教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高中數(shù)學(xué)教案模板范文大全

時間: 新華 數(shù)學(xué)教案

編寫教案有助于更好地滿足學(xué)生的學(xué)習(xí)需求,提高學(xué)生的學(xué)習(xí)效果。優(yōu)秀的高中數(shù)學(xué)教案模板范文大全是什么樣的?下面給大家?guī)砀咧袛?shù)學(xué)教案模板范文大全,供大家參考。

高中數(shù)學(xué)教案模板范文大全篇1

一、學(xué)情分析

本節(jié)課是在學(xué)生已學(xué)知識的基礎(chǔ)上進行展開學(xué)習(xí)的,也是對以前所學(xué)知識的鞏固和發(fā)展,但對學(xué)生的知識準(zhǔn)備情況來看,學(xué)生對相關(guān)基礎(chǔ)知識掌握情況是很好,所以在復(fù)習(xí)時要及時對學(xué)生相關(guān)知識進行提問,然后開展對本節(jié)課的鞏固性復(fù)習(xí)。而本節(jié)課學(xué)生會遇到的困難有:數(shù)軸、坐標(biāo)的表示;平面向量的坐標(biāo)表示;平面向量的坐標(biāo)運算。

二、考綱要求

1.會用坐標(biāo)表示平面向量的加法、減法與數(shù)乘運算.

2.理解用坐標(biāo)表示的平面向量共線的條件.

3.掌握數(shù)量積的坐標(biāo)表達式,會進行平面向量數(shù)量積的運算.

4.能用坐標(biāo)表示兩個向量的夾角,理解用坐標(biāo)表示的平面向量垂直的條件.

三、教學(xué)過程

(一) 知識梳理:

1.向量坐標(biāo)的求法

(1)若向量的起點是坐標(biāo)原點,則終點坐標(biāo)即為向量的坐標(biāo).

(2)設(shè)A(x1,y1),B(x2,y2),則

=_________________

| |=_______________

(二)平面向量坐標(biāo)運算

1.向量加法、減法、數(shù)乘向量

設(shè) =(x1,y1), =(x2,y2),則

+ = - = λ = .

2.向量平行的坐標(biāo)表示

設(shè) =(x1,y1), =(x2,y2),則 ∥ ?________________.

(三)核心考點·習(xí)題演練

考點1.平面向量的坐標(biāo)運算

例1.已知A(-2,4),B(3,-1),C(-3,-4).設(shè) (1)求3 + -3 ;

(2)求滿足 =m +n 的實數(shù)m,n;

練:(2015江蘇,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),則m-n的值為     .

考點2平面向量共線的坐標(biāo)表示

例2:平面內(nèi)給定三個向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求實數(shù)k的值;

練:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ為實數(shù),( +λ )∥ ,則λ= (  )

思考:向量共線有哪幾種表示形式?兩向量共線的充要條件有哪些作用?

方法總結(jié):

1.向量共線的兩種表示形式

設(shè)a=(x1,y1),b=(x2,y2),①a∥b?a=λb(b≠0);②a∥b?x1y2-x2y1=0.至于使用哪種形式,應(yīng)視題目的具體條件而定,一般情況涉及坐標(biāo)的應(yīng)用②.

2.兩向量共線的充要條件的作用

判斷兩向量是否共線(平行的問題;另外,利用兩向量共線的充要條件可以列出方程(組),求出未知數(shù)的值.

考點3平面向量數(shù)量積的坐標(biāo)運算

例3“已知正方形ABCD的邊長為1,點E是AB邊上的動點,

則 的值為     ; 的值為     .

【提示】解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來運算,這樣可以使數(shù)量積的運算變得簡捷.

練:(2014,安徽,13)設(shè) =(1,2), =(1,1), = +k .若 ⊥ ,則實數(shù)k的值等于(  )

【思考】兩非零向量 ⊥ 的充要條件: · =0?     .

解題心得:

(1)當(dāng)已知向量的坐標(biāo)時,可利用坐標(biāo)法求解,即若a=(x1,y1),b=(x2,y2),則a·b=x1x2+y1y2.

(2)解決涉及幾何圖形的向量數(shù)量積運算問題時,可建立直角坐標(biāo)系利用向量的數(shù)量積的坐標(biāo)表示來運算,這樣可以使數(shù)量積的運算變得簡捷.

(3)兩非零向量a⊥b的充要條件:a·b=0?x1x2+y1y2=0.

考點4:平面向量模的坐標(biāo)表示

例4:(2015湖南,理8)已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標(biāo)為(2,0),則 的值為(  )

A.6 B.7 C.8 D.9

練:(2016,上海,12)

在平面直角坐標(biāo)系中,已知A(1,0),B(0,-1),P是曲線上一個動點,則 的取值范圍是?

解題心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的運算轉(zhuǎn)化為數(shù)量積運算;

(2)幾何法,利用向量加減法的平行四邊形法則或三角形法則作出向量,再利用余弦定理等方法求解..

五、課后作業(yè)(課后習(xí)題1、2題)

高中數(shù)學(xué)教案模板范文大全篇2

【教學(xué)目標(biāo)】

1. 知識與技能

(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:

(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:

(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。

2.過程與方法

在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

3.情感、態(tài)度與價值觀

通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。

【教學(xué)重點】

①等差數(shù)列的概念;②等差數(shù)列的通項公式

【教學(xué)難點】

①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導(dǎo)過程.

【學(xué)情分析】

我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展.

【設(shè)計思路】

1.教法

①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.

②分組討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.

③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.

2.學(xué)法

引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.

【教學(xué)過程】

一:創(chuàng)設(shè)情境,引入新課

1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?

3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?

教師:以上三個問題中的數(shù)蘊涵著三列數(shù).

學(xué)生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.

二:觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數(shù)列有什么共同特點?

思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?

思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?

教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.

(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達.)

三:舉一反三,鞏固定義

1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .

(設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).

2思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

(設(shè)計意圖:強化等差數(shù)列的證明定義法)

四:利用定義,導(dǎo)出通項

1.已知等差數(shù)列:8,5,2,…,求第200項?

2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)

五:應(yīng)用通項,解決問題

1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?

2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

3求等差數(shù)列 3,7,11,…的第4項和第10項

教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式

(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)

六:反饋練習(xí):教材13頁練習(xí)1

七:歸納總結(jié):

1.一個定義:

等差數(shù)列的定義及定義表達式

2.一個公式:

等差數(shù)列的通項公式

3.二個應(yīng)用:

定義和通項公式的應(yīng)用

教師:讓學(xué)生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補充

(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運用基本概念.)

【設(shè)計反思】

本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.

