的前一項的差等于同一個,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的,通常用字母表示。

2、等差中項:若三個數(shù)組成等差數(shù)列,那么A叫做與的,

即或。

3、等差數(shù)列的單調性:等差數(shù)列的公差時,數(shù)列為遞增數(shù)列;時,數(shù)列為遞減數(shù)列;時,數(shù)列為常數(shù)列;等差數(shù)列不可能是。

4、等差數(shù)列的通項公式:。

5、判斷正誤:

①1,2,3,4,5是等差數(shù)列;()

②1,1,2,3,4,5是等差數(shù)列;()

③數(shù)列6,4,2,0是公差為2的等差數(shù)列;()

④數(shù)列是公差為的等差數(shù)列;()

⑤數(shù)列是等差數(shù)列;()

⑥若,則成等差數(shù)列;()

⑦若,則數(shù)列成等差數(shù)列;()

⑧等差數(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列;()

⑨等差數(shù)列的公差是該數(shù)列中任何相鄰兩項的差。()

6、思考:如何證明一個數(shù)列是等差數(shù)列。

二、實戰(zhàn)操作:

例1、(1)求等差數(shù)列8,5,2,的第20項。

(2)是不是等差數(shù)列中的項?如果是,是第幾項?

(3)已知數(shù)列的公差則

例2、已知數(shù)列的通項公式為,其中為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?

例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為求這5個數(shù)。

高中數(shù)學電子版教案2025篇9

教學目標:

(1)了解坐標法和解析幾何的意義,了解解析幾何的基本問題.

(2)進一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內容的教學,培養(yǎng)學生分析問題和轉化的能力.

教學重點、難點:求曲線的方程.

教學用具:計算機.

教學方法:啟發(fā)引導法,討論法.

教學過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學生思考并回答.教師強調.

2.坐標法和解析幾何的意義、基本問題.

對于一個幾何問題,在建立坐標系的基礎上,用坐標表示點;用方程表示曲線,通過研究方程的性質間接地來研究曲線的性質,這一研究幾何問題的方法稱為坐標法,這門科學稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質.

事實上,在前邊所學的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實例分析】

例1:設 、 兩點的坐標是 、(3,7),求線段 的垂直平分線 的方程.

首先由學生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

解法一:易求線段 的中點坐標為(1,3),

由斜率關系可求得l的斜率為

于是有

即l的方程為

分析、引導:上述問題是我們早就學過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

(通過教師引導,是學生意識到這是以前沒有解決的問題,應該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點的坐標都是這個方程的解.

設 是線段 的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點 的坐標 是方程 的解.

(2)以這個方程的解為坐標的點都是曲線上的點.

設點 的坐標 是方程①的任意一解,則

到 、 的距離分別為

所以 ,即點 在直線 上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標都是這個方程的解中,設 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標,這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設 是線段 的垂直平分線上任意一點,也就是點 屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應的思想.因此是個好方法.

讓我們用這個方法試解如下問題:

例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

分析:這是一個純粹的幾何問題,連坐標系都沒有.所以首先要建立坐標系,顯然用已知中兩條互相垂直的直線作坐標軸,建立直角坐標系.然后仿照例1中的解法進行求解.

求解過程略.

【概括總結】通過學生討論,師生共同總結:

分析上面兩個例題的求解過程,我們總結一下求解曲線方程的大體步驟:

首先應有坐標系;其次設曲線上任意一點;然后寫出表示曲線的點集;再代入坐標;最后整理出方程,并證明或修正.說得更準確一點就是:

(1)建立適當?shù)淖鴺讼担糜行驅崝?shù)對例如 表示曲線上任意一點 的坐標;

(2)寫出適合條件 的點 的集合

;

(3)用坐標表示條件 ,列出方程 ;

(4)化方程 為最簡形式;

(5)證明以化簡后的方程的解為坐標的點都是曲線上的點.

一般情況下,求解過程已表明曲線上的點的坐標都是方程的解;如果求解過程中的轉化都是等價的,那么逆推回去就說明以方程的解為坐標的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個步驟可簡記為:建系設點;寫出集合;列方程;化簡;修正.

下面再看一個問題:

例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關系.

解:設點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

由距離公式,點 適合的條件可表示為

將①式 移項后再兩邊平方,得

化簡得

由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應為 ,它是關于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

【練習鞏固】

題目:在正三角形 內有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

分析、略解:首先應建立坐標系,以正三角形一邊所在的直線為一個坐標軸,這條邊的垂直平分線為另一個軸,建立直角坐標系比較簡單,如圖3所示.設 、 的坐標為 、 ,則 的坐標為 , 的坐標為 .

根據(jù)條件 ,代入坐標可得

化簡得

由于題目中要求點 在三角形內,所以 ,在結合①式可進一步求出 、 的范圍,最后曲線方程可表示為

【小結】師生共同總結:

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應注意什么?

【作業(yè)】課本第72頁練習1,2,3;

高中數(shù)學電子版教案2025篇10

在預習教材中的例4的基礎上,證明:若分別是橢圓的左、右焦點,則橢圓上任一點p()到焦點的距離(焦半徑),同時思考當橢圓的焦點在y軸上時,結論如何?(此題意圖是引導學生去進一步探究,為進一步研究橢圓的性質做準備)

本堂課是在學生學習了橢圓的定義、標準方程的基礎上,根據(jù)方程研究曲線的性質。按照學生的認知特點,改變了教材中原有安排順序,引導學生從觀察課前預習所作的圖形入手,從分析對稱開始,循序漸進進行探究。由教師點撥、指導,學生研究、合作、體驗來完成。

本節(jié)課借助多媒體手段創(chuàng)設問題情境,指導學生研究式學習和體驗式學習(興趣是前提)。例如導入,通過“神州五號”這樣一個人們關注的話題引入,有利于激發(fā)學生的興趣。再如,這節(jié)課是學生第一次利用曲線方程研究曲線性質,為了解決這一難點,在課前設計中改變了教材原有研究順序,讓學生從觀察一個具體橢圓圖形入手,從觀察到對稱性這一宏觀特征開始研究,符合學生的認知特點,調動了學生主動參與教學的積極性,使他們進行自主探究與合作交流,親身體驗幾何性質的形成與論證過程,變靜態(tài)教學為動態(tài)教學。在研究范圍這一性質時,課前設計中,只要學生能根據(jù)不等式知識解出就可以了,但學生采用了多種方法研究,這時教師沒有打斷他的思路,而是引導幫助他研究,鼓勵學生創(chuàng)新,從而也實現(xiàn)了以學生為主,為學生服務。

在離心率這一性質的教學中,充分利用多媒體手段,以輕松愉悅的動畫演示,化解了知識的難點。

但也有不足的地方:在對具體例子的觀察分析中,設計的問題過于具體,可能束縛了學生的思維,還沒有放開。還有就是少講多學方面也是我今后教學中努力的方向。

感悟:新課堂是活動的課堂,討論、合作交流可課堂,德育教育的課堂,應用現(xiàn)代技術的課堂,因此新教育理念、新課改下的新課堂需要教師和學生一起來培育。

高中數(shù)學電子版教案2025篇11

教學目標:

①掌握對數(shù)函數(shù)的性質。

②應用對數(shù)函數(shù)的性質可以解決:對數(shù)的大小比較,求復合函數(shù)的定義域、值 域及單調性。

③ 注重函數(shù)思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數(shù)函數(shù)的性質的應用。

教學過程設計:

⒈復習提問:對數(shù)函數(shù)的概念及性質。

⒉開始正課

1 比較數(shù)的大小

例 1 比較下列各組數(shù)的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數(shù)有何特征?

