高二數(shù)學(xué)教案
教案是老師教什么,學(xué)生學(xué)什么,學(xué)生根據(jù)老師安排的教學(xué)內(nèi)容進(jìn)行學(xué)習(xí)、思考、模仿等過程。如何撰寫優(yōu)秀的高二數(shù)學(xué)教案?這里分享一些高二數(shù)學(xué)教案寫作案例,供大家參考。
高二數(shù)學(xué)教案篇1
一、教學(xué)過程
1.復(fù)習(xí)。
反函數(shù)的概念、反函數(shù)求法、互為反函數(shù)的函數(shù)定義域值域的關(guān)系。
求出函數(shù)y=x3的反函數(shù)。
2.新課。
先讓學(xué)生用幾何畫板畫出y=x3的圖象,學(xué)生紛紛動手,很快畫出了函數(shù)的圖象。有部分學(xué)生發(fā)出了“咦”的一聲,因為他們得到了如下的圖象(圖1):
教師在畫出上述圖象的學(xué)生中選定生1,將他的屏幕內(nèi)容通過教學(xué)系統(tǒng)放到其他同學(xué)的屏幕上,很快有學(xué)生作出反應(yīng)。
生2:這是y=x3的反函數(shù)y=的圖象。
師:對,但是怎么會得到這個圖象,請大家討論。
師:我們請生1再給大家演示一下,大家?guī)退艺以颉?/p>
生3:問題出在他選擇的次序不對。
師:哪個次序?
生3:作點B前,選擇xA和xA3為B的坐標(biāo)時,他先選擇xA3,后選擇xA,作出來的點的坐標(biāo)為(xA3,xA),而不是(xA,xA3)。
師:是這樣嗎?我們請生1再做一次。
(這次生1在做的過程當(dāng)中,按xA、xA3的次序選擇,果然得到函數(shù)y=x3的圖象。)
師:看來問題確實是出在這個地方,那么請同學(xué)再想想,為什么他采用了錯誤的次序后,恰好得到了y=x3的反函數(shù)y=的圖象呢?
師:我們請生4來告訴大家。
生4:因為他這樣做,正好是將y=x3上的點B(x,y)的橫坐標(biāo)x與縱坐標(biāo)y交換,而y=x3的反函數(shù)也正好是將x與y交換。
師:完全正確。下面我們進(jìn)一步研究y=x3的圖象及其反函數(shù)y=的圖象的.關(guān)系,同學(xué)們能不能看出這兩個函數(shù)的圖象有什么樣的關(guān)系?
(多數(shù)學(xué)生回答可由y=x3的圖象得到y(tǒng)=的圖象,于是教師進(jìn)一步追問。)
師:怎么由y=x3的圖象得到y(tǒng)=的圖象?
生5:將y=x3的圖象上點的橫坐標(biāo)與縱坐標(biāo)交換,可得到y(tǒng)=的圖象。
師:將橫坐標(biāo)與縱坐標(biāo)互換?怎么換?
師:我其實是想問大家這兩個函數(shù)的圖象有沒有對稱關(guān)系,有的話,是什么樣的對稱關(guān)系?
生6:我發(fā)現(xiàn)這兩個圖象應(yīng)是關(guān)于某條直線對稱。
師:能說說是關(guān)于哪條直線對稱嗎?
生6:我還沒找出來。
學(xué)生通過移動點A(點B、C隨之移動)后發(fā)現(xiàn),BC的中點M在同一條直線上,這條直線就是兩函數(shù)圖象的對稱軸,在追蹤M點后,發(fā)現(xiàn)中點的軌跡是直線y=x。
生7:y=x3的圖象及其反函數(shù)y=的圖象關(guān)于直線y=x對稱。
師:這個結(jié)論有一般性嗎?其他函數(shù)及其反函數(shù)的圖象,也有這種對稱關(guān)系嗎?請同學(xué)們用其他函數(shù)來試一試。
(學(xué)生紛紛畫出其他函數(shù)與其反函數(shù)的圖象進(jìn)行驗證,最后大家一致得出結(jié)論:函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。)
教師巡視全班時已經(jīng)發(fā)現(xiàn)這個問題,將這個圖象傳給全班學(xué)生后,幾乎所有人都看出了問題所在:圖中函數(shù)y=x2(x∈R)沒有反函數(shù),也不是函數(shù)的圖象。
最后教師與學(xué)生一起總結(jié):
點(x,y)與點(y,x)關(guān)于直線y=x對稱;
函數(shù)及其反函數(shù)的圖象關(guān)于直線y=x對稱。
二、反思與點評
1.在開學(xué)初,我就教學(xué)幾何畫板4。0的用法,在教函數(shù)圖象畫法的過程當(dāng)中,發(fā)現(xiàn)學(xué)生根據(jù)選定坐標(biāo)作點時,不太注意選擇橫坐標(biāo)與縱坐標(biāo)的順序,本課設(shè)計起源于此。雖然幾何畫板4。04中,能直接根據(jù)函數(shù)解析式畫出圖象,但這樣反而不能揭示圖象對稱的本質(zhì),所以本節(jié)課教學(xué)中,我有意選擇了幾何畫板4。0進(jìn)行教學(xué)。
2.荷蘭數(shù)學(xué)教育家弗賴登塔爾認(rèn)為,數(shù)學(xué)學(xué)習(xí)過程當(dāng)中,可借助于生動直觀的形象來引導(dǎo)人們的思想過程,但常常由于圖形或想象的錯誤,使人們的思維誤入歧途,因此我們既要借助直觀,但又必須在一定條件下擺脫直觀而形成抽象概念,要注意過于直觀的例子常常會影響學(xué)生正確理解比較抽象的概念。
計算機(jī)作為一種現(xiàn)代信息技術(shù)工具,在直觀化方面有很強(qiáng)的表現(xiàn)能力,如在函數(shù)的圖象、圖形變換等方面,利用計算機(jī)都可得到其他直觀工具不可能有的效果;如果只是為了直觀而使用計算機(jī),但不能達(dá)到更好地理解抽象概念,促進(jìn)學(xué)生思維的目的的話,這樣的教學(xué)中,計算機(jī)最多只是一種普通的直觀工具而已。
