教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高中數(shù)學(xué)集合教案的模板

時(shí)間: 新華 數(shù)學(xué)教案

教案通過明確教學(xué)目標(biāo)、確定教學(xué)內(nèi)容和方法,為教師提供了系統(tǒng)、全面的教學(xué)指導(dǎo)。寫高中數(shù)學(xué)集合教案的模板有什么要注意的呢?這里給大家?guī)砀咧袛?shù)學(xué)集合教案的模板,希望對(duì)大家有所幫助。

高中數(shù)學(xué)集合教案的模板篇1

1.樹立新型的數(shù)學(xué)教學(xué)觀念,明確數(shù)學(xué)的實(shí)用意義

高中數(shù)學(xué)是人類對(duì)社會(huì)認(rèn)識(shí)的重要方面,也是一門極具實(shí)用性的基礎(chǔ)性學(xué)科。教師在進(jìn)行數(shù)學(xué)教學(xué)的過程中,要將數(shù)學(xué)知識(shí)背后蘊(yùn)含的文化背景與文化知識(shí)傳達(dá)給學(xué)生,讓學(xué)生從基礎(chǔ)的數(shù)學(xué)知識(shí)中掌握真正的數(shù)學(xué)思維,學(xué)會(huì)運(yùn)用數(shù)學(xué)技巧解決生活中的實(shí)際問題,要讓學(xué)生明確數(shù)學(xué)所蘊(yùn)含的社會(huì)意義,以更好地培養(yǎng)數(shù)學(xué)理念,使學(xué)生更好地運(yùn)用數(shù)學(xué),對(duì)數(shù)學(xué)產(chǎn)生真正的興趣。

2.提升教師的教學(xué)素質(zhì),轉(zhuǎn)變教師角色定位

在新課程標(biāo)準(zhǔn)下,教師在數(shù)學(xué)教學(xué)中的角色由控制者轉(zhuǎn)變?yōu)橐龑?dǎo)者。因此,教師必須要學(xué)會(huì)提升自身的素質(zhì),轉(zhuǎn)變教學(xué)觀念,通過良好的師風(fēng)師德引導(dǎo)學(xué)生積極投入到學(xué)習(xí)過程中。學(xué)校要定期進(jìn)行培訓(xùn),加強(qiáng)學(xué)校之間的交流,通過互相學(xué)習(xí)、合作提升教師的素質(zhì),促進(jìn)教師角色的轉(zhuǎn)變。教師要在教學(xué)的過程中重視對(duì)學(xué)生個(gè)性的激發(fā)以及學(xué)生創(chuàng)新精神的鼓勵(lì),教師要引導(dǎo)學(xué)生主動(dòng)發(fā)表自身對(duì)學(xué)習(xí)問題的看法,要讓學(xué)生成為真正的主人,促進(jìn)學(xué)生多元思維的發(fā)展。

3.合理運(yùn)用信息技術(shù),培養(yǎng)學(xué)生的科學(xué)思維

高中數(shù)學(xué)教學(xué)過程中,信息技術(shù)的應(yīng)用必不可少,但是也不能過分強(qiáng)調(diào)信息技術(shù)的作用。教師在教學(xué)過程中,要充分把握數(shù)學(xué)知識(shí)的特點(diǎn),要將抽象的數(shù)學(xué)概念、知識(shí)框架等內(nèi)容通過多媒體技術(shù)轉(zhuǎn)化為形象具體的畫面以利于學(xué)生的理解和吸收,但是對(duì)于那些需要進(jìn)行基礎(chǔ)性訓(xùn)練、推理論證的問題,要讓學(xué)生親手進(jìn)行實(shí)踐分析。教師可以利用科學(xué)性的計(jì)算器或者技術(shù)教育平臺(tái),推廣計(jì)算機(jī)技術(shù)在數(shù)學(xué)領(lǐng)域的運(yùn)用,要充分重視學(xué)生的地域性特征,在學(xué)生對(duì)計(jì)算機(jī)技術(shù)已經(jīng)形成基本認(rèn)識(shí)的基礎(chǔ)上進(jìn)行新課標(biāo)內(nèi)容的講解和分析,防止出現(xiàn)盲目追求進(jìn)度,忽視學(xué)生基礎(chǔ)等問題的發(fā)生。

高中數(shù)學(xué)集合教案的模板篇2

教學(xué)目標(biāo):

1.結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;

2.學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

3.并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

教學(xué)重點(diǎn):

通過實(shí)例理解分層抽樣的方法.

教學(xué)難點(diǎn):

分層抽樣的步驟.

教學(xué)過程:

一、問題情境

1.復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

2.實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動(dòng)

能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性.

由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,

所以在各年級(jí)抽取的個(gè)體數(shù)依次是,,,即40,32,28.

三、建構(gòu)數(shù)學(xué)

1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

說明:①分層抽樣時(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用.

2.三種抽樣方法對(duì)照表:

類別

共同點(diǎn)

各自特點(diǎn)

相互聯(lián)系

適用范圍

簡(jiǎn)單隨機(jī)抽樣

抽樣過程中每個(gè)個(gè)體被抽取的概率是相同的

從總體中逐個(gè)抽取

總體中的個(gè)體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個(gè)部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣

總體中的個(gè)體數(shù)較多

分層抽樣

將總體分成幾層,分層進(jìn)行抽取

各層抽樣時(shí)采用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3.分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分.

(2)確定比例:計(jì)算各層的個(gè)體數(shù)與總體的個(gè)體數(shù)的比.

(3)確定各層應(yīng)抽取的樣本容量.