生:這兩個對數(shù)底相等。

師:那么對于兩個底相等的對數(shù)如何比大小?

生:可構造一個以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數(shù)函數(shù)的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數(shù)y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0

∵5.1<5.9 ∴l(xiāng)oga5.1>loga5.9

Ⅱ)當a>1時,函數(shù)y=logax在(0,+∞)上是增函數(shù),

∵5.1<5.9 ∴l(xiāng)oga5.1

師:請同學們觀察一下⑵中這三個對數(shù)有何特征?

生:這三個對數(shù)底、真數(shù)都不相等。

師:那么對于這三個對數(shù)如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數(shù)值的大小常用方法:①構造對數(shù)函數(shù),直接利用對數(shù)函數(shù) 的單調性比大小,②借用“中間量”間接比大小,③利用對數(shù)函數(shù)圖象的位置關系來比大小。

2 函數(shù)的定義域, 值 域及單調性。

高中數(shù)學電子版教案2025篇12

一、設計思想

本節(jié)課是數(shù)列的起始課,著重研究數(shù)列的概念,明確數(shù)列與函數(shù)的關系,用函數(shù)的思想看待數(shù)列。通過引導學生通過對實例的分析體會數(shù)列的有關概念,并與集合類比,通過類比,學生能認識到數(shù)列的明確性、有序性和可重復性的特點。在體會數(shù)列與集合的區(qū)別中,學生意識到數(shù)列中的每一項與所在位置有關,并通研究數(shù)列的表示法,學生意識到數(shù)列中還有潛在的自變量——序號,從而發(fā)現(xiàn)數(shù)列也是一種特殊的函數(shù),能用函數(shù)的觀點重新看待數(shù)列。

二、教學目標

1.通過自然界和生活中實例,學生意識到有序的數(shù)是存在的,能概況出數(shù)列的概念,并能辨析出數(shù)列和集合的區(qū)別;

2.通過思考數(shù)列的表示,學生意識到可以用表達式簡潔的表達數(shù)列,能分析出數(shù)列的項是與序號相關,需要借助于序號來表示數(shù)列的項;

3.在用表達式表示數(shù)列的過程中,學生發(fā)現(xiàn)項與序號的對應關系,認識到數(shù)列是一種特殊的函數(shù),能用函數(shù)的觀點重新研究數(shù)列;

4.通過對一列數(shù)的觀察,能用聯(lián)系的觀點看待數(shù)列,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力.

5.從現(xiàn)實出發(fā),學生能抽象出現(xiàn)實生活中的數(shù)列

重點:理解數(shù)列的概念,認識數(shù)列是反映自然規(guī)律的基本數(shù)學模型難點:認識數(shù)列是一種特殊的函數(shù),發(fā)現(xiàn)數(shù)列與函數(shù)之間的關系

三、教學過程

活動一:生活中實例,概括出數(shù)列的概念

1.背景引入:

觀察以下情境:

情境1:各年樹木的枝干數(shù):1,1,2,3,5,8,...情境2:某彗星出現(xiàn)的年份:1740,1823,1906,1989,2072,...

情境3:細胞分裂的個數(shù):1,2,4,8,16,...情境4:A同學最近6次考試的名次17,18,5,8,10,8

情境5:奇虎360最近一個周每日的收盤價:

問題1:以上各情境中都有一系列的數(shù),你看了這些數(shù),有什么感受?

或者有什么共同特征?

共同特點:

(1)排成一列,可以表達信息

(2)順序不能交換,否則意義不一樣.

設計思想:通過例子,學生感受到數(shù)列在現(xiàn)實生活中是大量存在的,一列數(shù)的順序是蘊含信息的,從而感受到數(shù)列的有序性。

2.數(shù)列的概念

(1)數(shù)列、項的定義:

通過上述的例子,讓學生思考以上一列數(shù)據(jù)共同的特征,從而歸納出數(shù)列的定義:

按照一定次序排列的一列數(shù)稱為數(shù)列,數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。問題2:能否用準確的語言給我描述一下情境4中的數(shù)列?

設計思想:通過讓學生描述,學生再次體會數(shù)列中除了數(shù)之外,還蘊含著重要的信息:序號。

問題3:這兩個數(shù)都是8,表示的含義是否一樣?

不一樣,第四項,第六項,即每一項結合序號才有意義,所以,描述數(shù)列的項時必須包含位置信息,即序號。

排在第一位的叫首項,排在第二位的叫第二項……排在第n位的數(shù)

問題4:根據(jù)對數(shù)列的理解,你能否舉出數(shù)列的例子?

答:我校高一年級各班的人數(shù)。

問題5:能否抽象出數(shù)列的一般形式?

a1,a2,a3,...,an,...,記為?an?

(2)數(shù)列與集合的區(qū)別

問題6:數(shù)列是集合嗎?

通過與集合的特點進行對比,更清楚的數(shù)列的特點。

讓學生與前一章學習的集合做比較,可以更清楚的了解到數(shù)列的本質性的定義。也符合建構主義的舊知基礎上形成新知的有效學習。

(3)數(shù)列的分類?能不能不講?

活動二:思考數(shù)列的表示——通項公式

3.通項公式的概念

問題7:對于上述情境中的數(shù)列,有沒有更簡潔的表示方式?

學生活動:學生可能會用序號n來表示,問學生為什么用n來表示,引出通項公式的概念

一般地,如果數(shù)列?an?的第n項與序號n之間的關系可以用一個公式來表示.那么這個公式叫做這個數(shù)列的通項公式.

4.通項公式的存在性

問題8:是否任意一個數(shù)列都能寫出通項公式?

寫出通項公式

活動三:用函數(shù)的觀點看待數(shù)列

5.數(shù)列也是函數(shù)

問題9:在數(shù)列?an?中,對于每一個正整數(shù)n(或n??1,2,...,k?),是不是都有一個數(shù)an與之對應?

問題10:數(shù)列是不是函數(shù)?

通過前鋪墊,學生觀察數(shù)列的項與它數(shù)列中的序號之間的對應關系,讓學生理解數(shù)列是函數(shù)。

把序號看作看作自變量,數(shù)列中的項看作隨之變動的量,用函數(shù)的觀點來深化數(shù)列的概念。

6.用函數(shù)的觀點看待數(shù)列

問題11:所以,除了用解析式表示數(shù)列,還有哪些方法?

再從函數(shù)的表示方法過渡到數(shù)列的三種表示方法:列表法,圖象法,通項公式法。學生通過觀察發(fā)現(xiàn)數(shù)列的圖象是一些離散的點。

例2.已知數(shù)列?an?的通項公式,寫出這個數(shù)列的前5項,并作出它的圖象:(?1)nn(1)an?;(2).an?nn?12

問題12:數(shù)列的圖象的特點是什么?

數(shù)列的圖象是一些孤立的點。

通過學生觀察數(shù)列的項與它數(shù)列中的序號之間的對應關系,讓學生理解數(shù)列是以特殊的函數(shù),再從函數(shù)的表示方法過度到數(shù)列的三種表示方法:列表法,圖象法,數(shù)列的通項。學生通過觀察發(fā)現(xiàn)數(shù)列的圖象是一些離散的點。最后通過通項求數(shù)列的項,進而升華到觀察數(shù)列的前幾項寫出數(shù)列的通項。

【課堂小結】

1.數(shù)列的概念;

2.求數(shù)列的通項公式的要領.