在本節(jié)課的教學(xué)中,計算機(jī)更多的是作為學(xué)生探索發(fā)現(xiàn)的工具,學(xué)生不但發(fā)現(xiàn)了函數(shù)與其反函數(shù)圖象間的對稱關(guān)系,而且在更深層次上理解了反函數(shù)的概念,對反函數(shù)的存在性、反函數(shù)的求法等方面也有了更深刻的理解。
當(dāng)前計算機(jī)用于中學(xué)數(shù)學(xué)的主要形式還是以輔助為主,更多的是把計算機(jī)作為一種直觀工具,有時甚至只是作為電子黑板使用,今后的發(fā)展方向應(yīng)是:將計算機(jī)作為學(xué)生的認(rèn)知工具,讓學(xué)生通過計算機(jī)發(fā)現(xiàn)探索,甚至利用計算機(jī)來做數(shù)學(xué),在此過程當(dāng)中更好地理解數(shù)學(xué)概念,促進(jìn)數(shù)學(xué)思維,發(fā)展數(shù)學(xué)創(chuàng)新能力。
3.在引出兩個函數(shù)圖象對稱關(guān)系的時候,問題設(shè)計不甚妥當(dāng),本來是想要學(xué)生回答兩個函數(shù)圖象對稱的關(guān)系,但學(xué)生誤以為是問如何由y=x3的圖象得到y(tǒng)=的圖象,以致將學(xué)生引入歧途。這樣的問題在今后的教學(xué)中是必須力求避免的。
高二數(shù)學(xué)教案篇2
【教學(xué)目標(biāo)】
1.知識與技能
(1)學(xué)生通過自主學(xué)習(xí),初步理解集合的概念,理解元素與集合間的關(guān)系,了解集合元素的確定性、互異性,無序性,知道常用數(shù)集及其記法;
(2)掌握集合的常用表示法——列舉法和描述法。
2.過程與方法
通過實例了解集合的含義,體會元素與集合的“屬于”關(guān)系,能選擇合適的語言(如自然語言、圖形語言、集合語言)描述不同的具體問題,提高語言轉(zhuǎn)換和抽象概括能力,樹立用集合語言表示數(shù)學(xué)內(nèi)容的意識。
3.情態(tài)與價值
在掌握基本概念的基礎(chǔ)上,能夠解決相關(guān)問題,獲得數(shù)學(xué)學(xué)習(xí)的成就感,提高學(xué)生分析問題和解決問題的能力,培養(yǎng)學(xué)生的應(yīng)用意識。
【重點難點】
1.教學(xué)重點:集合的基本概念與表示方法。
2.教學(xué)難點:選擇合適的方法正確表示集合。
【教學(xué)思路】
通過實例以及學(xué)生熟悉的數(shù)集,引入集合的概念,進(jìn)而給出集合的表示方法,學(xué)生通過自我體會、自主學(xué)習(xí)、自我總結(jié)達(dá)到掌握本節(jié)課內(nèi)容的目的。教學(xué)過程按照“提出問題——學(xué)生討論——歸納總結(jié)——獲得新知——自我檢測”環(huán)節(jié)安排。
高二數(shù)學(xué)教案篇3
一、教學(xué)目標(biāo)
1.把握菱形的判定.
2.通過運(yùn)用菱形知識解決具體問題,提高分析能力和觀察能力.
3.通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)愛好.
4.根據(jù)平行四邊形與矩形、菱形的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
二、教法設(shè)計
觀察分析討論相結(jié)合的方法
三、重點·難點·疑點及解決辦法
1.教學(xué)重點:菱形的判定方法.
2.教學(xué)難點:菱形判定方法的綜合應(yīng)用.
四、課時安排
1課時
五、教具學(xué)具預(yù)備
教具(做一個短邊可以運(yùn)動的平行四邊形)、投影儀和膠片,常用畫圖工具
六、師生互動活動設(shè)計
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時點撥
七、教學(xué)步驟
復(fù)習(xí)提問
1.敘述菱形的定義與性質(zhì).
2.菱形兩鄰角的比為1:2,較長對角線為,則對角線交點到一邊距離為________.
引入新課
師問:要判定一個四邊形是不是菱形最基本的判定方法是什么方法?
生答:定義法.
此外還有別的兩種判定方法,下面就來學(xué)習(xí)這兩種方法.
講解新課
菱形判定定理1:四邊都相等的四邊形是菱形.
菱形判定定理2:對角錢互相垂直的&39;平行四邊形是菱形.圖1
分析判定1:首先證它是平行四邊形,再證一組鄰邊相等,依定義即知為菱形.
分析判定2:
師問:本定理有幾個條件?
生答:兩個.
師問:哪兩個?
生答:(1)是平行四邊形(2)兩條對角線互相垂直.
師問:再需要什么條件可證該平行四邊形是菱形?
生答:再證兩鄰邊相等.
(由學(xué)生口述證實)
證實時讓學(xué)生注重線段垂直平分線在這里的應(yīng)用,
師問:對角線互相垂直的四邊形是菱形嗎?為什么?
可畫出圖,顯然對角線,但都不是菱形.
菱形常用的判定方法歸納為(學(xué)生討論歸納后,由教師板書):
注重:(2)與(4)的題設(shè)也是從四邊形出發(fā),和矩形一樣它們的題沒條件都包含有平行四邊形的判定條件.
例4已知:的對角錢的垂直平分線與邊、分別交于、,如圖.
求證:四邊形是菱形(按教材講解).
總結(jié)、擴(kuò)展
1.小結(jié):
(1)歸納判定菱形的四種常用方法.
(2)說明矩形、菱形之間的區(qū)別與聯(lián)系.
2.思考題:已知:如圖4△中,,平分,,,交于.
求證:四邊形為菱形.