高中數(shù)學(xué)教案模板范文大全篇3

教學(xué)目標(biāo):

1、掌握向量的加法運算,并理解其幾何意義;

2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;

3、通過將向量運算與熟悉的數(shù)的運算進行類比,使學(xué)生掌握向量加法運算的交換律和結(jié)合律,并會用它們進行向量計算,滲透類比的數(shù)學(xué)方法;

教學(xué)重點:會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量。

教學(xué)難點:理解向量加法的定義。

學(xué)法:

數(shù)能進行運算,向量是否也能進行運算呢?數(shù)的加法啟發(fā)我們,從運算的角度看,位移的合成、力的合成可看作向量的加法。借助于物理中位移的合成、力的合成來理解向量的加法,讓學(xué)生順理成章接受向量的加法定義。結(jié)合圖形掌握向量加法的三角形法則和平行四邊形法則。聯(lián)系數(shù)的運算律理解和掌握向量加法運算的交換律和結(jié)合律。

教具:多媒體或?qū)嵨锿队皟x,尺規(guī)

授課類型:新授課

教學(xué)思路:

一、設(shè)置情景:

1、復(fù)習(xí):向量的定義以及有關(guān)概念

強調(diào):向量是既有大小又有方向的量。長度相等、方向相同的向量相等。因此,我們研究的向量是與起點無關(guān)的自由向量,即任何向量可以在不改變它的方向和大小的前提下,移到任何位置

2、情景設(shè)置:

(1)某人從A到B,再從B按原方向到C,

則兩次的位移和:AB?BC?AC

(2)若上題改為從A到B,再從B按反方向到C,

則兩次的位移和:AB?BC?AC

(3)某車從A到B,再從B改變方向到C,

則兩次的位移和:AB?BC?ACAB

C

(4)船速為AB,水速為BC,則兩速度和:AB?BC?AC

二、探索研究:

向量的加法:求兩個向量和的運算,叫做向量的加法。ABCABC

高中數(shù)學(xué)教案模板范文大全篇4

本文題目:高三數(shù)學(xué)復(fù)習(xí)教案:古典概型復(fù)習(xí)教案

【高考要求】古典概型(B);互斥事件及其發(fā)生的概率(A)

【學(xué)習(xí)目標(biāo)】:1、了解概率的頻率定義,知道隨機事件的發(fā)生是隨機性與規(guī)律性的統(tǒng)一;

2、理解古典概型的特點,會解較簡單的古典概型問題;

3、了解互斥事件與對立事件的概率公式,并能運用于簡單的概率計算.

【知識復(fù)習(xí)與自學(xué)質(zhì)疑】

1、古典概型是一種理想化的概率模型,假設(shè)試驗的結(jié)果數(shù)具有性和性.解古典概型問題關(guān)鍵是判斷和計數(shù),要掌握簡單的記數(shù)方法(主要是列舉法).借助于互斥、對立關(guān)系將事件分解或轉(zhuǎn)化是很重要的方法.

2、(A)在10件同類產(chǎn)品中,其中8件為正品,2件為次品。從中任意抽出3件,則下列4個事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是.

3、(A)從5個紅球,1個黃球中隨機取出2個,所取出的兩個球顏色不同的概率是。

4、(A)同時拋兩個各面上分別標(biāo)有1、2、3、4、5、6均勻的正方體玩具一次,向上的兩個數(shù)字之和為3的概率是.

5、(A)某人射擊5槍,命中3槍,三槍中恰好有2槍連中的概率是.

6、(B)若實數(shù),則曲線表示焦點在y軸上的雙曲線的概率是.

【例題精講】

1、(A)甲、乙兩人參加知識競答,共有10道不同的題目,其中選擇題6道,判斷題4道,甲、乙兩人依次各抽一題.(1)甲抽到選擇題、乙抽到判斷題的概率是多少?

(2)甲、乙兩人中至少有一人抽到選擇題的概率是多少?

2、(B)黃種人群中各種血型的人所占的比例如下表所示:

血型ABABO

該血型的人所占的比(%)2829835

已知同種血型的人可以輸血,O型血可以輸給任一種血型的人,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若小明因病需要輸血,問:

(1)任找一個人,其血可以輸給小明的概率是多少?

(2)任找一個人,其血不能輸給小明的概率是多少?

3、(B)將兩粒骰子投擲兩次,求:(1)向上的點數(shù)之和是8的概率;(2)向上的點數(shù)之和不小于8的概率;(3)向上的點數(shù)之和不超過10的概率.

4、(B)將一個各面上均涂有顏色的正方體鋸成(n個同樣大小的正方體,從這些小正方體中任取一個,求下列事件的概率:(1)三面涂有顏色;(2)恰有兩面涂有顏色;

(3)恰有一面涂有顏色;(4)至少有一面涂有顏色.

【矯正反饋】

1、(A)一個三位數(shù)的密碼鎖,每位上的數(shù)字都可在0到10這十個數(shù)字中任選,某人忘記了密碼最后一個號碼,開鎖時在對好前兩位號碼后,隨意撥動最后一個數(shù)字恰好能開鎖的概率是.

2、(A)第1、2、5、7路公共汽車都要停靠的一個車站,有一位乘客等候著1路或5路汽車,假定各路汽車首先到站的可能性相等,那么首先到站的正好是這位乘客所要乘的的車的概率是.

3、(A)某射擊運動員在打靶中,連續(xù)射擊3次,事件至少有兩次中靶的對立事件是.

4、(B)某產(chǎn)品分甲、乙、丙三級,其中乙、丙兩級均屬次品,在正常生產(chǎn)情況下出現(xiàn)乙級品和丙級品的概率分別為3%和1%,求抽驗一只是正品(甲級)的概率.

5、(B)袋中裝有4只白球和2只黑球,從中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

【遷移應(yīng)用】

1、(A)將一粒骰子連續(xù)拋擲三次,它落地時向上的點數(shù)依次成等差數(shù)列的概率是.

2、(A)從魚塘中打一網(wǎng)魚,共M條,做上標(biāo)記后放回池塘中,過了幾天,又打上來一網(wǎng)魚,共N條,其中K條有標(biāo)記,估計池塘中魚的條數(shù)為.

3、(A)從分別寫有A,B,C,D,E的5張卡片中,任取2張,這兩張上的字母恰好按字母順序相鄰的概率是.

4、(B)電子鐘一天顯示的時間是從00:00到23:59的每一時刻都由四個數(shù)字組成,則一天中任一時刻的四個數(shù)字之和為23的概率是.

5、(B)將甲、乙兩粒骰子先后各拋一次,a,b分別表示拋擲甲、乙兩粒骰子所出現(xiàn)的點數(shù).

(1)若點P(a,b)落在不等式組表示的平面區(qū)域記為A,求事件A的概率;

(2)求P(a,b)落在直線x+y=m(m為常數(shù))上,且使此事件的概率最大,求m的值.