高中數(shù)學電子版教案2025篇13

1、教材分析:

集合是現(xiàn)代數(shù)學的基本語言,可以簡潔、準確地表達數(shù)學內容。本節(jié)是讓學生學會用集合的語言來描述對象,章末我們會用集合和對應的語言來描述函數(shù)的概念,可見它是今后數(shù)學學習的基礎,也是培養(yǎng)學生抽象概括能力的重要素材。

2、教材目標:

根據(jù)素質教育的要求和新課改的精神,我確定教學目標如下:

①知識與技能:

(1)了解集合的含義與集合中元素的特征

(2)熟記常用數(shù)集符號

(3)能用列舉、描述法表示具體集合

②過程與方法:讓學生經歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.讓學生通過觀察、歸納、總結的過程,提高抽象概括能力。

③情感態(tài)度與價值觀:使學生感受到學習集合的必要性,增強學習的積極性.

3、教學重點、難點

教學重點:集合的基本概念與表示方法;

教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;說教法

1.學情分析

《集合的含義及表示》這一課時是學生進入高中階段學習、接觸到高中數(shù)學的第一堂課,它直接影響到了學生對高中階段數(shù)學學習的認識;如果我們教學上過于草率,學生很容易對數(shù)學失去學習興趣。再者,這是高中數(shù)學課程的第一章的第一課時,是整個高中數(shù)學的奠基部分,所以我們不僅要正確地傳授知識,更要把握好教學的難度。如果傳授得過于簡單,那么學生容易麻痹大意,對今后的學習埋下隱患;如果講得太深,那么學生會有畏難心理,也會對今后的學習造成影響。

2.方法選擇

在教學中注意啟發(fā)引導,通過預習學案的形式把知識問題化,通過實例引導學生觀察歸納,上課組織學生分組討論,讓他們經歷觀察、猜測、推理、交流、反思的理性思維的基本過程,切實改變學生的學習方法。

說學法

讓學生通過課前結合學案,閱讀教材,自主預習,課上交流、討論、概括,課后復習鞏固三個環(huán)節(jié),更好地完成本節(jié)課的教學目標。值得提出的是:集合作為一種數(shù)學語言,最好的學習方法是使用,所以應該多做轉換練習,

說教學程序

(一)創(chuàng)設情境,揭示課題

軍訓前學校通知:x月x日x點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?

在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合(宣布課題),即是一些研究對象的總體。

通過學生熟悉的實際生活問題引入課題,為概念學習創(chuàng)設情境,拉近數(shù)學與現(xiàn)實的距離,激發(fā)了學生求知欲,調動了學生主動參與的積極性。讓學生在課堂的一開始就感受到數(shù)學就在我們身邊,讓學生學會用數(shù)學的眼光去關注生活。

(二)研探新知,建構概念

讓學生閱讀課本P2內容,讓小組思考討論,代表發(fā)言,師生共同補充答案它們的共同特征:它們都是指定的一組對象。這時我借此引入集合的概念,把一些元素組成的總體叫做集合,簡稱集,通常用大寫字母A,B,C,?表示。把研究的對象稱為元素,通常用小寫拉丁字母a,b,c,?表示;

接下來,我引導學生把集合的涵義進行拓展,期間結合一些師生互動:我們班上的女生能不能構成一個集合,班上身高在1.75米以上的男生能不能構成一個集合,班上高的男生能不能構成一個集合??,通過身邊這些大量例子,讓學生了解集合的概念,并切實感受到學習集合語言的重要性。

對于集合元素的特征:確定性、互異性、無序性。我則在學生了解集合概念基礎上,通過設置三個問題(1)班里個子高的同學能否構成一個集合?(2)在一個給定的集合中能否有相同的元素?(3)班里的全體同學組成一個集合,調整座位后這個集合有沒有變化?調整后的集合和原來的集合是什么關系?讓學生思考:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

這樣設計將知識問題化,問題生活化,激發(fā)學生學習的主動性,引導學生歸納出集合中元素的三大特性,用簡練的語言概括為——確定性、互異性、無序性用兩集合相等的概念。

思考3:(1)設集合A表示“1~20以內的所有質數(shù)”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

(2)對于一個給定的集合A,那么某元素a與集合A有哪幾種可能關系?

(3)如果元素a是集合A中的元素,我們如何用數(shù)學化的語言表達?

(4)如果元素a不是集合A中的元素,我們如何用數(shù)學化的語言表達?用符號∈或?填空:

[設計說明]這幾個問題比較簡單,直接提問同學回答,并師生一起完善答案。通過問題的層層深入,目的是引導學生歸納出元素與集合的關系及表示方法。

反饋練習:

(1)設A為所有亞洲國家組成的集合,則

中國____A,美國____A,

印度____A,英國____A;

對于集合中常用的符號,我做了這樣處理:簡要介紹后,讓學生用兩三分鐘的時間結合符號特點記憶。目的在于給學生一個信號:課堂上能消化的東西要及時記住。

2.集合的表示法:列舉法和描述法

讓學生自習閱讀課本P3——P4的內容5-7分鐘,接著讓同學試著解決如下三個問題

(1)由大于10小于20的所有整數(shù)組成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以內的所有素數(shù)組成的集合;

把集合的元素一一列舉出來,并用花括號“{}”括起來表示的方法叫做列舉法。用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。

通過三個問題不僅檢驗了學生的自學效果,同時也讓學生明白列舉法和描述法兩種方法各自的優(yōu)缺點,更重要的是對集合的列舉法和描述法的規(guī)范表達做進一步強調,最后,我?guī)ьI學生分析了課本P4的例題,對集合的列舉法和描述法的規(guī)范表達做進一

步的強調,讓學生完成書上的習題,并請幾個學生上臺來演練,通過練習達到及時的反饋。

(四)歸納整理,整體認識

1.本節(jié)課我們學習了哪些知識內容?

2.你認為學習集合有什么意義?

3.比較列舉法與描述法的優(yōu)缺點。

(五)布置作業(yè)

作業(yè):習題1.1A組:2、3、4.

作業(yè)的布置是要突出本節(jié)課的重點——集合概念的理解以及集合的表示法,讓學生對數(shù)學符號的適用在課外進行延伸和鞏固。

說板書

在教學中我把黑板分為三部分,把知識要點寫在左側,中間是課本例題演練,右側是實例應用。在左側的知識要點主要列出了集合、元素的概念、元素的特性:確定性,互異性,無序性,和集合的表示法:列舉法和描述法。

以上是我對《集合的含義與表示》這節(jié)教材的認識和對教學過程的設計。對這節(jié)課的設計,我始終在努力貫徹一教師為主導,以學生為主題,以問題為基礎,以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力為指導思想,利用各種教學手段激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。

高中數(shù)學電子版教案2025篇14

一、教學目標

(一)知識與技能

1、進一步熟練掌握求動點軌跡方程的基本方法。

2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。

(二)過程與方法

1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。

2、體會感性到理性、形象到抽象的思維過程。

3、強化類比、聯(lián)想的方法,領會方程、數(shù)形結合等思想。

(三)情感態(tài)度價值觀

1、感受動點軌跡的動態(tài)美、和諧美、對稱美

2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣

二、教學重點與難點

教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡

教學難點:圖形、文字、符號三種語言之間的過渡

三、、教學方法和手段

【教學方法】觀察發(fā)現(xiàn)、啟發(fā)引導、合作探究相結合的教學方法。啟發(fā)引導學生積極思考并對學生的思維進行調控,幫助學生優(yōu)化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。

【教學手段】利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。

【教學模式】重點中學實施素質教育的課堂模式"創(chuàng)設情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展"。