八、布置作業(yè)
教材P159中9、10、11、13
高二數(shù)學(xué)教案篇4
【教學(xué)目標(biāo)】
知識目標(biāo):了解中心對稱的概念,了解平行四邊形是中心對稱圖形,掌握中心對稱的性質(zhì)。
能力目標(biāo):靈活運(yùn)用中心對稱的性質(zhì),會作關(guān)于已知點對稱的中心對稱圖形。
情感目標(biāo):通過提問、討論、動手操作等多種教學(xué)活動,樹立自信,自強(qiáng),自主感,由此激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,增強(qiáng)學(xué)好數(shù)學(xué)的信心。
【教學(xué)重點、難點】
重點:中心對稱圖形的概念和性質(zhì)。
難點:范例中既有新概念,分析又要仔細(xì)、透徹,是教學(xué)的難點。
關(guān)鍵:已知點A和點O,會作點Aˊ,使點Aˊ與點A關(guān)于點O成中心對稱。
【課前準(zhǔn)備】
叫一位剪紙愛好的學(xué)生,剪一幅類似書本第108頁哪樣的圖案。
【教學(xué)過程】
一.復(fù)習(xí)
回顧七下學(xué)過的軸對稱變換、平移變換、旋轉(zhuǎn)變換、相似變換。
二.創(chuàng)設(shè)情境
用剪好的圖案,讓學(xué)生欣賞。師:這剪紙有哪些變換?生:軸對稱變換。師:指出對稱軸。生:(能結(jié)合圖案講)。生:還有旋轉(zhuǎn)變換。師:指出旋轉(zhuǎn)中心、旋轉(zhuǎn)的角度?生:90°、180°、270°。
三、合作學(xué)習(xí)
1、把圖1、圖2發(fā)給每個學(xué)生,先探索圖1:同桌的兩位同學(xué),把兩個正三角形重合,然后把上面的正三角形繞點O旋轉(zhuǎn)180°,觀察旋轉(zhuǎn)180°前后原圖形和像的位置情況,請學(xué)生說出發(fā)現(xiàn)什么?生(討論后):等邊三角形旋轉(zhuǎn)180°后所得的像與原圖形不重合。
探索圖形2:把兩個平形四邊形重合,然后把上面一個平形四邊形繞點O旋轉(zhuǎn)180°,學(xué)生動手后發(fā)現(xiàn):平行四邊形ABCD旋轉(zhuǎn)180°后所得的像與原圖形重合。師:為什么重合?師:作適當(dāng)解釋或?qū)W生自己發(fā)現(xiàn):∵OA=OC,∴點A繞點O旋轉(zhuǎn)180°與點C重合。同理可得,點C繞點O旋轉(zhuǎn)180°與點A重合。點B繞點O旋轉(zhuǎn)180°與點D重合。點D繞點O旋轉(zhuǎn)180°與點B重合。
2、中心對稱圖形的概念:如果一個圖形繞一個點旋轉(zhuǎn)180°后,所得到的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱(pointsymmetry)圖形,這個點叫對稱中心。
師:等邊三角形是中心對稱圖形嗎?生:不是。
3、想一想:等邊三角形是軸對稱圖形嗎?答:是軸對稱圖形。
平形四邊形是軸對稱圖形嗎?答:不是軸對稱圖形。
4、兩個圖形關(guān)于點O成中心對稱的概念:如果一個圖形繞著一個點O旋轉(zhuǎn)180°后,能夠和另外一個圖形互相重合,我們就稱這兩個圖形關(guān)于點O成中心對稱。
中心對稱圖形與兩個圖形成中心對稱的不同點:前者是一個圖形,后者是兩個圖形。
相同點:都有旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后都會重合。
做一做:P109
5、根據(jù)中心對稱圖形的定義,得出中心對稱圖形的性質(zhì):
對稱中心平分連結(jié)兩個對稱點的線段
通過中心對稱的概念,得到P109性質(zhì)后,主要是理解與應(yīng)用。如右圖,若A、B關(guān)于點O的成中心對稱,∴點O是A、B的對稱中心。
反之,已知點A、點O,作點B,使點A、B關(guān)于以O(shè)為對稱中心的對稱點。讓學(xué)生練習(xí),多數(shù)學(xué)生會做,若不會做,教師作適當(dāng)?shù)膯l(fā)。
做P106例2,讓學(xué)生思考1~2分鐘,然后師生共同解答。
(P106)例2解:∵平行四邊形是中心對稱圖形,O是對稱中心,
EF經(jīng)過點O,分別交AB、CD于E、F。
∴點E、F是關(guān)于點O的對稱點。
∴OE=OF。
四、應(yīng)用新知,拓展提高
例如圖,已知△ABC和點O,作△A′B′C′,使△A′B′C′與△ABC關(guān)于點O成中心對稱。
分析:先讓學(xué)生作點A關(guān)于以點O為對稱中心的對稱點Aˊ,
同理:作點B關(guān)于以點O為對稱中心的對稱點Bˊ,
作點C關(guān)于以點O為對稱中心的對稱點Cˊ。
∴△AˊBˊCˊ與△ABC關(guān)于點O成中心對稱也會作。解:略。
課內(nèi)練習(xí)P110
小結(jié)
今天我們學(xué)習(xí)了些什么?
1、中心對稱圖形的概念,兩個圖形成中心對稱的概念,知道它們的相同點與不同點。
2、會作中心對稱圖形,關(guān)鍵是會作點A關(guān)于以O(shè)為對稱中心的對稱點Aˊ。
3、我們已學(xué)過的中心對稱圖形有哪些?
作業(yè)
P110A組1、2、3、4,B組5、6必做C組7選做。
高二數(shù)學(xué)教案篇5
一、教學(xué)目標(biāo):
1、知識與技能目標(biāo)
①理解循環(huán)結(jié)構(gòu),能識別和理解簡單的框圖的功能。
②能運(yùn)用循環(huán)結(jié)構(gòu)設(shè)計程序框圖解決簡單的問題。
2、過程與方法目標(biāo)
通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達(dá),解決問題的過程,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力。
3、情感、態(tài)度與價值觀目標(biāo)
通過本節(jié)的自主性學(xué)習(xí),讓學(xué)生感受和體會算法思想在解決具體問題中的意義,增強(qiáng)學(xué)生的創(chuàng)新能力和應(yīng)用數(shù)學(xué)的意識。
二、教學(xué)重點、難點
重點:理解循環(huán)結(jié)構(gòu),能識別和畫出簡單的循環(huán)結(jié)構(gòu)框圖,
難點:循環(huán)結(jié)構(gòu)中循環(huán)條件和循環(huán)體的確定。
三、教法、學(xué)法
本節(jié)課我遵循引導(dǎo)發(fā)現(xiàn),循序漸進(jìn)的思路,采用問題探究式教學(xué)。運(yùn)用多媒體,投影儀輔助。倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式。
高二數(shù)學(xué)教案篇6
教學(xué)目標(biāo)
(1)掌握圓的標(biāo)準(zhǔn)方程,能根據(jù)圓心坐標(biāo)和半徑熟練地寫出圓的標(biāo)準(zhǔn)方程,也能根據(jù)圓的標(biāo)準(zhǔn)方程熟練地寫出圓的圓心坐標(biāo)和半徑.
(2)掌握圓的一般方程,了解圓的一般方程的結(jié)構(gòu)特征,熟練掌握圓的標(biāo)準(zhǔn)方程和一般方程之間的互化.
(3)了解參數(shù)方程的概念,理解圓的參數(shù)方程,能夠進(jìn)行圓的普通方程與參數(shù)方程之間的互化,能應(yīng)用圓的參數(shù)方程解決有關(guān)的簡單問題.
(4)掌握直線和圓的位置關(guān)系,會求圓的切線.
(5)進(jìn)一步理解曲線方程的概念、熟悉求曲線方程的方法.
教學(xué)建議
教材分析
(1)知識結(jié)構(gòu)
(2)重點、難點分析
①本節(jié)內(nèi)容教學(xué)的重點是圓的標(biāo)準(zhǔn)方程、一般方程、參數(shù)方程的推導(dǎo),根據(jù)條件求圓的方程,用圓的方程解決相關(guān)問題.
②本節(jié)的難點是圓的一般方程的結(jié)構(gòu)特征,以及圓方程的求解和應(yīng)用.
教法建議
(1)圓是最簡單的曲線.這節(jié)教材安排在學(xué)習(xí)了曲線方程概念和求曲線方程之后,學(xué)習(xí)三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學(xué)習(xí)做好準(zhǔn)備.同時,有關(guān)圓的問題,特別是直線與圓的位置關(guān)系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學(xué)中應(yīng)加強(qiáng)練習(xí),使學(xué)生確實掌握這一單元的知識和方法.