高中數(shù)學(xué)教案模板范文大全篇5

一、教學(xué)目標(biāo)

1.知識與能力目標(biāo)

①使學(xué)生理解數(shù)列極限的概念和描述性定義。

②使學(xué)生會判斷一些簡單數(shù)列的極限,了解數(shù)列極限的“e-N"定義,能利用逐步分析的方法證明一些數(shù)列的極限。

③通過觀察運動和變化的過程,歸納總結(jié)數(shù)列與其極限的特定關(guān)系,提高學(xué)生的數(shù)學(xué)概括能力和抽象思維能力。

2.過程與方法目標(biāo)

培養(yǎng)學(xué)生的極限的思想方法和獨立學(xué)習(xí)的能力。

3.情感、態(tài)度、價值觀目標(biāo)

使學(xué)生初步認(rèn)識有限與無限、近似與精確、量變與質(zhì)變的辯證關(guān)系,培養(yǎng)學(xué)生的辯證唯物主義觀點。

二、教學(xué)重點和難點

教學(xué)重點:數(shù)列極限的概念和定義。

教學(xué)難點:數(shù)列極限的“ε―N”定義的理解。

三、教學(xué)對象分析

這節(jié)課是數(shù)列極限的第一節(jié)課,足學(xué)生學(xué)習(xí)極限的入門課,對于學(xué)生來說是一個全新的內(nèi)容,學(xué)生的思維正處于由經(jīng)驗型抽象思維向理論型抽象思維過渡階段,在《立體幾何》內(nèi)容求球的表面積和體積時對極限思想已有接觸,而學(xué)生在以往的數(shù)學(xué)學(xué)習(xí)中主要接觸的是關(guān)于“有限”的問題,很少涉及“無限”的問題。極限這一抽象概念能夠使他們做基于直觀的理解,并引導(dǎo)他們作出描述性定義“當(dāng)n無限增大時,數(shù)列{an}中的項an無限趨近于常數(shù)A,也就是an與A的差的絕對值無限趨近于0”,并能用這個定義判斷一些簡單數(shù)列的極限。但要使他們在一節(jié)課內(nèi)掌握“ε-N”語言求極限要求過高。因此不宜講得太難,能夠通過具體的幾個例子,歸納研究一些簡單的數(shù)列的極限。使學(xué)生理解極限的基本概念,認(rèn)識什么叫做數(shù)列的極限以及數(shù)列極限的定義即可。

四、教學(xué)策略及教法設(shè)計

本課是采用啟發(fā)式講授教學(xué)法,通過多媒體課件演示及學(xué)生討論的方法進行教學(xué)。通過學(xué)生比較熟悉的一個實際問題入手,引起學(xué)生的注意,激發(fā)學(xué)生的學(xué)習(xí)興趣。然后通過具體的兩個比較簡單的數(shù)列,運用多媒體課件演示向?qū)W生展示了數(shù)列中的各項隨著項數(shù)的增大,無限地趨向于某個常數(shù)的過程,讓學(xué)生在觀察的基礎(chǔ)上討論總結(jié)出這兩個數(shù)列的特征,從而得出數(shù)列極限的一個描述性定義。再在教師的引導(dǎo)下分析數(shù)列極限的各種不同情況。從而對數(shù)列極限有了直觀上的認(rèn)識,接著讓學(xué)生根據(jù)數(shù)列中各項的情況判斷一些簡單的數(shù)列的極限。從而達到深化定義的效果。最后進行練習(xí)鞏固,通過這樣的一個完整的教學(xué)過程,由觀察到分析、由定量到定性,由直觀到抽象,并借助于多媒體課件的演示,使得學(xué)生逐步地了解極限這個新的概念,為下節(jié)課的極限的運算及應(yīng)用做準(zhǔn)備,為以后學(xué)習(xí)高等數(shù)學(xué)知識打下基礎(chǔ)。在整個教學(xué)過程中注意突出重點,突破難點,達到教學(xué)目標(biāo)的要求。

五、教學(xué)過程

1.創(chuàng)設(shè)情境

課件展示創(chuàng)設(shè)情境動畫。

今天我們將要學(xué)習(xí)一個很重要的新的知識。

情境

1、我國古代數(shù)學(xué)家劉徽于公元263年創(chuàng)立“割圓術(shù)”,“割之彌細,所失彌少。割之又割,以至不可割,則與圓周合體而無所失矣”。

情境

2、我國古代哲學(xué)家莊周所著的《莊子?天下篇》引用過一句話:一尺之棰,日取其半,萬世不竭。也就是說拿一根木棒,將它切成一半,拿其中一半來再切成一半,得到四分之一,再切成一半,就得到了八分之???如此下去,無限次地切,每次都切一半,問是否會切完?

大家都知道,這是不可能切完的,但是每次切了以后,木棒都比原來的少了一半,也就是說木棒的長度越來越短,但永遠不會變成零。從而引出極限的概念。

2.定義探究

展示定義探索(一)動畫演示。

問題1:請觀察以下無窮數(shù)列,當(dāng)n無限增大時,a,I的變化趨勢有什么特點?

(1)1/2,2/3,3/4,?n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n??

問題2:觀察課件演示,請分析以上兩個數(shù)列隨項數(shù)n的增大項有那些特點?

師生一起歸納總結(jié)出以下結(jié)論:數(shù)列(1)項數(shù)n無限增大時,項無限趨近于1;數(shù)列(2)項數(shù)n無限增大時,項無限趨近于1。

那么就把1叫數(shù)列(1)的極限,1叫數(shù)列(2)的極限。這兩個數(shù)列只是形式不同,它們都是隨項數(shù)n的無限增大,項無限趨近于某一確定常數(shù),這個常數(shù)叫做這個數(shù)列的極限。

那么,什么叫數(shù)列的極限呢?對于無窮數(shù)列an,如果當(dāng)n無限增大時,an無限趨向于某一個常數(shù)A,則稱A是數(shù)列an的極限。

提出問題3:怎樣用數(shù)學(xué)語言來定量描述呢?怎樣用數(shù)學(xué)語言來描述上述數(shù)列的變化趨勢?

展示定義探索(二)動畫演示,師生共同總結(jié)發(fā)現(xiàn)在數(shù)軸上兩點間距離越小,項與1越趨近,因此可以借助兩點間距離無限小的方式來描述項無限趨近常數(shù)。無論預(yù)先指定多么小的正數(shù)e,如取e=O-1,總能在數(shù)列中找到一項am,使得an項后面的所有項與1的差的絕對值都小于ε,若取£=0。0001,則第6項后面的所有項與1的差的絕對值都小于ε,即1是數(shù)列(1)的極限。最后,師生共同總結(jié)出數(shù)列的極限定義中應(yīng)包含哪量(用這些量來描述數(shù)列1的極限)。

數(shù)列的極限為:對于任意的ε>0,如果總存在自然數(shù)N,當(dāng)n>N時,不等式|an-A|n的極限。

定義探索動畫(一):

課件可以實現(xiàn)任意輸入一個n值,可以計算出相應(yīng)的數(shù)列第n項的值,并且動畫演示數(shù)列的變化過程。如圖1所示是課件運行時的一個畫面。

定義探索動畫(二)課件可以實現(xiàn)任意輸入一個n值,可以計算出相應(yīng)的數(shù)列第n項的值和Ian一1I的值,并且動畫演示出第an項和1之間的距離。如圖2所示是課件運行時的一個畫面。

3.知識應(yīng)用

這里舉了3道例題,與學(xué)生一塊思考,一起分析作答。

例1.已知數(shù)列:

1,-1/2,1/3,-1/4,1/5??,(-1)n+11/n,??