四、教學過程

1、創(chuàng)設情景,引入課題

生活中我們四處可見軌跡曲線的影子

【演示】這是美麗的城市夜景圖

【演示】許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多

【演示】建筑中也有許多美麗的軌跡曲線

設計意圖:讓學生感受數(shù)學就在我們身邊,感受軌跡曲線的動態(tài)美、和諧美、對稱美,激發(fā)學習興趣。

2、激發(fā)情感,引導探索

靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉化為數(shù)學問題就是新教材高二上冊88頁20題,也就是這里的例題1;

例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。

第一步:讓學生借助畫板動手驗證軌跡

第二步:要求學生求出軌跡方程

法一:設,則

由得,

化簡得

法二:設,由得

化簡得

法三:設, 由點到定點的距離等于定長,

根據(jù)圓的定義得;

第三步:復習求軌跡方程的一般步驟

(1)建立適當?shù)淖鴺讼?/p>

(2)設動點的坐標M(x,y)

(3)列出動點相關的約束條件p(M)

(4)將其坐標化并化簡,f(x,y)=0

(5)證明

其中,最關鍵的一步是根據(jù)題意尋求等量關系,并把等量關系坐標化

設計意圖:在這里我借助幾何畫板的動畫功能,先讓學生直觀地、形象地、動態(tài)地感受動點的軌跡是圓,接著要求學生求出軌跡方程,最后師生共同回顧求軌跡方程的一般步驟,達到熟練掌握直譯法、定義法,體會從感性到理性、從形象到抽象的思維過程。

3、主動發(fā)現(xiàn)、主動發(fā)展

由上述例1可知,如果人站在梯子中間,則他會劃了一段優(yōu)美的圓弧飛出去。學生很自然就會想,如果人不是站在中間,而是隨意站,結果會怎樣呢?讓學生動手探究M不是中點時的軌跡。

第一步:利用網絡平臺展示學生得到的軌跡(教師有意識的整合在一起)

設計意圖:借助數(shù)學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發(fā)現(xiàn)疑問,更容易激發(fā)學生學習的熱情,促使他們主動學習。

第二步:分解動作,向學生提出3個問題:

問題1:當M位置不同時,線段BM與MA的大小關系如何?

問題2、體現(xiàn)BM與MA大小關系還有什么常見的形式?

問題3、你能類比例1把這種數(shù)量關系表達出來嗎?

第三步:展示學生歸納、概括出來的數(shù)學問題

1、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

2、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

3、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。(說明是什么軌跡)

第四步:課堂完成學生歸納出來的問題1,問題2和3課后完成

4、合作探究、實現(xiàn)創(chuàng)新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當?shù)闹笇?這里固定A點,運動B點)

學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。

5、布置作業(yè)、實現(xiàn)拓展

1、把上述同學們探究得到的軌跡圖形用文字、符號描述出來,(仿造例1),并求出軌跡方程。

2、已知A(4,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

3、已知A(2,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

4若把上述問題中垂線改為一般的垂線與直線OB相交于點P,請同學們利用畫板驗證點P 的軌跡。

以下是學生課后探究得到的一些軌跡圖形

課后有學生問,如果X軸和Y軸不垂直會有什么結果?定長的線段在上面滑動怎么做出來?

可以說,學生的這些問題我之前并沒有想過,給了我很大的觸動,同時也促使我更進一步去研究幾何畫板,提高自己的能力。在這里,我體會到了教師不再只是一根根蠟燭,更像是一盞盞明燈,在照亮別人的同時也照亮自己。

以下是X軸和Y軸不垂直時的軌跡圖形

五、教學設計說明:

(一)、教材

《平面動點的軌跡》是高二一節(jié)探究課,軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角、平面幾何等基礎知識,其中滲透著運動與變化、方程的思想、數(shù)形結合的思想等,是中學數(shù)學的重要內容,也是歷年高考數(shù)學考查的重點之一。

(二)、校情、學情

校情:我校是一所省一級達標校,省級示范性高中,學校的硬件設施比較完善,每間教室都具備多媒體教學的功能,另外有兩間網絡教室和一個學生電子閱室,并且能隨時上網。

學情:大部分學生家里都有電腦,而且能隨時上網。對學生進行了幾何畫板基本操作的培訓,學生能較快的畫出圓、橢圓、雙曲線、拋物線等基本的圓錐曲線。學生對求軌跡方程的基本方法有了一定的掌握,但是對文字、圖形、符號三種語言之間的轉換還存在很大的差異,在合作交流意識方面,發(fā)展不均衡,有待加強。

(三)學法

觀察、實驗、交流、合作、類比、聯(lián)想、歸納、總結

(四)、教學過程

1、創(chuàng)設情景,引入課題

2、激發(fā)情感,引導探索

由梯子滑落問題抽象、概括出數(shù)學問題

第一步:讓學生借助畫板動手驗證軌跡

第二步:要求學生求出軌跡方程

第三步:復習求軌跡方程的一般步驟

3、主動發(fā)現(xiàn)、主動發(fā)展

探究M不是中點時的軌跡

第一步:利用網絡平臺展示學生得到的軌跡

第二步:分解動作,向學生提出3個問題:

第三步:展示學生歸納、概括出來的數(shù)學問題

4、合作探究、實現(xiàn)創(chuàng)新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當?shù)闹笇?這里固定A點,運動B點)

學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。

5、布置作業(yè)、實現(xiàn)拓展

(五)、教學特色:

借助網絡、多媒體教學平臺,讓學生自己動手實驗,發(fā)現(xiàn)問題并解決問題,同時把學生的學習情況及時的展現(xiàn)出來,做到大家一起學習,一起評價的效果。同時節(jié)省了時間,提高了課堂效率。

整個教學過程,體現(xiàn)了四個統(tǒng)一:既學習書本知識與投身實踐的統(tǒng)一、書本學習與現(xiàn)代信息技術學習的統(tǒng)一、書本知識與資源拓展的統(tǒng)一、課堂學習與課外實踐的統(tǒng)一。

本節(jié)課學生精神飽滿、興趣濃厚、合作積極,與我保持良好的互動,還不時產生一些爭執(zhí),給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。

高中數(shù)學電子版教案2025篇15

排列

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

(3)會分析與數(shù)字有關的排列問題,培養(yǎng)學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數(shù)并運用這個公式去解決有關排列數(shù)的應用問題。

難點是解有關排列的應用題。

教學過程設計

一、 復習引入

上節(jié)課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2.某農場為了考察三個外地優(yōu)良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區(qū)?

找一同學談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據(jù)加法原理,得到不同的取法種數(shù)是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據(jù)乘法原理,得到不同的取法種數(shù)是: 50×40=2000.

第2題說,共有A,B,C三個優(yōu)良品種,而每個品種在甲類型土地上實驗有三個小區(qū),在乙類型的土地上有三個小區(qū)……所以共需3×5=15個實驗小區(qū).

二、 講授新課

學習了兩個基本原理之后,現(xiàn)在我們繼續(xù)學習排列問題,這是我們本節(jié)討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?

由學生設計好方案并回答.

(1)用加法原理設計方案.

首先確定起點站,如果北京是起點站,終點站是上海或廣州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經選了起點站,終點站只能在其余兩個站去選.那么,根據(jù)乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據(jù)以上分析由學生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯(lián)系,即利用不同顏色的旗子發(fā)送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數(shù),也就是紅、黃、綠這三面旗子的所有不同順序的排法總數(shù).

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據(jù)乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數(shù)是:3×2×1=6(種).

根據(jù)學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.

由數(shù)字1,2,3,4可以組成多少個沒有重復數(shù)字的三位數(shù)?寫出這些所有的三位數(shù).