(2)在解決有關(guān)圓的問題的過程中多次用到配方法、待定系數(shù)法等思想方法,教學(xué)中應(yīng)多總結(jié).
(3)解決有關(guān)圓的問題,要經(jīng)常用到一元二次方程的理論、平面幾何知識和前邊學(xué)過的解析幾何的基本知識,教師在教學(xué)中要注意多復(fù)習(xí)、多運(yùn)用,培養(yǎng)學(xué)生運(yùn)算能力和簡化運(yùn)算過程的意識.
(4)有關(guān)圓的內(nèi)容非常豐富,有很多有價值的問題.建議適當(dāng)選擇一些內(nèi)容供學(xué)生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.
教學(xué)設(shè)計示例
圓的一般方程
教學(xué)目標(biāo):
(1)掌握圓的一般方程及其特點.
(2)能將圓的一般方程轉(zhuǎn)化為圓的標(biāo)準(zhǔn)方程,從而求出圓心和半徑.
(3)能用待定系數(shù)法,由已知條件求出圓的一般方程.
(4)通過本節(jié)課學(xué)習(xí),進(jìn)一步掌握配方法和待定系數(shù)法.
教學(xué)重點:(1)用配方法,把圓的一般方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求出圓心和半徑.
(2)用待定系數(shù)法求圓的方程.
教學(xué)難點:圓的一般方程特點的研究.
教學(xué)用具:計算機(jī).
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.
教學(xué)過程:
【引入】
前邊已經(jīng)學(xué)過了圓的標(biāo)準(zhǔn)方程
把它展開得
任何圓的方程都可以通過展開化成形如
①
的方程
【問題1】
形如①的方程的曲線是否都是圓?
師生共同討論分析:
如果①表示圓,那么它一定是某個圓的標(biāo)準(zhǔn)方程展開整理得到的我們把它再寫成原來的形式不就可以看出來了嗎?運(yùn)用配方法,得
②
顯然②是不是圓方程與是什么樣的數(shù)密切相關(guān),具體如下:
(1)當(dāng)時,②表示以為圓心、以為半徑的圓;
(2)當(dāng)時,②表示一個點;
(3)當(dāng)時,②不表示任何曲線.
總結(jié):任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.
圓的一般方程的定義:
當(dāng)時,①表示以為圓心、以為半徑的圓,
此時①稱作圓的一般方程.
即稱形如的方程為圓的一般方程.
【問題2】圓的一般方程的特點,與圓的標(biāo)準(zhǔn)方程的異同.
(1)和的系數(shù)相同,都不為0.
(2)沒有形如的二次項.
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標(biāo)準(zhǔn)方程各有千秋:
(1)圓的標(biāo)準(zhǔn)方程帶有明顯的幾何的影子,圓心和半徑一目了然.
(2)圓的一般方程表現(xiàn)出明顯的代數(shù)的形式與結(jié)構(gòu),更適合方程理論的運(yùn)用.
【實例分析】
例1:下列方程各表示什么圖形.
(1);
(2);
一、教學(xué)內(nèi)容分析
向量作為工具在數(shù)學(xué)、物理以及實際生活中都有著廣泛的應(yīng)用.
本小節(jié)的重點是結(jié)合向量知識證明數(shù)學(xué)中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.
二、教學(xué)目標(biāo)設(shè)計
1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會從不同角度去看待一些數(shù)學(xué)問題,使一些數(shù)學(xué)知識有機(jī)聯(lián)系,拓寬解決問題的思路.
2、了解構(gòu)造法在解題中的運(yùn)用.
三、教學(xué)重點及難點
重點:平面向量知識在各個領(lǐng)域中應(yīng)用.
難點:向量的構(gòu)造.
四、教學(xué)流程設(shè)計
五、教學(xué)過程設(shè)計
一、復(fù)習(xí)與回顧
1、提問:下列哪些量是向量?
(1)力(2)功(3)位移(4)力矩
2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[說明]復(fù)習(xí)數(shù)量積的有關(guān)知識.
二、學(xué)習(xí)新課
例1(書中例5)
向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時它在數(shù)學(xué)學(xué)科中也有許多妙用!請看
例2(書中例3)
證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.
證法(二)向量法
[說明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點,構(gòu)造向量,并發(fā)現(xiàn)(等號成立的充要條件是)
例3(書中例4)
[說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個公式得到證明.
二、鞏固練習(xí)
1、如圖,某人在靜水中游泳,速度為km/h.
(1)如果他徑直游向河對岸,水的流速為4km/h,他實際沿什么方向前進(jìn)?速度大小為多少?
答案:沿北偏東方向前進(jìn),實際速度大小是8km/h.
(2)他必須朝哪個方向游才能沿與水流垂直的方向前進(jìn)?實際前進(jìn)的速度大小為多少?
答案:朝北偏西方向前進(jìn),實際速度大小為km/h.
三、課堂小結(jié)
1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.
2、要學(xué)會從不同的角度去看一個數(shù)學(xué)問題,是數(shù)學(xué)知識有機(jī)聯(lián)系.
四、作業(yè)布置
1、書面作業(yè):課本P73,練習(xí)8.44
高二數(shù)學(xué)教案篇7
Ⅰ.設(shè)置情境
(通過講評上一節(jié)課課后作業(yè)中出現(xiàn)的問題,復(fù)習(xí)利用“三個二次”間的關(guān)系求解一元二次不等式的主要操作過程。)
上節(jié)課我們只討論了二次項系數(shù)的一元二次不等式的求解問題??隙ㄓ型瑢W(xué)會問,那么二次項系數(shù)的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?
Ⅱ.探索研究
(學(xué)生議論紛紛.有的說仍然利用二次函數(shù)的圖像,有的說將二次項的系數(shù)變?yōu)檎龜?shù)后再求解,…….教師分別請持上述見解的學(xué)生代表進(jìn)一步說明各自的見解.)
生甲:只要將課本第39頁上表中的二次函數(shù)圖像次依關(guān)于x軸翻轉(zhuǎn)變成開口向下的拋物線,再根據(jù)可得的圖像便可求得二次項系數(shù)的一元二次不等式的解集.
生乙:我覺得先在不等式兩邊同乘以-1將二次項系數(shù)變?yōu)檎龜?shù)后直接運(yùn)用上節(jié)課所學(xué)的方法求解就可以了.
師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學(xué)們則需再記住一張類似于第39頁上的表格中的各結(jié)論.這不但加重了記憶負(fù)擔(dān),而且兩表中的結(jié)論容易搞混導(dǎo)致錯誤.而按后一種見解來操作時則不存在這個問題,請同學(xué)們閱讀第19頁例4.
(待學(xué)生閱讀完畢,教師再簡要講解一遍.)