(1)計算an-0(2)第幾項后面的所有項與0的差的絕對值都小于0.017都小于任意指定的正數(shù)。

(3)確定這個數(shù)列的極限。

例2.已知數(shù)列:

已知數(shù)列:3/2,9/4,15/8??,2+(-1/2)n,??。

猜測這個數(shù)列有無極限,如果有,應(yīng)該是什么數(shù)?并求出從第幾項開始,各項與這個極限的差都小于0.1,從第幾項開始,各項與這個極限的差都小于0.017

例3.求常數(shù)數(shù)列一7,一7,一7,一7,??的極限。

5.知識小結(jié)

這節(jié)課我們研究了數(shù)列極限的概念,對數(shù)列極限有了初步的認(rèn)識。數(shù)列極限研究的是無限變化的趨勢,而通過對數(shù)列極限定義的探討,我們看到這一過程又是通過有限來把握的,有限與無限、近似與精確、量變與質(zhì)變之間的辯證關(guān)系在這里得到了充分的體現(xiàn)。

課后練習(xí):

(1)判斷下列數(shù)列是否有極限,如果有的話請求出它的極限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。

(2)課本練習(xí)1,2。

6.探究性問題

設(shè)計研究性學(xué)習(xí)的思考題。

提出問題:

芝諾悖論:阿基里斯是《荷馬史詩》中的善跑英雄。奔跑中的阿基里斯永遠也無法超過在他前面慢慢爬行的烏龜,因為當(dāng)阿基里斯到達烏龜?shù)钠鹋茳c時,烏龜已經(jīng)走在前面一小段路了,阿基里斯又必須趕過這一小段路,而烏龜又向前走了。這樣,阿基里斯可無限接近它,但不能追到它。假定阿基里斯跑步的速度是烏龜速度的10倍,阿基里斯與烏龜賽跑的路程是1公里。如果讓烏龜先跑0.1公里,當(dāng)阿基里斯追到O.1公里的地方,烏龜又向前跑了0.01公里。當(dāng)阿基里斯追到0.01公里的地方,烏龜又向前跑了0.001公里??這樣一直追下去,阿基里斯能追上烏龜嗎?

這里是研究性學(xué)習(xí)內(nèi)容,以學(xué)生感興趣的悖論作為課后作業(yè),鞏固本節(jié)所學(xué)內(nèi)容,進一步提高了學(xué)生學(xué)習(xí)數(shù)列的極限的興趣。同時也為學(xué)生創(chuàng)設(shè)了課下交流與討論的情境,逐步培養(yǎng)學(xué)生相互合作、交流和討論的習(xí)慣,使學(xué)生感受到了數(shù)學(xué)來源于生活,又服務(wù)于生活的實質(zhì),逐步養(yǎng)成用數(shù)學(xué)的知識去解決生活中遇到的實際問題的習(xí)慣。

高中數(shù)學(xué)教案模板范文大全篇6

[核心必知]

1、預(yù)習(xí)教材,問題導(dǎo)入

根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問題、

(1)常見的程序框有哪些?

提示:終端框(起止框),輸入、輸出框,處理框,判斷框、

(2)算法的基本邏輯結(jié)構(gòu)有哪些?

提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)、

2、歸納總結(jié),核心必記

(1)程序框圖

程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執(zhí)行順序、

(2)常見的程序框、流程線及各自表示的功能

圖形符號名稱功能

終端框(起止框)表示一個算法的起始和結(jié)束

輸入、輸出框表示一個算法輸入和輸出的信息

處理框(執(zhí)行框)賦值、計算

判斷框判斷某一條件是否成立,成立時在出口處標(biāo)明“是”或“Y”;不成立時標(biāo)明“否”或“N”

流程線連接程序框

○連接點連接程序框圖的兩部分

(3)算法的基本邏輯結(jié)構(gòu)

①算法的三種基本邏輯結(jié)構(gòu)

算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的

②順序結(jié)構(gòu)

順序結(jié)構(gòu)是由若干個依次執(zhí)行的步驟組成的這是任何一個算法都離不開的基本結(jié)構(gòu),用程序框圖表示為:

[問題思考]

(1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結(jié)束嗎?

提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結(jié)束、

(2)順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)嗎?

提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)、

[課前反思]

通過以上預(yù)習(xí),必須掌握的幾個知識點:

(1)程序框圖的概念:

(2)常見的程序框、流程線及各自表示的功能:

(3)算法的.三種基本邏輯結(jié)構(gòu):

(4)順序結(jié)構(gòu)的概念及其程序框圖的表示:

問題背景:計算1×2+3×4+5×6+…+99×100。

[思考1]能否設(shè)計一個算法,計算這個式子的值。

提示:能。

[思考2]能否采用更簡潔的方式表述上述算法過程。

提示:能,利用程序框圖。

[思考3]畫程序框圖時應(yīng)遵循怎樣的規(guī)則?

名師指津:

(1)使用標(biāo)準(zhǔn)的框圖符號。

(2)框圖一般按從上到下、從左到右的方向畫。

(3)除判斷框外,其他程序框圖的符號只有一個進入點和一個退出點,判斷框是一個具有超過一個退出點的程序框。

(4)在圖形符號內(nèi)描述的語言要非常簡練清楚。

(5)流程線不要忘記畫箭頭,因為它是反映流程執(zhí)行先后次序的,如果不畫出箭頭就難以判斷各框的執(zhí)行順序。

高中數(shù)學(xué)教案模板范文大全篇7

各位老師:

大家好!

我叫______,來自____。我說課的題目是《古典概型》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第二節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教法與學(xué)法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計:

一、教材分析

1.教材所處的地位和作用

古典概型是一種特殊的數(shù)學(xué)模型,也是一種最基本的概率模型,在概率論中占有相當(dāng)重要的地位。它承接著前面學(xué)過的隨機事件的概率及其性質(zhì),又是以后學(xué)習(xí)條件概率的基礎(chǔ),起到承前啟后的作用。

2.教學(xué)的重點和難點

重點:理解古典概型及其概率計算公式。

難點:古典概型的判斷及把一些實際問題轉(zhuǎn)化成古典概型。

二、教學(xué)目標(biāo)分析

1.知識與技能目標(biāo)

(1)通過試驗理解基本事件的概念和特點

(2)在數(shù)學(xué)建模的過程中,抽離出古典概型的兩個基本特征,推導(dǎo)出古典概型下的概率的計算公式。

2、過程與方法:

經(jīng)歷公式的推導(dǎo)過程,體驗由特殊到一般的數(shù)學(xué)思想方法。

3、情感態(tài)度與價值觀:

(1)用具有現(xiàn)實意義的實例,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生勇于探索,善于發(fā)現(xiàn)的創(chuàng)新思想。