根據(jù)乘法原理,從四個不同的數(shù)字中,每次取出三個排成三位數(shù)的方法共有4×3×2=24(個).

請板演的學生談談怎樣想的?

第一步,先確定百位上的數(shù)字.在1,2,3,4這四個數(shù)字中任取一個,有4種取法.

第二步,確定十位上的數(shù)字.當百位上的數(shù)字確定以后,十位上的數(shù)字只能從余下的三個數(shù)字去取,有3種方法.

第三步,確定個位上的數(shù)字.當百位、十位上的數(shù)字都確定以后,個位上的數(shù)字只能從余下的兩個數(shù)字中去取,有2種方法.

根據(jù)乘法原理,所以共有4×3×2=24種.

下面由教師提問,學生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行. 我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數(shù)字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.

下面由教師提問,學生回答下列問題

(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上海—廣州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數(shù)?

生:“一個排列”不應當是一個數(shù),而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數(shù),不用把所有情況羅列出來,才是一個數(shù).前面提到的第三個問題,實質上也是這樣的.

三、 課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數(shù)碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內,每箱必須并且只能放一張,而且卡片數(shù)碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數(shù)碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業(yè)

課本:P232練習1,2,3,4,5,6,7.

高中數(shù)學電子版教案2025篇16

【教學目標】

1. 知識與技能

(1)理解等差數(shù)列的定義,會應用定義判斷一個數(shù)列是否是等差數(shù)列:

(2)賬務等差數(shù)列的通項公式及其推導過程:

(3)會應用等差數(shù)列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導、應用過程中,培養(yǎng)學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

3.情感、態(tài)度與價值觀

通過教師指導下學生的自主學習、相互交流和探索活動,培養(yǎng)學生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養(yǎng)成細心觀察、認真分析、善于總結的良好習慣。

【教學重點】

①等差數(shù)列的概念;②等差數(shù)列的通項公式

【教學難點】

①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導過程.

【學情分析】

我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數(shù)學學習,大部分學生知識經驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數(shù)學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.

【設計思路】

1.教法

①啟發(fā)引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發(fā)揮其創(chuàng)造性.

②分組討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調動學生的積極性.

③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

2.學法

引導學生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

【教學過程】

一:創(chuàng)設情境,引入新課

1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

2.水庫管理人員為了保證優(yōu)質魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?

3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數(shù)列?

教師:以上三個問題中的數(shù)蘊涵著三列數(shù).

學生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(設置意圖:從實例引入,實質是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學模型.通過分析,由特殊到一般,激發(fā)學生學習探究知識的自主性,培養(yǎng)學生的歸納能力.

二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數(shù)列有什么共同特點?

思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?

思考3你能將上述的文字語言轉換成數(shù)學符號語言嗎?

教師:引導學生思考這三列數(shù)具有的共同特征,然后讓學生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

學生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導歸納出:等差數(shù)列的定義;另外,教師引導學生從數(shù)學符號角度理解等差數(shù)列的定義.

(設計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準確表達.)

三:舉一反三,鞏固定義

1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0 .

(設計意圖:強化學生對等差數(shù)列“等差”特征的理解和應用).

2思考4:設數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

(設計意圖:強化等差數(shù)列的證明定義法)

四:利用定義,導出通項

1.已知等差數(shù)列:8,5,2,…,求第200項?

2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數(shù)列問題的常用方法.

(設計意圖:引導學生觀察、歸納、猜想,培養(yǎng)學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創(chuàng)新的品質,激發(fā)學生的創(chuàng)造意識.鼓勵學生自主解答,培養(yǎng)學生運算能力)

五:應用通項,解決問題

1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?

2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差數(shù)列 3,7,11,…的第4項和第10項

教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式

(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)

六:反饋練習:教材13頁練習1

七:歸納總結:

1.一個定義:

等差數(shù)列的定義及定義表達式

2.一個公式:

等差數(shù)列的通項公式

3.二個應用:

定義和通項公式的應用

教師:讓學生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補充

(設計意圖:引導學生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

【設計反思】

本設計從生活中的數(shù)列模型導入,有助于發(fā)揮學生學習的主動性,增強學生學習數(shù)列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節(jié)課教學采用啟發(fā)方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

高中數(shù)學電子版教案2025篇17

教學分析

本節(jié)課的研究是對初中不等式學習的延續(xù)和拓展,也是實數(shù)理論的進一步發(fā)展.在本節(jié)課的學習過程中,將讓學生回憶實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.

通過本節(jié)課的學習, 讓學生從一系列的具體問題情境中,感受到在現(xiàn)實世界和日常生活中存在著大量的不等關系,并充分認識不等關系的存在與應用.對不等關系的相關素材,用數(shù)學觀點進行觀察、歸納、抽象,完成量與量的比較過程.即能用不等式或不等式組把這些不等關系表示出來.在本節(jié)課的學習過程中還安排了一些簡單的、學生易于處理的問題,其用意在于讓學生注意對數(shù)學知識和方法的應用,同時也能激發(fā)學生的學習興趣,并由衷地產生用數(shù)學工具研究不等關系的愿望.根據(jù)本節(jié)課的教學內容,應用再現(xiàn)、回憶得出實數(shù)的基本理論,并能用實數(shù)的基本理論來比較兩個代數(shù)式的大小.

在本節(jié)教學中,教師可讓學生閱讀書中實例,充分利用數(shù)軸這一簡單的數(shù)形結合工具,直接用實數(shù)與數(shù)軸上 點的一一對應關系,從數(shù)與形兩方面建立實數(shù)的順序關系.要在溫故知新的基礎上提高學生對不等式的認識.

三維目標

1.在學生了解不等式產生的實際背景下,利用數(shù)軸回憶實數(shù)的基本理論,理解實數(shù)的大小關系,理解實數(shù)大小與數(shù)軸上對應點位置間的關系.

2.會用作差法判斷實數(shù)與代數(shù)式的大小,會用配方法判斷二次式的大小和范圍.

3.通過溫故知新,提高學生對不等式的認識,激發(fā)學生的學習興趣,體會數(shù)學的奧秘與數(shù)學的結構美.

重點難點

教學重點:比較實數(shù)與代數(shù)式的大小關系,判斷二次式的大小和范圍.

教學難點:準確比較兩個代數(shù)式的大小.

課時安排

1課時

教學過程

導入新課

思路1.(章頭圖導入)通過多媒體展示衛(wèi)星、飛船和一幅山巒重疊起伏的壯觀畫面,它將學生帶入“橫看成嶺側成峰,遠近高低各不同”的大自然和浩瀚的宇宙中,使學生在具體情境中感受到不等關系在現(xiàn)實世界和日常生活中是大量存在的,由此產生用數(shù)學研究不等關系的強烈愿望,自然地引入新課.

思路2.(情境導入)列舉出學生身體的高矮、身體的輕重、距離學校路程的遠近、百米賽跑的時間、數(shù)學成績的多少等現(xiàn)實生活中學生身邊熟悉的事例,描述出某種客觀事物在數(shù)量上存在的不等關系.這些不等關系怎樣在數(shù)學上表示出來呢?讓學生自由地展開聯(lián)想,教師組織不等關系的相關素材,讓學 生用數(shù)學的觀點進行觀察、歸納,使學生在具體情境中感受到不等關系與相等關系一樣,在現(xiàn)實世界和日常生活中大量存在著.這樣學生會由衷地產生用數(shù)學工具研究不等關系的愿望,從而進入進一步的探究學習,由此引入新課.