[知識運(yùn)用與解題研究]
由此例可知,對于二次項系數(shù)的一元二次不等式是將其通過同解變形化為的一元二次不等式來求解的,因此只要掌握了上一節(jié)課所學(xué)過的方法。我們就能求
解任意一個一元二次不等式了,請同學(xué)們求解以下兩不等式.(調(diào)兩位程度中等的學(xué)生演板)
(1)(2)
(分別為課本P21習(xí)題1.5中1大題(2)、(4)兩小題.教師講評兩位同學(xué)的解答,注意糾正表述方面存在的問題.)
訓(xùn)練二可化為一元一次不等式組來求解的不等式.
目前我們熟悉了利用“三個二次”間的關(guān)系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如(或)的一元二次不等式時則根據(jù)(有理數(shù))乘(除)運(yùn)算的“符號法則”化為同學(xué)們更加熟悉的一元一次不等式組來求解.現(xiàn)在清同學(xué)們閱讀課本P20上關(guān)于不等式求解的內(nèi)容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學(xué)生閱讀完畢,請一程度較好,表達(dá)能力較強(qiáng)的學(xué)生回答該問題.)
【答】因為滿足不等式組或的x都能使原不等式成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.
這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關(guān)系,故它們必相等,現(xiàn)在請同學(xué)們求解以下各不等式.(調(diào)三位程度各異的學(xué)生演板.教師巡視,重點關(guān)注程度較差的學(xué)生).
(1)[P20練習(xí)中第1大題]
(2)[P20練習(xí)中第1大題]
(3)[P20練習(xí)中第2大題]
(老師扼要講評三位同學(xué)的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).
例5解不等式
因為(有理數(shù))積與商運(yùn)算的“符號法則”是一致的,故求解此類不等式時,也可像求解(或)之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。
解:(略)
現(xiàn)在請同學(xué)們完成課本P21練習(xí)中第3、4兩大題。
(等學(xué)生完成后教師給出答案,如有學(xué)生對不上答案,由其本人追查原因,自行糾正。)
[訓(xùn)練三]用“符號法則”解不等式的復(fù)式訓(xùn)練。
(通過多媒體或其他載體給出下列各題)
1.不等式與的解集相同此說法對嗎?為什么[補(bǔ)充]
2.解下列不等式:
(1)[課本P22第8大題(2)小題]
(2)[補(bǔ)充]
(3)[課本P43第4大題(1)小題]
(4)[課本P43第5大題(1)小題]
(5)[補(bǔ)充]
(每題均先由學(xué)生說出解題思路,教師扼要板書求解過程)
參考答案:
1.不對。同時前者無意義而后者卻能成立,所以它們的解集是不同的。
2.(1)
(2)原不等式可化為:,即
解集為。
(3)原不等式可化為
解集為
(4)原不等式可化為或
解集為
(5)原不等式可化為:或解集為
Ⅲ.總結(jié)提煉
這節(jié)課我們重點講解了利用(有理數(shù))乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學(xué)們應(yīng)掌握好這一方法。
(五)布置作業(yè)
(P22.2(2)、(4);4;5;6。)
(六)板書設(shè)計
高二數(shù)學(xué)教案篇8
第一章算法初步
本章教材分析
算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計算科學(xué)的重要基礎(chǔ).算法的應(yīng)用是學(xué)習(xí)數(shù)學(xué)的一個重要方面.學(xué)生學(xué)習(xí)算法的應(yīng)用,目的就是利用已有的數(shù)學(xué)知識分析問題和解決問題.通過算法的學(xué)習(xí),對完善數(shù)學(xué)的思想,激發(fā)應(yīng)用數(shù)學(xué)的意識,培養(yǎng)分析問題、解決問題的能力,增強(qiáng)進(jìn)行實踐的能力等,都有很大的幫助.
本章主要內(nèi)容:算法與程序框圖、基本算法語句、算法案例和小結(jié).教材從學(xué)生最熟悉的算法入手,通過研究程序框圖與算法案例,使算法得到充分的應(yīng)用,同時也展現(xiàn)了古老算法和現(xiàn)代計算機(jī)技術(shù)的密切關(guān)系.算法案例不僅展示了數(shù)學(xué)方法的嚴(yán)謹(jǐn)性、科學(xué)性,也為計算機(jī)的應(yīng)用提供了廣闊的空間.讓學(xué)生進(jìn)一步受到數(shù)學(xué)思想方法的熏陶,激發(fā)學(xué)生的學(xué)習(xí)熱情.
在算法初步這一章中讓學(xué)生近距離接近社會生活,從生活中學(xué)習(xí)數(shù)學(xué),使數(shù)學(xué)在社會生活中得到應(yīng)用和提高,讓學(xué)生體會到數(shù)學(xué)是有用的,從而培養(yǎng)學(xué)生的學(xué)習(xí)興趣.“數(shù)學(xué)建?!币彩歉呖伎疾橹攸c.
本章還是數(shù)學(xué)思想方法的載體,學(xué)生在學(xué)習(xí)中會經(jīng)常用到“算法思想”“轉(zhuǎn)化思想”,從而提高自己數(shù)學(xué)能力.因此應(yīng)從三個方面把握本章:
(1)知識間的聯(lián)系;
(2)數(shù)學(xué)思想方法;
(3)認(rèn)知規(guī)律.
本章教學(xué)時間約需12課時,具體分配如下(僅供參考):
1.1.1算法的概念約1課時
1.1.2程序框圖與算法的基本邏輯結(jié)構(gòu)約4課時
1.2.1輸入語句、輸出語句和賦值語句約1課時
1.2.2條件語句約1課時
1.2.3循環(huán)語句約1課時
1.3算法案例約3課時
本章復(fù)習(xí)約1課時
1.1算法與程序框圖
1.1.1算法的概念
整體設(shè)計
教學(xué)分析
算法在中學(xué)數(shù)學(xué)課程中是一個新的概念,但沒有一個精確化的定義,教科書只對它作了如下描述:“在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確有限的步驟.”為了讓學(xué)生更好理解這一概念,教科書先從分析一個具體的二元一次方程組的求解過程出發(fā),歸納出了二元一次方程組的求解步驟,這些步驟就構(gòu)成了解二元一次方程組的算法.教學(xué)中,應(yīng)從學(xué)生非常熟悉的例子引出算法,再通過例題加以鞏固.
三維目標(biāo)
1.正確理解算法的概念,掌握算法的基本特點.
2.通過例題教學(xué),使學(xué)生體會設(shè)計算法的基本思路.
3.通過有趣的實例使學(xué)生了解算法這一概念的同時,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
重點難點
教學(xué)重點:算法的含義及應(yīng)用.
教學(xué)難點:寫出解決一類問題的算法.
課時安排
1課時
教學(xué)過程
導(dǎo)入新課
思路1(情境導(dǎo)入)
一個人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量狼就會吃羚羊.該人如何將動物轉(zhuǎn)移過河?請同學(xué)們寫出解決問題的步驟,解決這一問題將要用到我們今天學(xué)習(xí)的內(nèi)容——算法.