(2)讓學(xué)生掌握"理論來源于實踐,并把理論應(yīng)用于實踐"的辨證思想。

三、教法與學(xué)法分析

1、教法分析:根據(jù)本節(jié)課的特點,采用引導(dǎo)發(fā)現(xiàn)和歸納概括相結(jié)合的教學(xué)方法,通過提出問題、思考問題、解決問題等教學(xué)過程,觀察對比、概括歸納古典概型的概念及其概率公式,再通過具體問題的提出和解決,來激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的主體能動性,讓每一個學(xué)生充分地參與到學(xué)習(xí)活動中來。

2、學(xué)法分析:學(xué)生在教師創(chuàng)設(shè)的問題情景中,通過觀察、類比、思考、探究、概括、歸納和動手嘗試相結(jié)合,體現(xiàn)了學(xué)生的主體地位,培養(yǎng)了學(xué)生由具體到抽象,由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度。

㈠創(chuàng)設(shè)情景、引入新課

在課前,教師布置任務(wù),以小組為單位,完成下面兩個模擬試驗:

試驗一:拋擲一枚質(zhì)地均勻的硬幣,分別記錄"正面朝上"和"反面朝上"的次數(shù),要求每個數(shù)學(xué)小組至少完成20次(最好是整十?dāng)?shù)),最后由代表匯總;

試驗二:拋擲一枚質(zhì)地均勻的骰子,分別記錄"1點"、"2點"、"3點"、"4點"、"5點"和"6點"的次數(shù),要求每個數(shù)學(xué)小組至少完成60次(最好是整十?dāng)?shù)),最后由代表匯總。

在課上,學(xué)生展示模擬試驗的操作方法和試驗結(jié)果,并與同學(xué)交流活動感受,教師最后匯總方法、結(jié)果和感受,并提出兩個問題。

1.用模擬試驗的方法來求某一隨機事件的概率好不好?為什么?

不好,要求出某一隨機事件的概率,需要進行大量的試驗,并且求出來的結(jié)果是頻率,而不是概率。

2.根據(jù)以前的學(xué)習(xí),上述兩個模擬試驗的每個結(jié)果之間都有什么特點?]

「設(shè)計意圖」通過課前的模擬實驗,讓學(xué)生感受與他人合作的重要性,培養(yǎng)學(xué)生運用數(shù)學(xué)語言的能力。隨著新問題的提出,激發(fā)了學(xué)生的求知欲望,通過觀察對比,培養(yǎng)了學(xué)生發(fā)現(xiàn)問題的能力。

㈡思考交流、形成概念

學(xué)生觀察對比得出兩個模擬試驗的相同點和不同點,教師給出基本事件的概念,并對相關(guān)特點加以說明,加深對新概念的理解。

[基本事件有如下的兩個特點:

(1)任何兩個基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和.]

「設(shè)計意圖」讓學(xué)生從問題的相同點和不同點中找出研究對象的對立統(tǒng)一面,這能培養(yǎng)學(xué)生分析問題的能力,同時也教會學(xué)生運用對立統(tǒng)一的辯證唯物主義觀點來分析問題的一種方法。教師的注解可以使學(xué)生更好的把握問題的關(guān)鍵。

例1從字母a、b、c、d中任意取出兩個不同字母的試驗中,有哪些基本事件?

先讓學(xué)生嘗試著列出所有的基本事件,教師再講解用樹狀圖列舉問題的優(yōu)點。

「設(shè)計意圖」將數(shù)形結(jié)合和分類討論的思想滲透到具體問題中來。由于沒有學(xué)習(xí)排列組合,因此用列舉法列舉基本事件的個數(shù),不僅能讓學(xué)生直觀的感受到對象的總數(shù),而且還能使學(xué)生在列舉的時候作到不重不漏。解決了求古典概型中基本事件總數(shù)這一難點

觀察對比,發(fā)現(xiàn)兩個模擬試驗和例1的共同特點:

讓學(xué)生先觀察對比,找出兩個模擬試驗和例1的共同特點,再概括總結(jié)得到的結(jié)論,教師最后補充說明。

[經(jīng)概括總結(jié)后得到:

(1)試驗中所有可能出現(xiàn)的基本事件只有有限個;(有限性)

(2)每個基本事件出現(xiàn)的可能性相等。(等可能性)

我們將具有這兩個特點的概率模型稱為古典概率概型,簡稱古典概型。

「設(shè)計意圖」培養(yǎng)運用從具體到抽象、從特殊到一般的辯證唯物主義觀點分析問題的能力,充分體現(xiàn)了數(shù)學(xué)的化歸思想。啟發(fā)誘導(dǎo)的同時,訓(xùn)練了學(xué)生觀察和概括歸納的能力。通過列出相同和不同點,能讓學(xué)生很好的理解古典概型。

㈢觀察分析、推導(dǎo)方程

問題思考:在古典概型下,基本事件出現(xiàn)的概率是多少?隨機事件出現(xiàn)的概率如何計算?

教師提出問題,引導(dǎo)學(xué)生類比分析兩個模擬試驗和例1的概率,先通過用概率加法公式求出隨機事件的概率,再對比概率結(jié)果,發(fā)現(xiàn)其中的聯(lián)系,最后概括總結(jié)得出古典概型計算任何事件的概率計算公式:

「設(shè)計意圖」鼓勵學(xué)生運用觀察類比和從具體到抽象、從特殊到一般的辯證唯物主義方法來分析問題,同時讓學(xué)生感受數(shù)學(xué)化歸思想的優(yōu)越性和這一做法的合理性,突出了古典概型的概率計算公式這一重點。

提問:

(1)在例1的實驗中,出現(xiàn)字母"d"的概率是多少?

(2)在使用古典概型的概率公式時,應(yīng)該注意什么?

「設(shè)計意圖」教師提問,學(xué)生回答,深化對古典概型的概率計算公式的理解,也抓住了解決古典概型的概率計算的關(guān)鍵。

㈣例題分析、推廣應(yīng)用

例2單選題是標(biāo)準(zhǔn)化考試中常用的題型,一般是從A,B,c,D四個選項中選擇一個正確答案。如果考生掌握了考差的內(nèi)容,他可以選擇唯一正確的答案。假設(shè)考生不會做,他隨機的選擇一個答案,問他答對的概率是多少?

學(xué)生先思考再回答,教師對學(xué)生沒有注意到的關(guān)鍵點加以說明。

「設(shè)計意圖」讓學(xué)生明確決概率的計算問題的關(guān)鍵是:先要判斷該概率模型是不是古典概型,再要找出隨機事件A包含的基本事件的個數(shù)和試驗中基本事件的總數(shù)。鞏固學(xué)生對已學(xué)知識的掌握。

例3同時擲兩個骰子,計算:

(1)一共有多少種不同的結(jié)果?

(2)其中向上的點數(shù)之和是5的結(jié)果有多少種?

(3)向上的點數(shù)之和是5的概率是多少?