推進新課

新知探究

提出問題

?1?回憶初中學過的不等式,讓學生說出“不等關系”與“不等式”的異同.怎樣利用不等式研究及表示不等關系?

?2?在現(xiàn)實世界和日常生活中,既有相等關系,又存在著大量的不等關系.你能舉出一些實際例子嗎?

?3?數(shù)軸上的任意兩 點與對應的兩實數(shù)具有怎樣的關系?

?4?任意兩個實數(shù)具有怎樣的關系?用邏輯用語怎樣表達這個關系?

活動:教師引導學生回憶初中學過的不等式概念,使學生明確“不等關系”與“不等式”的異同.不等關系強調的是關系,可用符號“>”“<”“≠”“≥”“≤”表示,而不等式則是表示兩者的不等關系,可用“a>b”“a

教師與學生一起舉出我們日常生活中不等關系的例子,可讓學生充分合作討論,使學生感受到現(xiàn)實世界中存在著大量的不等關系.在學生了解了一些不等式產生的實際背景的前提下,進一步學習不等式的有關內容.

實例1:某天的天氣預報報道,氣溫32 ℃,最低氣溫26 ℃.

實例2:對于數(shù)軸上任意不同的兩點A、B,若點A在點B的左邊,則xA

實例3:若一個數(shù)是非負數(shù),則這個數(shù)大于或等于零.

實例4:兩點之間線段最短.

實例5:三角形兩邊之和大于第三邊,兩邊之差小于第三邊.

實例6:限速40 km/h的路標指示司機在前方路段行駛時,應使汽車的速度v不超過40 km/h.

實例7:某品牌酸奶的質量檢查規(guī)定,酸奶中脂肪的含量f應不少于2.5%,蛋白質的含量p應不少于2.3%.

教師進一步點撥:能夠發(fā)現(xiàn)身 邊的數(shù)學當然很好,這說明同學們已經走進了數(shù)學這門學科,但作為我們研究數(shù)學的人來說,能用數(shù)學的眼光、數(shù)學的觀點進行觀察、歸納、抽象,完成這些量與量的比較過程,這是我們每個研究數(shù)學的人必須要做的,那么,我們可以用我們所研究過的什么知識來表示這些不等關系呢?學生很容易想到,用不等式或不等式組來表示這些不等關系.那么不等式就是用不等號將兩個代數(shù)式連結起來所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

教師引導學生將上述的7個實例用不等式表示出來.實例1,若用t表示某天的氣溫,則26 ℃≤t≤32 ℃.實例3,若用x表示一個非負數(shù),則x≥0.實例5,|AC|+|BC|>|AB|,如下圖.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交換被減數(shù)與減數(shù)的位置也可以.

實例6,若用v表示速度,則v≤40 km/h.實例7,f≥2.5%,p≥2.3%.對于實例7,教師應點撥學生注意酸奶中的脂肪含量與蛋白質含量需同時滿足,避免寫成f≥2.5%或p≥2.3%,這是不對的.但可表示為f≥2.5%且p≥2.3%.

對以上問題,教師讓學生輪流回答,再用投影儀給出課本上的兩個結論.

討論結果:

(1)(2)略;(3)數(shù)軸上任意兩點中,右邊點對應的實數(shù)比左邊點對應的實數(shù)大.

(4)對于任意兩個實數(shù)a和b,在a=b,a>b,a應用示例

例1(教材本節(jié)例1和例2)

活動:通過兩例讓學生熟悉兩個代數(shù)式的大小比較的基本方法:作差,配方法.

點評:本節(jié)兩例的求解,是借助因式分解和應用配方法完成的,這兩種方法是代數(shù)式變形時經常使用的方法,應讓學生熟練掌握.

變式訓練

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,則f(x)與g(x)的大小關系是(  )

A.f(x)>g(x)       B.f(x)=g(x)

C.f(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

2.已知x≠0,比較(x2+1)2與x4+x2+1的大小.

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2>0.從而(x2+1)2>x4+x2+1.

例2比較下列各組數(shù)的大小(a≠b).

(1)a+b2與21a+1b(a>0,b>0);

(2)a4-b4與4a3(a-b).

活動:比較兩個實數(shù)的大小,常根據(jù)實數(shù)的運算性質與大小順序的關系,歸結為判斷它們的差的符號來確定.本例可由學生獨立完成,但要點撥學生在最后的符號判斷說理中,要理由充分,不可忽略這點.

解:(1)a+b2-21a+1b=a+b2-2aba+b=?a+b?2-4ab2?a+b?=?a-b?22?a+b?.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴?a-b?22?a+b?>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(當且僅當a=b=0時取等號),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

點評:比較大小常用作差法,一般步驟是作差——變形——判斷符號.變形常用的手段是分解因式和配方,前者將“差”變?yōu)椤胺e”,后者將“差”化為一個或幾個完全平方式的“和”,也可兩者并用.

變式訓練

已知x>y,且y≠0,比較xy與1的大小.

活動:要比較任意兩個數(shù)或式的大小關系,只需確定它們的差與0的大小關系.

解:xy-1=x-yy.

∵x>y,∴x-y>0.

當y<0時,x-yy<0,即xy-1<0. ∴xy<1;

當y>0時,x-yy>0,即xy-1>0.∴xy>1.

點評:當字母y取不同范圍的值時,差xy-1的正負情況不同,所以需對y分類討論.

例3建筑設計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標準,窗戶面積與地板面積的比值應不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積, 住宅的采光條件是變好了,還是變壞了?請說明理由.

活動:解題關鍵首先是把文 字語言轉換成數(shù)學語言,然后比較前后比值的大小,采用作差法.

解:設住宅窗戶面積和地板面積分別為a、b,同時增加的面積為m,根據(jù)問題的要求a

由于a+mb+m-ab=m?b-a?b?b+m?>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同時增加相等的窗戶面積和地板面積后,住宅的采光條件變好了.

點評:一般地,設a、b為正實數(shù),且a

變式訓練

已知a1,a2,…為各項都大于零的等比數(shù)列,公比q≠1,則(  )

A.a1+a8>a4+a5        B.a1+a8

C.a1+a8=a4+a5 D.a1+a8與a4+a5大小不確定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各項都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

課堂小結

1.教師與學生共同完成本節(jié)課的小結,從實數(shù)的基本性質的回顧,到兩個實數(shù)大小的比較方法;從例題的活動探究點評,到緊跟著的變式訓練,讓學生去繁就簡,聯(lián)系舊知,將本節(jié)課所學納入已有的知識體系中.

2.教師畫龍點睛,點撥利用實數(shù)的基本性質對兩個實數(shù)大小比較時易錯的地方.鼓勵學有余力的學生對節(jié)末的思考與討論在課后作進一步的探究.

作業(yè)

習題3—1A組3;習題3—1B組2.

設計感想

1.本節(jié)設計關注了教學方法 的優(yōu)化.經驗告訴我們:課堂上應根據(jù)具體情況,選擇、設計最能體現(xiàn)教學規(guī)律的教學 過程,不宜長期使用一種固定的教學方法,或原封不動地照搬一種實驗模式.各種教學方法中,沒有一種能很好地適應一切教學活動.也就是說,世上沒有萬能的教學方法.針對個性,靈活變化,因材施教才是成功的施教靈藥.

2.本節(jié)設計注重了難度控制.不等式內容應用面廣,可以說與其他所有內容都有交匯,歷 來是高考的重點與熱點.作為本章開始,可以適當開闊一些,算作拋磚引玉,讓學生有個自由探究聯(lián)想的平臺,但不宜過多向外拓展,以免對學生產生負面影響.