思路2(情境導(dǎo)入)
大家都看過趙本山與宋丹丹演的小品吧,宋丹丹說了一個笑話,把大象裝進(jìn)冰箱總共分幾步?
答案:分三步,第一步:把冰箱門打開;第二步:把大象裝進(jìn)去;第三步:把冰箱門關(guān)上.
上述步驟構(gòu)成了把大象裝進(jìn)冰箱的算法,今天我們開始學(xué)習(xí)算法的概念.
思路3(直接導(dǎo)入)
算法不僅是數(shù)學(xué)及其應(yīng)用的重要組成部分,也是計算機(jī)科學(xué)的重要基礎(chǔ).在現(xiàn)代社會里,計算機(jī)已成為人們?nèi)粘I詈凸ぷ髦胁豢扇鄙俚墓ぞ?聽音樂、看電影、玩游戲、打字、畫卡通畫、處理數(shù)據(jù),計算機(jī)是怎樣工作的呢?要想弄清楚這個問題,算法的學(xué)習(xí)是一個開始.
推進(jìn)新課
新知探究
提出問題
(1)解二元一次方程組有幾種方法?
(2)結(jié)合教材實例總結(jié)用加減消元法解二元一次方程組的步驟.
(3)結(jié)合教材實例總結(jié)用代入消元法解二元一次方程組的步驟.
(4)請寫出解一般二元一次方程組的步驟.
(5)根據(jù)上述實例談?wù)勀銓λ惴ǖ睦斫?
(6)請同學(xué)們總結(jié)算法的特征.
(7)請思考我們學(xué)習(xí)算法的意義.
討論結(jié)果:
(1)代入消元法和加減消元法.
(2)回顧二元一次方程組
的求解過程,我們可以歸納出以下步驟:
第一步,①+②×2,得5x=1.③
第二步,解③,得x=.
第三步,②-①×2,得5y=3.④
第四步,解④,得y=.
第五步,得到方程組的解為
(3)用代入消元法解二元一次方程組
我們可以歸納出以下步驟:
第一步,由①得x=2y-1.③
第二步,把③代入②,得2(2y-1)+y=1.④
第三步,解④得y=.⑤
第四步,把⑤代入③,得x=2×-1=.
第五步,得到方程組的解為
(4)對于一般的二元一次方程組
其中a1b2-a2b1≠0,可以寫出類似的求解步驟:
第一步,①×b2-②×b1,得
(a1b2-a2b1)x=b2c1-b1c2.③
第二步,解③,得x=.
第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1.④
第四步,解④,得y=.
第五步,得到方程組的解為
(5)算法的定義:廣義的算法是指完成某項工作的方法和步驟,那么我們可以說洗衣機(jī)的使用說明書是操作洗衣機(jī)的算法,菜譜是做菜的算法等等.
在數(shù)學(xué)中,算法通常是指按照一定規(guī)則解決某一類問題的明確有限的步驟.
現(xiàn)在,算法通??梢跃幊捎嬎銠C(jī)程序,讓計算機(jī)執(zhí)行并解決問題.
(6)算法的特征:①確定性:算法的每一步都應(yīng)當(dāng)做到準(zhǔn)確無誤、不重不漏.“不重”是指不是可有可無的,甚至無用的步驟,“不漏”是指缺少哪一步都無法完成任務(wù).②邏輯性:算法從開始的“第一步”直到“最后一步”之間做到環(huán)環(huán)相扣,分工明確,“前一步”是“后一步”的前提,“后一步”是“前一步”的繼續(xù).③有窮性:算法要有明確的開始和結(jié)束,當(dāng)?shù)竭_(dá)終止步驟時所要解決的問題必須有明確的結(jié)果,也就是說必須在有限步內(nèi)完成任務(wù),不能無限制地持續(xù)進(jìn)行.
(7)在解決某些問題時,需要設(shè)計出一系列可操作或可計算的步驟來解決問題,這些步驟稱為解決這些問題的算法.也就是說,算法實際上就是解決問題的一種程序性方法.算法一般是機(jī)械的,有時需進(jìn)行大量重復(fù)的計算,它的優(yōu)點是一種通法,只要按部就班地去做,總能得到結(jié)果.因此算法是計算科學(xué)的重要基礎(chǔ).
應(yīng)用示例
思路1
例1(1)設(shè)計一個算法,判斷7是否為質(zhì)數(shù).
(2)設(shè)計一個算法,判斷35是否為質(zhì)數(shù).
算法分析:(1)根據(jù)質(zhì)數(shù)的定義,可以這樣判斷:依次用2—6除7,如果它們中有一個能整除7,則7不是質(zhì)數(shù),否則7是質(zhì)數(shù).
算法如下:(1)第一步,用2除7,得到余數(shù)1.因為余數(shù)不為0,所以2不能整除7.
第二步,用3除7,得到余數(shù)1.因為余數(shù)不為0,所以3不能整除7.
第三步,用4除7,得到余數(shù)3.因為余數(shù)不為0,所以4不能整除7.
第四步,用5除7,得到余數(shù)2.因為余數(shù)不為0,所以5不能整除7.
第五步,用6除7,得到余數(shù)1.因為余數(shù)不為0,所以6不能整除7.因此,7是質(zhì)數(shù).
(2)類似地,可寫出“判斷35是否為質(zhì)數(shù)”的算法:第一步,用2除35,得到余數(shù)1.因為余數(shù)不為0,所以2不能整除35.
第二步,用3除35,得到余數(shù)2.因為余數(shù)不為0,所以3不能整除35.
第三步,用4除35,得到余數(shù)3.因為余數(shù)不為0,所以4不能整除35.
第四步,用5除35,得到余數(shù)0.因為余數(shù)為0,所以5能整除35.因此,35不是質(zhì)數(shù).
點評:上述算法有很大的局限性,用上述算法判斷35是否為質(zhì)數(shù)還可以,如果判斷1997是否為質(zhì)數(shù)就麻煩了,因此,我們需要尋找普適性的算法步驟.
變式訓(xùn)練
請寫出判斷n(n>2)是否為質(zhì)數(shù)的算法.
分析:對于任意的整數(shù)n(n>2),若用i表示2—(n-1)中的任意整數(shù),則“判斷n是否為質(zhì)數(shù)”的算法包含下面的重復(fù)操作:用i除n,得到余數(shù)r.判斷余數(shù)r是否為0,若是,則不是質(zhì)數(shù);否則,將i的值增加1,再執(zhí)行同樣的操作.
這個操作一直要進(jìn)行到i的值等于(n-1)為止.
算法如下:第一步,給定大于2的整數(shù)n.
第二步,令i=2.
第三步,用i除n,得到余數(shù)r.
第四步,判斷“r=0”是否成立.若是,則n不是質(zhì)數(shù),結(jié)束算法;否則,將i的值增加1,仍用i表示.