先給出問題,再讓學(xué)生完成,然后引導(dǎo)學(xué)生分析問題,發(fā)現(xiàn)解答中存在的問題。引導(dǎo)學(xué)生用列表來列舉試驗中的基本事件的總數(shù)。

「設(shè)計意圖」利用列表數(shù)形結(jié)合和分類討論,既能形象直觀地列出基本事件的總數(shù),又能做到列舉的不重不漏。深化鞏固對古典概型及其概率計算公式的理解。培養(yǎng)學(xué)生運用數(shù)形結(jié)合的思想,提高發(fā)現(xiàn)問題、分析問題、解決問題的能力,增強學(xué)生數(shù)學(xué)思維情趣,形成學(xué)習(xí)數(shù)學(xué)知識的積極態(tài)度。

㈤探究思想、鞏固深化

問題思考:為什么要把兩個骰子標(biāo)上記號?如果不標(biāo)記號會出現(xiàn)什么情況?你能解釋其中的原因嗎?

要求學(xué)生觀察對比兩種結(jié)果,找出問題產(chǎn)生的原因。

「設(shè)計意圖」通過觀察對比,發(fā)現(xiàn)兩種結(jié)果不同的根本原因是--研究的問題是否滿足古典概型,從而再次突出了古典概型這一教學(xué)重點,體現(xiàn)了學(xué)生的主體地位,逐漸養(yǎng)成自主探究能力。

㈥總結(jié)概括、加深理解

1.基本事件的特點

2.古典概型的特點

3.古典概型的概率計算公式

學(xué)生小結(jié)歸納,不足的地方老師補充說明。

「設(shè)計意圖」使學(xué)生對本節(jié)課的知識有一個系統(tǒng)全面的認(rèn)識,并把學(xué)過的相關(guān)知識有機地串聯(lián)起來,便于記憶和應(yīng)用,也進一步升華了這節(jié)課所要表達的本質(zhì)思想,讓學(xué)生的認(rèn)知更上一層。

㈦布置作業(yè)

課本練習(xí)1、2、3

「設(shè)計意圖」進一步讓學(xué)生掌握古典概型及其概率公式,并能夠?qū)W以致用,加深對本節(jié)課的理解。

高中數(shù)學(xué)教案模板范文大全篇8

教學(xué)準(zhǔn)備

教學(xué)目標(biāo)

o了解向量的實際背景,理解平面向量的概念和向量的幾何表示;掌握向量的模、零向量、單位向量、平行向量、相等向量、共線向量等概念;并會區(qū)分平行向量、相等向量和共線向量·

o通過對向量的學(xué)習(xí),使學(xué)生初步認(rèn)識現(xiàn)實生活中的向量和數(shù)量的本質(zhì)區(qū)別·

o通過學(xué)生對向量與數(shù)量的識別能力的訓(xùn)練,培養(yǎng)學(xué)生認(rèn)識客觀事物的數(shù)學(xué)本質(zhì)的能力·

教學(xué)重難點

教學(xué)重點:理解并掌握向量、零向量、單位向量、相等向量、共線向量的概念,會表示向量·

教學(xué)難點:平行向量、相等向量和共線向量的&39;區(qū)別和聯(lián)系·

教學(xué)過程

(一)向量的概念:我們把既有大小又有方向的量叫向量。

(二)(教材P74面的四個圖制作成幻燈片)請同學(xué)閱讀課本后回答:(7個問題一次出現(xiàn))

1、數(shù)量與向量有何區(qū)別?(數(shù)量沒有方向而向量有方向)

2、如何表示向量?

3、有向線段和線段有何區(qū)別和聯(lián)系?分別可以表示向量的什么?

4、長度為零的向量叫什么向量?長度為1的向量叫什么向量?

5、滿足什么條件的兩個向量是相等向量?單位向量是相等向量嗎?

6、有一組向量,它們的方向相同或相反,這組向量有什么關(guān)系?

7、如果把一組平行向量的起點全部移到一點O,這是它們是不是平行向量?

這時各向量的終點之間有什么關(guān)系?

課后小結(jié)

1、描述向量的兩個指標(biāo):模和方向·

2、平面向量的概念和向量的幾何表示;

3、向量的模、零向量、單位向量、平行向量等概念。

高中數(shù)學(xué)教案模板范文大全篇9

考試要求重難點擊命題展望

1.理解復(fù)數(shù)的基本概念、復(fù)數(shù)相等的充要條件.

2.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.

3.會進行復(fù)數(shù)代數(shù)形式的四則運算.了解復(fù)數(shù)的代數(shù)形式的加、減運算及其運算的幾何意義.

4.了解從自然數(shù)系到復(fù)數(shù)系的關(guān)系及擴充的基本思想,體會理性思維在數(shù)系擴充中的作用.本章重點:1.復(fù)數(shù)的有關(guān)概念;2.復(fù)數(shù)代數(shù)形式的四則運算.

本章難點:運用復(fù)數(shù)的有關(guān)概念解題.近幾年高考對復(fù)數(shù)的考查無論是試題的難度,還是試題在試卷中所占比例都是呈下降趨勢,常以選擇題、填空題形式出現(xiàn),多為容易題.在復(fù)習(xí)過程中,應(yīng)將復(fù)數(shù)的概念及運算放在首位.

知識網(wǎng)絡(luò)

15.1復(fù)數(shù)的概念及其運算

典例精析

題型一復(fù)數(shù)的概念

【例1】(1)如果復(fù)數(shù)(m2+i)(1+mi)是實數(shù),則實數(shù)m=;

(2)在復(fù)平面內(nèi),復(fù)數(shù)1+ii對應(yīng)的點位于第象限;

(3)復(fù)數(shù)z=3i+1的共軛復(fù)數(shù)為z=.

【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是實數(shù)1+m3=0m=-1.

(2)因為1+ii=i(1+i)i2=1-i,所以在復(fù)平面內(nèi)對應(yīng)的點為(1,-1),位于第四象限.

(3)因為z=1+3i,所以z=1-3i.

【點撥】運算此類題目需注意復(fù)數(shù)的代數(shù)形式z=a+bi(a,bR),并注意復(fù)數(shù)分為實數(shù)、虛數(shù)、純虛數(shù),復(fù)數(shù)的幾何意義,共軛復(fù)數(shù)等概念.

【變式訓(xùn)練1】(1)如果z=1-ai1+ai為純虛數(shù),則實數(shù)a等于

A.0B.-1C.1D.-1或1

(2)在復(fù)平面內(nèi),復(fù)數(shù)z=1-ii(i是虛數(shù)單位)對應(yīng)的點位于()

A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限

【解析】(1)設(shè)z=xi,x0,則

xi=1-ai1+ai1+ax-(a+x)i=0或故選D.

(2)z=1-ii=(1-i)(-i)=-1-i,該復(fù)數(shù)對應(yīng)的點位于第三象限.故選C.

題型二復(fù)數(shù)的相等

【例2】(1)已知復(fù)數(shù)z0=3+2i,復(fù)數(shù)z滿足zz0=3z+z0,則復(fù)數(shù)z=;

(2)已知m1+i=1-ni,其中m,n是實數(shù),i是虛數(shù)單位,則m+ni=;

(3)已知關(guān)于x的方程x2+(k+2i)x+2+ki=0有實根,則這個實根為,實數(shù)k的值為.