3.本節(jié)設計關注了學生思維能力的訓練.訓練學生的思維能力,提升思維的品質,是數(shù)學教師直面的重要課題,也是中學數(shù)學教育的主線.采用一題多解有助于思維的發(fā)散性及靈活性,克服思維的僵化.變式訓練教學又可以拓展學生思維視野的廣度,解題后的點撥反思有助于學生思維批判性品質的提升.

高中數(shù)學電子版教案2025篇18

依據(jù)如下:

(1)從認知領域上講,它在陳述性知識、程序性知識與策略性知識的分類中,屬于學生最高需求層次的掌握策略與方法的策略性知識。

(2)從學科知識上講,推導屬于學科邏輯中的“瓶頸”,突破這一“瓶頸”則后面的問題迎刃而解。

(3)從心理學上講,學生對這項學習內容的“熟悉度”不高,原有知識薄弱,不易理解。

突破難點方法:

(1)明確難點、分解難點,采用層層推導延伸法,利用學生已有的知識切入,淺化知識內容。比如可以先求麥粒的總數(shù),通過設問使學生得到麥粒的總數(shù)為,然后引導學生觀察上式的特點,發(fā)現(xiàn)上式中,每一項乘以2后都得它的后一項,即有,發(fā)現(xiàn)兩式右邊有62項相同,啟發(fā)同學們找到解決問題的關鍵是等式左右同時乘以2,相減得和。從而得知求等比數(shù)列前n項和……+的關鍵也應是等式左右各項乘以公比q,兩式相減去掉相同項,得求和公式,也掌握了這種常用的數(shù)列求和方法——錯位相減法,說明這種方法的用途。

(2)值得一提的是公式的證明還有兩種方法:

后兩種方法可以啟發(fā)引導學生自行完成。這樣學生從各種途徑,用多種方法推導公式,從而培養(yǎng)學生的創(chuàng)造性思維。

等比數(shù)列前n項和公式及應用是本節(jié)課的重點內容。

依據(jù)如下:

(1)新大綱中有較高層次的要求。

(2)教學地位重要,是教學中全部學習任務中必須優(yōu)先完成的任務。

(3)這項知識內容有廣泛的實際應用,很多問題都要轉化為等比數(shù)列的求和上來。

突出重點方法:

(1)明確重點。利用高一學生求知積極性和初步具有的數(shù)學思維能力,運用比較法來突出公式的內容(彩色粉筆板書):,強調公式的應用范圍:中可知三求二。

(2)運用糾錯法對公式中學生容易出錯的地方,即公式的條件,以精練的語言給予強調,并指出q=1時,。再有就是有些數(shù)列求和的項數(shù)易錯,例如的項數(shù)是n+1而不是n。

(3)創(chuàng)設條件、充分保證。設置低、中、高三個層次的例題,即公式的直接應用、公式的變形應用和實際應用來突出這一重點。對應用題師生要共同分析討論,從問題中抽象出等比數(shù)列,然后用公式求和。

2.實際應用題.

這樣設置主要依據(jù):

(1)練習題與大綱中規(guī)定的教學目標與任務及本節(jié)課的重點、難點有相對應的匹配關系。

(2)遵循鞏固性原則和傳授——反饋——再傳授的教學系統(tǒng)的思想確立這樣的習題。

(3)應用題比較切合對智力技能進行檢測,有利于數(shù)學能力的提高。同時,它可以使學生在后半程學習中保持興趣的持續(xù)性和學習的主動性,。

根據(jù)高一學生心理特點、教材內容、遵循因材施教原則和啟發(fā)性教學思想,本節(jié)課的教學策略與方法我采用規(guī)則學習和問題解決策略,即“案例—公式—應用”,簡稱“例—規(guī)”法。

案例為淺層次要求,使學生有概括印象。

公式為中層次要求,由淺入深,重難點集中推導講解,便于突破。

應用為綜合要求,多角度、多情境中消化鞏固所學,反饋驗證本節(jié)教學目標的落實。

其中,案例是基礎,是學生感知教材;公式為關鍵,是學生理解教材;練習為應用,是學生鞏固知識,舉一反三。

在這三步教學中,以啟發(fā)性強的小設問層層推導,輔之以學生的分組小討論并充分運用直觀完整的板書、棋盤教具和計算機課件等教輔用具、手段,改變教師講、學生聽的填鴨式教學模式,充分體現(xiàn)學生是主體,教師教學服務于學生的思路,而且學生通過“案例—公式—應用”,由淺入深,由感性到理性,由直觀到抽象,加深了學生理解鞏固與應用,有利于培養(yǎng)學生思維能力,落實好教學任務。

在提倡教育改革的今天,對學生進行思維技能培養(yǎng)已成了我們非常重要的一項教學任務。研究性學習已在全國范圍內展開,等比數(shù)列就是一個進行研究性學習的好題材。在我們學校可以按照Intel未來教育計劃培訓的模式,學完本節(jié)課后,教師可以給學生布置一個研究分期付款的課題,讓學生利用網絡資源,多方查找資料,并通過完成多媒體演示文稿和網頁制作來共同解決這一問題。這樣不僅培養(yǎng)了學生主動探究問題、解決問題的能力,而且還提高了他們的創(chuàng)新意識和團結協(xié)作的精神。

高中數(shù)學電子版教案2025篇19

課題:指數(shù)與指數(shù)冪的運算

課型:新授課

教學方法:講授法與探究法

教學媒體選擇:多媒體教學

指數(shù)與指數(shù)冪的運算——學習者分析:

1.需求分析:在研究指數(shù)函數(shù)前,學生應熟練掌握指數(shù)與指數(shù)冪的運算,通過本節(jié)內容將指數(shù)的取值范圍擴充到實數(shù),為學習指數(shù)函數(shù)打基礎.

2.學情分析:在中學階段已經接觸過正數(shù)指數(shù)冪的運算,但是這對我們研究指數(shù)函數(shù)是遠遠不夠的,通過本節(jié)課使學生對指數(shù)冪的運算和理解更加深入.

指數(shù)與指數(shù)冪的運算——學習任務分析:

1.教材分析:本節(jié)的內容蘊含了許多重要的數(shù)學思想方法,如推廣思想,逼近思想,教材充分關注與實際問題的聯(lián)系,體現(xiàn)了本節(jié)內容的重要性和數(shù)學的實際應用價值.

2.教學重點:根式的概念及n次方根的性質;分數(shù)指數(shù)冪的意義及運算性質;分數(shù)指數(shù)冪與根式的互化.

3.教學難點:n次方根的性質;分數(shù)指數(shù)冪的意義及分數(shù)指數(shù)冪的運算.

指數(shù)與指數(shù)冪的運算——教學目標闡明:

1.知識與技能:理解根式的概念及性質,掌握分數(shù)指數(shù)冪的運算,能夠熟練的進行分數(shù)指數(shù)冪與根式的互化.

2.過程與方法:通過探究和思考,培養(yǎng)學生推廣和逼近的數(shù)學思想方法,提高學生的知識遷移能力和主動參與能力.

3.情感態(tài)度和價值觀:在教學過程中,讓學生自主探索來加深對n次方根和分數(shù)指數(shù)冪的理解,而具有探索能力是學習數(shù)學、理解數(shù)學、解決數(shù)學問題的重要方面.