第五步,判斷“i>(n-1)”是否成立.若是,則n是質(zhì)數(shù),結(jié)束算法;否則,返回第三步.
例2寫出用“二分法”求方程x2-2=0(x>0)的近似解的算法.
分析:令f(x)=x2-2,則方程x2-2=0(x>0)的解就是函數(shù)f(x)的零點.
“二分法”的基本思想是:把函數(shù)f(x)的零點所在的區(qū)間[a,b](滿足f(a)?f(b)<0)“一分為二”,得到[a,m]和[m,b].根據(jù)“f(a)?f(m)<0”是否成立,取出零點所在的區(qū)間[a,m]或[m,b],仍記為[a,b].對所得的區(qū)間[a,b]重復(fù)上述步驟,直到包含零點的區(qū)間[a,b]“足夠小”,則[a,b]內(nèi)的數(shù)可以作為方程的近似解.[來源:學(xué)&科&網(wǎng)Z&X&X&K]
解:第一步,令f(x)=x2-2,給定精確度d.
第二步,確定區(qū)間[a,b],滿足f(a)?f(b)<0.
第三步,取區(qū)間中點m=.
第四步,若f(a)?f(m)<0,則含零點的區(qū)間為[a,m];否則,含零點的區(qū)間為[m,b].將新得到的含零點的區(qū)間仍記為[a,b].
第五步,判斷[a,b]的長度是否小于d或f(m)是否等于0.若是,則m是方程的近似解;否則,返回第三步.
當(dāng)d=0.005時,按照以上算法,可以得到下表.
aba-b
121
11.50.5
1.251.50.25
1.3751.50.125
1.3751.43750.0625
1.406251.43750.03125
1.406251.4218750.015625
1.41406251.4218750.0078125
1.41406251.417968750.00390625
于是,開區(qū)間(1.4140625,1.41796875)中的實數(shù)都是當(dāng)精確度為0.005時的原方程的近似解.實際上,上述步驟也是求的近似值的一個算法.
點評:算法一般是機(jī)械的,有時需要進(jìn)行大量的重復(fù)計算,只要按部就班地去做,總能算出結(jié)果,通常把算法過程稱為“數(shù)學(xué)機(jī)械化”.數(shù)學(xué)機(jī)械化的優(yōu)點是它可以借助計算機(jī)來完成,實際上處理任何問題都需要算法.如:中國象棋有中國象棋的棋譜、走法、勝負(fù)的評判準(zhǔn)則;而國際象棋有國際象棋的棋譜、走法、勝負(fù)的評判準(zhǔn)則;再比如申請出國有一系列的先后手續(xù),購買物品也有相關(guān)的手續(xù)……
思路2
例1一個人帶著三只狼和三只羚羊過河,只有一條船,同船可容納一個人和兩只動物,沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量就會吃羚羊.該人如何將動物轉(zhuǎn)移過河?請設(shè)計算法.
分析:任何動物同船不用考慮動物的爭斗但需考慮承載的數(shù)量,還應(yīng)考慮到兩岸的動物都得保證狼的數(shù)量要小于羚羊的數(shù)量,故在算法的構(gòu)造過程中盡可能保證船里面有狼,這樣才能使得兩岸的羚羊數(shù)量占到優(yōu)勢.
解:具體算法如下:
算法步驟:
第一步:人帶兩只狼過河,并自己返回.
第二步:人帶一只狼過河,自己返回.
第三步:人帶兩只羚羊過河,并帶兩只狼返回.
第四步:人帶一只羊過河,自己返回.
第五步:人帶兩只狼過河.
點評:算法是解決某一類問題的精確描述,有些問題使用形式化、程序化的刻畫是最恰當(dāng)?shù)?這就要求我們在寫算法時應(yīng)精練、簡練、清晰地表達(dá),要善于分析任何可能出現(xiàn)的情況,體現(xiàn)思維的嚴(yán)密性和完整性.本題型解決問題的算法中某些步驟重復(fù)進(jìn)行多次才能解決,在現(xiàn)實生活中,很多較復(fù)雜的情境經(jīng)常遇到這樣的問題,設(shè)計算法的時候,如果能夠合適地利用某些步驟的重復(fù),不但可以使得問題變得簡單,而且可以提高工作效率.
例2喝一杯茶需要這樣幾個步驟:洗刷水壺、燒水、洗刷茶具、沏茶.問:如何安排這幾個步驟?并給出兩種算法,再加以比較.
分析:本例主要為加深對算法概念的理解,可結(jié)合生活常識對問題進(jìn)行分析,然后解決問題.
解:算法一:
第一步,洗刷水壺.
第二步,燒水.
第三步,洗刷茶具.
第四步,沏茶.
算法二:
第一步,洗刷水壺.
第二步,燒水,燒水的過程當(dāng)中洗刷茶具.
第三步,沏茶.
點評:解決一個問題可有多個算法,可以選擇其中的、最簡單的、步驟盡量少的算法.上面的兩種算法都符合題意,但是算法二運(yùn)用了統(tǒng)籌方法的原理,因此這個算法要比算法一更科學(xué).
例3寫出通過尺軌作圖確定線段AB一個5等分點的算法.
分析:我們借助于平行線定理,把位置的比例關(guān)系變成已知的比例關(guān)系,只要按照規(guī)則一步一步去做就能完成任務(wù).
解:算法分析:
第一步,從已知線段的左端點A出發(fā),任意作一條與AB不平行的射線AP.
第二步,在射線上任取一個不同于端點A的點C,得到線段AC.
第三步,在射線上沿AC的方向截取線段CE=AC.
第四步,在射線上沿AC的方向截取線段EF=AC.
第五步,在射線上沿AC的方向截取線段FG=AC.
第六步,在射線上沿AC的方向截取線段GD=AC,那么線段AD=5AC.
第七步,連結(jié)DB.
第八步,過C作BD的平行線,交線段AB于M,這樣點M就是線段AB的一個5等分點.
點評:用算法解決幾何問題能很好地訓(xùn)練學(xué)生的思維能力,并能幫助我們得到解決幾何問題的一般方法,可謂一舉多得,應(yīng)多加訓(xùn)練.
知能訓(xùn)練
設(shè)計算法判斷一元二次方程ax2+bx+c=0是否有實數(shù)根.
解:算法步驟如下:
第一步,輸入一元二次方程的系數(shù):a,b,c.
第二步,計算Δ=b2-4ac的值.
第三步,判斷Δ≥0是否成立.若Δ≥0成立,輸出“方程有實根”;否則輸出“方程無實根”,結(jié)束算法.
點評:用算法解決問題的特點是:具有很好的程序性,是一種通法.并且具有確定性、邏輯性、有窮性.讓我們結(jié)合例題仔細(xì)體會算法的特點.