【解析】(1)設(shè)z=x+yi(x,yR),又z0=3+2i,

代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,

整理得(2y+3)+(2-2x)i=0,

則由復(fù)數(shù)相等的條件得

解得所以z=1-.

(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.

則由復(fù)數(shù)相等的條件得

所以m+ni=2+i.

(3)設(shè)x=x0是方程的實根,代入方程并整理得

由復(fù)數(shù)相等的充要條件得

解得或

所以方程的實根為x=2或x=-2,

相應(yīng)的k值為k=-22或k=22.

【點撥】復(fù)數(shù)相等須先化為z=a+bi(a,bR)的形式,再由相等得實部與實部相等、虛部與虛部相等.

【變式訓(xùn)練2】(1)設(shè)i是虛數(shù)單位,若1+2i1+i=a+bi(a,bR),則a+b的值是()

A.-12B.-2C.2D.12

(2)若(a-2i)i=b+i,其中a,bR,i為虛數(shù)單位,則a+b=.

【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.

(2)3.2+ai=b+ia=1,b=2.

題型三復(fù)數(shù)的運算

【例3】(1)若復(fù)數(shù)z=-12+32i,則1+z+z2+z3++z2008=;

(2)設(shè)復(fù)數(shù)z滿足z+z=2+i,那么z=.

【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.

所以zn具有周期性,在一個周期內(nèi)的和為0,且周期為3.

所以1+z+z2+z3++z2008

=1+z+(z2+z3+z4)++(z2006+z2007+z2008)

=1+z=12+32i.

(2)設(shè)z=x+yi(x,yR),則x+yi+x2+y2=2+i,

所以解得所以z=+i.

【點撥】解(1)時要注意x3=1(x-1)(x2+x+1)=0的三個根為1,,-,

其中=-12+32i,-=-12-32i,則

1++2=0,1+-+-2=0,3=1,-3=1,-=1,2=-,-2=.

解(2)時要注意zR,所以須令z=x+yi.

【變式訓(xùn)練3】(1)復(fù)數(shù)11+i+i2等于()

A.1+i2B.1-i2C.-12D.12

(2)(20__江西鷹潭)已知復(fù)數(shù)z=23-i1+23i+(21-i)2010,則復(fù)數(shù)z等于()

A.0B.2C.-2iD.2i

【解析】(1)D.計算容易有11+i+i2=12.

(2)A.

總結(jié)提高

復(fù)數(shù)的代數(shù)運算是重點,是每年必考內(nèi)容之一,復(fù)數(shù)代數(shù)形式的運算:①加減法按合并同類項法則進行;②乘法展開、除法須分母實數(shù)化.因此,一些復(fù)數(shù)問題只需設(shè)z=a+bi(a,bR)代入原式后,就可以將復(fù)數(shù)問題化歸為實數(shù)問題來解決.

高中數(shù)學(xué)教案模板范文大全篇10

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

(2)進一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

教學(xué)重點、難點:求曲線的方程.

教學(xué)用具:計算機.

教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

教學(xué)過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問題.

對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質(zhì).

事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實例分析】

例1:設(shè) 、 兩點的坐標(biāo)是 、(3,7),求線段 的垂直平分線 的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

解法一:易求線段 的中點坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

(通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點的坐標(biāo)都是這個方程的解.

設(shè) 是線段 的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點 的坐標(biāo) 是方程 的解.

(2)以這個方程的解為坐標(biāo)的點都是曲線上的點.

設(shè)點 的坐標(biāo) 是方程①的任意一解,則

到 、 的距離分別為

所以 ,即點 在直線 上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè) 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標(biāo),這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設(shè) 是線段 的垂直平分線上任意一點,也就是點 屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.

讓我們用這個方法試解如下問題:

例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進行求解.

求解過程略.

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如 表示曲線上任意一點 的坐標(biāo);

(2)寫出適合條件 的點 的集合

;

(3)用坐標(biāo)表示條件 ,列出方程 ;

(4)化方程 為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點.

一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.

下面再看一個問題:

例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

解:設(shè)點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

由距離公式,點 適合的條件可表示為

將①式 移項后再兩邊平方,得

化簡得

由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè) 、 的坐標(biāo)為 、 ,則 的坐標(biāo)為 , 的坐標(biāo)為 .

根據(jù)條件 ,代入坐標(biāo)可得

化簡得

由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進一步求出 、 的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)教案模板范文大全篇11

高中數(shù)學(xué)數(shù)列知識點

數(shù)列的函數(shù)理解:

①數(shù)列是一種特殊的函數(shù)。其特殊性主要表現(xiàn)在其定義域和值域上。數(shù)列可以看作一個定義域為正整數(shù)集N_或其有限子集{1,2,3,…,n}的函數(shù),其中的{1,2,3,…,n}不能省略。②用函數(shù)的觀點認(rèn)識數(shù)列是重要的思想方法,一般情況下函數(shù)有三種表示方法,數(shù)列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數(shù)列和以遞推公式給出數(shù)列。③函數(shù)不一定有解析式,同樣數(shù)列也并非都有通項公式。

通項公式:數(shù)列的第N項an與項的序數(shù)n之間的關(guān)系可以用一個公式an=f(n)來表示,這個公式就叫做這個數(shù)列的通項公式(注:通項公式不)。

數(shù)列通項公式的特點:

(1)有些數(shù)列的通項公式可以有不同形式,即不。

(2)有些數(shù)列沒有通項公式(如:素數(shù)由小到大排成一列2,3,5,7,11,...)。

遞推公式:如果數(shù)列{an}的第n項與它前一項或幾項的關(guān)系可以用一個式子來表示,那么這個公式叫做這個數(shù)列的遞推公式。

數(shù)列遞推公式特點:

(1)有些數(shù)列的遞推公式可以有不同形式,即不。

(2)有些數(shù)列沒有遞推公式。

有遞推公式不一定有通項公式。

注:數(shù)列中的項必須是數(shù),它可以是實數(shù),也可以是復(fù)數(shù)。

等差數(shù)列通項公式

an=a1+(n-1)d

n=1時a1=S1

n≥2時an=Sn-Sn-1

an=kn+b(k,b為常數(shù))推導(dǎo)過程:an=dn+a1-d令d=k,a1-d=b則得到an=kn+b

等差中項

由三個數(shù)a,A,b組成的等差數(shù)列可以堪稱最簡單的等差數(shù)列。這時,A叫做a與b的等差中項(arithmeticmean)。

有關(guān)系:A=(a+b)÷2

前n項和

倒序相加法推導(dǎo)前n項和公式:

Sn=a1+a2+a3+·····+an

=a1+(a1+d)+(a1+2d)+······+[a1+(n-1)d]①

Sn=an+an-1+an-2+······+a1

=an+(an-d)+(an-2d)+······+[an-(n-1)d]②

由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n個)=n(a1+an)

∴Sn=n(a1+an)÷2

等差數(shù)列的前n項和等于首末兩項的和與項數(shù)乘積的一半:

Sn=n(a1+an)÷2=na1+n(n-1)d÷2

Sn=dn2÷2+n(a1-d÷2)

亦可得

a1=2sn÷n-an=[sn-n(n-1)d÷2]÷n

an=2sn÷n-a1

有趣的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1

等差數(shù)列性質(zhì)

一、任意兩項am,an的關(guān)系為:

an=am+(n-m)d

它可以看作等差數(shù)列廣義的通項公式。

二、從等差數(shù)列的定義、通項公式,前n項和公式還可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈N_

三、若m,n,p,q∈N_,且m+n=p+q,則有am+an=ap+aq

四、對任意的k∈N_,有

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…成等差數(shù)列。

怎么樣提高數(shù)學(xué)成績

首先想要提升數(shù)學(xué)成績,成為數(shù)學(xué)學(xué)霸的前提是要對數(shù)學(xué)有良好的學(xué)習(xí)興趣。其次要學(xué)會課前預(yù)習(xí),方便自己能夠更加深入的吃透課堂上的知識點。然后還要學(xué)會總結(jié)復(fù)習(xí),總結(jié)自己課堂上的問題,復(fù)習(xí)課堂上的重要知識點,從而提高自己的數(shù)學(xué)成績。

提升數(shù)學(xué)成績還要擁有一個錯題本,和數(shù)學(xué)資料。認(rèn)真對待自己的學(xué)習(xí)工具,多做練習(xí)題,找出自己的薄弱環(huán)節(jié)和自己常犯的題型,記在錯題本上,常練習(xí),常鞏固。在自己的數(shù)學(xué)資料中摸索出適合自己的解題技巧,反復(fù)練習(xí)加以運用,一定會提升你的數(shù)學(xué)成績。

學(xué)會聽課,在課堂上勇于提問。數(shù)學(xué)最重要的部分都是在課本上,所以必須要掌握好課堂的45分鐘。把握好數(shù)學(xué)課本,為自己打下一個好基礎(chǔ),這樣才能更有效的提升你的數(shù)學(xué)成績。學(xué)會做課堂筆記,把每節(jié)課的重要知識點記下來,以便接下來的復(fù)習(xí)。

學(xué)好數(shù)學(xué)的方法技巧整理

預(yù)習(xí)的方法

上課之前一定要抽時間進行預(yù)習(xí),有時預(yù)習(xí)比做作業(yè)更重要,因為通過預(yù)習(xí)我們可以初步掌握課程的大致內(nèi)容,聽課就能夠把握好重點,針對性比較強,還會帶著問題去聽課,聽課效率就會比較高,上課聽明白了,完成作業(yè)也會更好更快,最終會形成良性循環(huán)。

聽懂課的習(xí)慣

注意聽教師每節(jié)課強調(diào)的學(xué)習(xí)重點,注意聽對定理、公式、法則的引入與推導(dǎo)的方法和過程,注意聽對例題關(guān)鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點,沿著知識的發(fā)生發(fā)展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉(zhuǎn)變?yōu)椤皶牎薄?/p>

不斷練習(xí)

不斷練習(xí)是指多做數(shù)學(xué)練習(xí)題。希望學(xué)好數(shù)學(xué),多做練習(xí)是必不可少的。做練習(xí)的原因有以下三點:第一,熟練和鞏固學(xué)到的數(shù)學(xué)知識;二,引導(dǎo)同學(xué)靈活運用所學(xué)知識點以及獨立思考獨立做題的水平;第三,融會貫通。通過做題將所學(xué)的所有知識點結(jié)合起來,加深同學(xué)對數(shù)學(xué)體系化的理解。

高中數(shù)學(xué)教案模板范文大全篇12

學(xué)習(xí)目標(biāo)

明確排列與組合的聯(lián)系與區(qū)別,能判斷一個問題是排列問題還是組合問題;能運用所學(xué)的排列組合知識,正確地解決的實際問題.

學(xué)習(xí)過程

一、學(xué)前準(zhǔn)備

復(fù)習(xí):

(課本P28A13)填空:

(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數(shù)是;

(2)要從5件不同的禮物中選出3件分送3為同學(xué),不同方法的種數(shù)是;

(3)5名工人要在3天中各自選擇1天休息,不同方法的種數(shù)是;

(4)集合A有個元素,集合B有個元素,從兩個集合中各取1個元素,不同方法的種數(shù)是;

二、新課導(dǎo)學(xué)

探究新知(復(fù)習(xí)教材P14~P25,找出疑惑之處)

問題1:判斷下列問題哪個是排列問題,哪個是組合問題:

(1)從4個風(fēng)景點中選出2個安排游覽,有多少種不同的方法?

(2)從4個風(fēng)景點中選出2個,并確定這2個風(fēng)景點的游覽順序,有多少種不同的方法?

應(yīng)用示例:

例1:從10個不同的文藝節(jié)目中選6個編成一個節(jié)目單,如果某女演員的獨唱節(jié)目一定不能排在第二個節(jié)目的位置上,則共有多少種不同的排法?

例2:7位同學(xué)站成一排,分別求出符合下列要求的不同排法的種數(shù).

(1)甲站在中間;

(2)甲、乙必須相鄰;

(3)甲在乙的左邊(但不一定相鄰);

(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

(5)甲、乙、丙相鄰;

(6)甲、乙不相鄰;

(7)甲、乙、丙兩兩不相鄰。

反饋練習(xí)

1、(課本P40A4)某學(xué)生邀請10位同學(xué)中的6位參加一項活動,其中兩位同學(xué)要么都請,要么都不請,共有多少種邀請方法?

2、5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列

3、馬路上有12盞燈,為了節(jié)約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.

當(dāng)堂檢測

1、某班新年聯(lián)歡會原定的5個節(jié)目已排成節(jié)目單,開演前又增加了兩個新節(jié)目.如果將這兩個節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為()

A.42B.30C.20D.12

2、(課本P40A7)書架上有4本不同的數(shù)學(xué)書,5本不同的物理書,3本不同的化學(xué)書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?

課后作業(yè)

1、(課本P41B2)用數(shù)字0,1,2,3,4,5組成沒有重復(fù)數(shù)字的數(shù),問:(1)能夠組成多少個六位奇數(shù)?(2)能夠組成多少個大于201345的正整數(shù)?

2、(課本P41B4)某種產(chǎn)品的加工需要經(jīng)過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?

100884 主站蜘蛛池模板: 万载县| 登封市| 广丰县| 游戏| 黄浦区| 土默特右旗| 黄冈市| 桓台县| 灵武市| 博罗县| 东乡族自治县| 元氏县| 双牌县| 清水县| 景德镇市| 扶风县| 永修县| 沈丘县| 拉萨市| 蒙城县| 唐河县| 乌苏市| 维西| 河间市| 应用必备| 连城县| 漠河县| 隆化县| 南宫市| 新乐市| 台南县| 周至县| 淮阳县| 通榆县| 昌都县| 龙江县| 台南市| 崇明县| 伊宁市| 旌德县| 博白县|