教學流程圖:

指數(shù)與指數(shù)冪的運算——教學過程設計:

一.新課引入:

(一)本章知識結構介紹

(二)問題引入

1.問題:當生物體死亡后,它機體內原有的碳14會按確定的規(guī)律衰減,大約每經過5730年衰減為原來的一半,這個時間稱為“半衰期”.根據(jù)此規(guī)律,人們獲得了生物體內含量P與死亡年數(shù)t之間的關系:

(1)當生物死亡了5730年后,它體內的碳14含量P的值為

(2)當生物死亡了5730×2年后,它體內的碳14含量P的值為

(3)當生物死亡了6000年后,它體內的碳14含量P的值為

(4)當生物死亡了10000年后,它體內的碳14含量P的值為

2.回顧整數(shù)指數(shù)冪的運算性質

整數(shù)指數(shù)冪的運算性質:

3.思考:這些運算性質對分數(shù)指數(shù)冪是否適用呢?

【師】這就是我們今天所要學習的內容《指數(shù)與指數(shù)冪的運算》

【板書】2.1.1指數(shù)與指數(shù)冪的運算

二.根式的概念:

【師】下面我們來看幾個簡單的例子.口述平方根,立方根的概念引導學生總結n次方根的概念..

【板書】平方根,立方根,n次方根的符號,并舉一些簡單的方根運算,以便學生觀察總結.

【師】現(xiàn)在我們請同學來總結n次方根的概念..

1.根式的概念

【板書】概念

即如果一個數(shù)的n次方等于a(n>1,且n∈N_),那么這個數(shù)叫做a的n次方根.

【師】通過剛才所舉的例子不難看出n的奇偶以及a的正負都會影響a的n次方根,下面我們來共同完成這樣一個表格.

【板書】表格

【師】通過這個表格,我們知道負數(shù)沒有偶次方根.那么0的n次方根是什么?

【學生】0的n次方根是0.

【師】現(xiàn)在我們來對這個符號作一說明.

例1.求下列各式的值

【注】本題較為簡單,由學生口答即可,此處過程省略.

三.n次方根的性質

【注】對于1提問學生a的取值范圍,讓學生思考便能得出結論.

【注】對于2,少舉幾個例子讓學生觀察,并起來說他們的結論.

1.n次方根的性質

四.分數(shù)指數(shù)冪

【師】這兩個根式可以寫成分數(shù)指數(shù)冪的形式,是因為根指數(shù)能整除被開方數(shù)的指數(shù),那么請大家思考下面的問題.

思考:根指數(shù)不能整除被開方數(shù)的指數(shù)時還能寫成分數(shù)指數(shù)冪的形式嗎

【師】如果成立那么它的意義是什么,我們有這樣的規(guī)定.

(一)分數(shù)指數(shù)冪的意義:

1.我們規(guī)定正數(shù)的正分數(shù)指數(shù)冪的意義是:

2.我們規(guī)定正數(shù)的負分數(shù)指數(shù)冪的意義是:

3.0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義.

(二)指數(shù)冪運算性質的推廣:

五.例題

例2.求值

【注】此處例2讓學生上黑板做,例3待學生完成后老師在黑板板演,例4讓學生黑板上做,然后糾正錯誤.

六.課堂小結

1.根式的定義;

2.n次方根的性質;

3.分數(shù)指數(shù)冪.

七.課后作業(yè)

P59習題2.1A組1.2.4.

八.課后反思

1.在第一節(jié)課的時候沒有把重要的內容寫在黑板上,而且運算性質中a,r,s的條件沒有給出,另外課件中有一處錯誤.第二節(jié)課時改正了第一節(jié)課的錯誤.

2.有許多問題應讓學生回答,不能自問自答.根式性質的思考沒有講清楚,應該給學生更多的時間來回答和思考問題,與之互動太少.

3.講課過程中還有很多細節(jié)處理不好,并且講課聲音較小,沒有起伏.

4.課前的章節(jié)知識結構很好,引入簡單到位,亮點是概念后的表格.

高中數(shù)學電子版教案2025篇20

教學目標

1、了解基底的含義,理解并掌握平面向量基本定理。會用基底表示平面內任一向量。

2、掌握向量夾角的定義以及兩向量垂直的定義。

學情分析

前幾節(jié)課已經學習了向量的基本概念和基本運算,如共線向量、向量的加法、減法和數(shù)乘運算及向量共線的充要條件等;另外學生對向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學習這節(jié)課作了充分準備

重點難點

重點:對平面向量基本定理的探究

難點:對平面向量基本定理的理解及其應用

教學過程

4.1第一學時教學活動

活動1【導入】情景設置

火箭在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度v=vx+vy=6i+4j。

活動2【活動】探究

已知平面中兩個不共線向量e1,e2,c是平面內任意向量,求向量

c=___e1+___e2(課堂上準備好幾張帶格子的紙張,上面有三個向量,e1,e2,c)

做法:

作OA=e1,OB=e2,OC=c,過點C作平行于OB的直線,交直線OA于M;過點C作平行于OA的直線,交OB于N,則有且只有一對實數(shù)l1,l2,使得OM=l1e1,ON=l2e2。

因為OC=OM+ON,所以c=6e1+6e2。

向量c=__6__e1+___6__e2

活動3【練習】動手做一做

請同學們自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____

(做完后,思考一下,這樣的一組實數(shù)是否是唯一的呢?)(是唯一的)

由剛才的幾個實例,可以得出結論:如果給定向量e1,e2,平面內的任一向量a,都可以表示成a=入1e1+入2e2。

活動4【活動】思考

問題2:如果e1,e2是平面內任意兩向量,那么平面內的任一向量a還可以表示成a=入1e1+入2e2的形式嗎?

生:不行,e1,e2必須是平面內兩不共線向量

活動5【講授】平面向量基本定理

平面向量基本定理:如果e1,e2是平面內兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數(shù)l1,l2,使a=l1e1+l2e2。我們把不共線向量e1,e2叫做這一平面內所有向量的一組基底。一個平面向量用一組基底e1,e2表示成a=l1e1+l2e2的形式,我們稱它為向量的分解。當e1,e2互相垂直時,就稱為向量的正交分解。

說明:

(1)基底不惟一,關鍵是作為基底的兩個向量不共線。

(2)由定理可將任一向量a在給出基底e1,e2的條件下進行分解,基底給定時,分解形式惟一,即l1,l2是被a,e1,e2惟一確定的數(shù)量。

活動6【講授】平面向量基底運用

例1.如圖所示,平行四邊形ABCD的對角線AC和BD交于點M,AB=a,AD=b,試用基底a,b表示MC,MA,MB和MD

活動7【講授】向量夾角的定義

閱讀教材P94,回答如下問題:

1、兩個向量夾角是如何形成的?,必須要滿足什么條件才是它們的夾角。

2、有向量夾角范圍是多少?有夾角大小來描述一下向量同向,反向,垂直?

活動8【練習】完成《聚焦課堂》活動9【講授】課后小結

1、平面向量基本定理

2、平面向量基本定理的運用

3、向量夾角的定義。

活動10【作業(yè)】課后作業(yè)

1、已知向量e1,e2,求做:-3e1+2e2

2、做育才報第八期專項訓練1

101018 主站蜘蛛池模板: 开江县| 澄江县| 祁连县| 孝昌县| 崇左市| 秦皇岛市| 日喀则市| 宁国市| 吉木乃县| 丽水市| 富源县| 容城县| 东平县| 纳雍县| 东丽区| 富蕴县| 岳西县| 莱西市| 汕头市| 拜城县| 都兰县| 巴林右旗| 团风县| 洛阳市| 沾化县| 大安市| 汾阳市| 修文县| 孟津县| 西城区| 沧源| 来宾市| 洞头县| 嵩明县| 凤台县| 娄底市| 西安市| 沙河市| 永春县| 湘阴县| 正安县|