拓展提升
中國網(wǎng)通規(guī)定:撥打市內(nèi)電話時,如果不超過3分鐘,則收取話費0.22元;如果通話時間超過3分鐘,則超出部分按每分鐘0.1元收取通話費,不足一分鐘按一分鐘計算.設(shè)通話時間為t(分鐘),通話費用y(元),如何設(shè)計一個程序,計算通話的費用.
解:算法分析:
數(shù)學(xué)模型實際上為:y關(guān)于t的分段函數(shù).
關(guān)系式如下:
y=
其中[t-3]表示取不大于t-3的整數(shù)部分.
算法步驟如下:
第一步,輸入通話時間t.
第二步,如果t≤3,那么y=0.22;否則判斷t∈Z是否成立,若成立執(zhí)行
y=0.2+0.1×(t-3);否則執(zhí)行y=0.2+0.1×([t-3]+1).
第三步,輸出通話費用c.
課堂小結(jié)
(1)正確理解算法這一概念.
(2)結(jié)合例題掌握算法的特點,能夠?qū)懗龀R妴栴}的算法.
作業(yè)
課本本節(jié)練習(xí)1、2.
設(shè)計感想
本節(jié)的引入精彩獨特,讓學(xué)生在感興趣的故事里進(jìn)入本節(jié)的學(xué)習(xí).算法是本章的重點也是本章的基礎(chǔ),是一個較難理解的概念.為了讓學(xué)生正確理解這一概念,本節(jié)設(shè)置了大量學(xué)生熟悉的事例,讓學(xué)生仔細(xì)體會反復(fù)訓(xùn)練.本節(jié)的事例有古老的經(jīng)典算法,有幾何算法等,因此這是一節(jié)很好的課例.
高二數(shù)學(xué)教案篇9
一、指導(dǎo)思想:
全面貫徹教育方針,深入實施素質(zhì)教育,使學(xué)生在高一學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步體會數(shù)學(xué)對發(fā)展自己思維能力的作用,體會數(shù)學(xué)對推動社會進(jìn)步和科學(xué)發(fā)展的意義以及數(shù)學(xué)的文化價值,提高數(shù)學(xué)素養(yǎng),以滿足個人發(fā)展與社會進(jìn)步的需要。
二、教學(xué)具體目標(biāo)
1、期中考前完成必修3、選修2—3第一章
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨立獲取數(shù)學(xué)知識的能力。
三、教材特點:
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書》,它在堅持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,強(qiáng)調(diào)了問題提出,抽象概括,分析理解,思考交流等研究性學(xué)習(xí)過程。具體特點如下:
1、“親和力”:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)激情。
2、“問題性”:專門安排了“課題學(xué)習(xí)”和“探究活動”,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3、“科學(xué)性”與“思想性”:通過不同數(shù)學(xué)內(nèi)容的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維能力,培育理性精神。
4、“時代性”與“應(yīng)用性”:教材中有“信息技術(shù)建議”和“信息技術(shù)應(yīng)用”,以具有時代性和現(xiàn)實感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動,發(fā)展應(yīng)用意識。
5、“人文應(yīng)用價值性”:編寫了一些閱讀材料,開拓學(xué)生視野,從數(shù)學(xué)史的發(fā)展足跡中獲取營養(yǎng)和動力,全面感受數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值。
四、教法分析:
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個究竟”的沖動,以達(dá)到培養(yǎng)其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動,切實改進(jìn)學(xué)生的學(xué)習(xí)方式。
3、在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
五、教學(xué)措施:
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用能力的培養(yǎng)。
六、教學(xué)進(jìn)度安排(略)
高二數(shù)學(xué)教案篇10
一、指導(dǎo)思想:
以發(fā)展教育的理念為指引,以學(xué)校教務(wù)處、教研組、年級組工作計劃為指南,加強(qiáng)備課組教師的教育教學(xué)理論學(xué)習(xí),更新教學(xué)觀念,落實教學(xué)常規(guī),全面提高學(xué)生的數(shù)學(xué)能力,尤其是提高創(chuàng)新意識和實踐能力,為社會培養(yǎng)創(chuàng)造型人才
二、學(xué)情分析及相關(guān)措施:
教學(xué)中要從學(xué)生的認(rèn)識水平和實際能力出發(fā),及時糾正不合理學(xué)習(xí)方法,研究學(xué)生的心理特征,做好高二第一學(xué)期與第二學(xué)期的銜接工作。注重培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。具體措施如下:
(1)注意研究學(xué)生,做好高二第一學(xué)期與第二學(xué)期的銜接工作。
(2)集中精力打好基礎(chǔ),分項突破難點。所列基礎(chǔ)知識依據(jù)新課程標(biāo)準(zhǔn)設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,講難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn)。
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作。
(6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
高二數(shù)學(xué)教案篇11
教學(xué)目標(biāo):
1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
教學(xué)重點、難點:
1、重點:指數(shù)函數(shù)的圖像和性質(zhì)
2、難點:底數(shù)a的變化對函數(shù)性質(zhì)的影響,突破難點的關(guān)鍵是利用多媒體
動感顯示,通過顏色的區(qū)別,加深其感性認(rèn)識。
教學(xué)方法:引導(dǎo)——發(fā)現(xiàn)教學(xué)法、比較法、討論法
教學(xué)過程:
一、事例引入
T:上節(jié)課我們學(xué)習(xí)了指數(shù)的運(yùn)算性質(zhì),今天我們來學(xué)習(xí)與指數(shù)有關(guān)的函數(shù)。什么是函數(shù)?
S:--------
T:主要是體現(xiàn)兩個變量的關(guān)系。我們來考慮一個與醫(yī)學(xué)有關(guān)的例子:大家對“非典”應(yīng)該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間里病原體在機(jī)體內(nèi)不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:
C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,------。一個這樣的球菌分裂x次后,得到的球菌的個數(shù)y與x的函數(shù)關(guān)系式是:y=2x)
S,T:(討論)這是球菌個數(shù)y關(guān)于分裂次數(shù)x的函數(shù),該函數(shù)是什么樣的形式(指數(shù)形式),
從函數(shù)特征分析:底數(shù)2是一個不等于1的正數(shù),是常量,而指數(shù)x卻是變量,我們稱這種函數(shù)為指數(shù)函數(shù)——點題。
二、指數(shù)函數(shù)的定義
C:定義:函數(shù)y=ax(a>0且a≠1)叫做指數(shù)函數(shù),x∈R.。
問題1:為何要規(guī)定a>0且a≠1?
S:(討論)
C:(1)當(dāng)a<0時,ax有時會沒有意義,如a=﹣3時,當(dāng)x=
就沒有意義;
(2)當(dāng)a=0時,ax有時會沒有意義,如x=-2時,
(3)當(dāng)a=1時,函數(shù)值y恒等于1,沒有研究的必要。
鞏固練習(xí)1:
下列函數(shù)哪一項是指數(shù)函數(shù)()
A、y=x2B、y=2x2C、y=2xD、y=-2x