(4)在每一層進(jìn)行抽樣(各層分別按簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本.

四、數(shù)學(xué)運(yùn)用

1.例題.

例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時(shí)在每個(gè)班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

③某班元旦聚會(huì),要產(chǎn)生兩名“幸運(yùn)者”.

對(duì)這三件事,合適的抽樣方法為()

A.分層抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡(jiǎn)單隨機(jī)抽樣

C.分層抽樣,簡(jiǎn)單隨機(jī)抽樣,簡(jiǎn)單隨機(jī)抽樣

D.系統(tǒng)抽樣,分層抽樣,簡(jiǎn)單隨機(jī)抽樣

例2某電視臺(tái)在因特網(wǎng)上就觀眾對(duì)某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛

喜愛

一般

不喜愛

2435

4567

3926

1072

電視臺(tái)為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5.

然后在各層用簡(jiǎn)單隨機(jī)抽樣方法抽取.

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數(shù)分別為12,23,20,5.

說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對(duì)于不能取整數(shù)的情況,取其近似值.

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對(duì)學(xué)校在校務(wù)公開方面的某意見,擬抽取一個(gè)容量為20的樣本.

分析:(1)總體容量較小,用抽簽法或隨機(jī)數(shù)表法都很方便.

(2)總體容量較大,用抽簽法或隨機(jī)數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

(3)由于學(xué)校各類人員對(duì)這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

五、要點(diǎn)歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.分層抽樣的概念與特征;

2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

高中數(shù)學(xué)集合教案的模板篇3

自我介紹:;我姓鞠,今后我將和大家一起學(xué)習(xí)高中數(shù)學(xué)課程,手機(jī);討論數(shù)學(xué):;相信大家對(duì)于高中學(xué)習(xí)都充滿著好奇,和初中相比,高;我們不急于上新課,我想和大家聊一聊數(shù)學(xué),一起來思;一、為什么要學(xué)習(xí)數(shù)學(xué)?;數(shù)學(xué)是科學(xué)的大門和鑰匙;馬克思說:一種科學(xué)只有在成功地運(yùn)用數(shù)學(xué)時(shí),才算達(dá);著名數(shù)學(xué)家華羅庚在《人民日?qǐng)?bào)》精彩描述:數(shù)學(xué)在“;大家知道海王星是怎高中數(shù)學(xué)開學(xué)第一課

自我介紹:

我姓鞠,今后我將和大家一起學(xué)習(xí)高中數(shù)學(xué)課程,手機(jī):????,QQ:????。告訴我的通訊方式是希望能拓寬與大家交流的平臺(tái)。希望能與大家在課堂中相識(shí),在生活中相知,不僅能成為你們知識(shí)的傳授者,方法的指引者,更希望成為你們情感上的依賴者,成為朋友。

討論數(shù)學(xué):

相信大家對(duì)于高中學(xué)習(xí)都充滿著好奇,和初中相比,高中課程與初中課程有很大的不同。今天這節(jié)課

我們不急于上新課,我想和大家聊一聊數(shù)學(xué),一起來思考為什么要學(xué)習(xí)數(shù)學(xué)及如何學(xué)好數(shù)學(xué)這兩個(gè)問題。

一、為什么要學(xué)習(xí)數(shù)學(xué)?

數(shù)學(xué)是科學(xué)的大門和鑰匙。

馬克思說:一種科學(xué)只有在成功地運(yùn)用數(shù)學(xué)時(shí),才算達(dá)到完善的地步。

著名數(shù)學(xué)家華羅庚在《人民日?qǐng)?bào)》精彩描述:數(shù)學(xué)在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,日用之繁”等方面無處不有重要貢獻(xiàn)。

大家知道海王星是怎么發(fā)現(xiàn)的,冥王星又是怎么被請(qǐng)出十大行星行列的???

其實(shí)在我們的周圍有很多事情都是可以用數(shù)學(xué)可以來解決的,無非很多人都沒有用數(shù)學(xué)的眼光來看待。

當(dāng)然,我們學(xué)習(xí)的數(shù)學(xué)只是數(shù)學(xué)學(xué)科體系中很基礎(chǔ),很小的一部分。現(xiàn)在課本上學(xué)的未必能直接應(yīng)用于生活,主要是為以后學(xué)習(xí)更高層次的理科打好基礎(chǔ),同時(shí),也為了掌握一些數(shù)學(xué)的思考方法以及分析問題解決問題的思維方式。哲學(xué)家培根說過:“讀詩使人靈秀,讀歷史使人明智,學(xué)邏輯使人周密,學(xué)哲學(xué)使人善辯,學(xué)數(shù)學(xué)使人聰明?”,也有人形象地稱數(shù)學(xué)是思維的體操。下面我們通過具體的例子來體驗(yàn)一下某些數(shù)學(xué)思想方法和思維方式。

故事一:據(jù)說國(guó)際象棋是古印度的一位宰相發(fā)明的。國(guó)王很欣賞他的這項(xiàng)發(fā)明,問他的宰相要什么賞賜。聰明的宰相說,“我所要的從一粒谷子(沒錯(cuò),是1粒,不是1兩或1斤)開始。在這個(gè)有64格的棋盤上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒數(shù)加倍,??如此下去,一直放滿到棋盤上的64格。這就是我所要的賞賜。”國(guó)王覺得宰相要的實(shí)在不多,就叫人按宰相的要求賞賜。但后來發(fā)現(xiàn)即使把全國(guó)所有的谷子抬來也遠(yuǎn)遠(yuǎn)不夠。

數(shù)學(xué)游戲:兩人相繼輪流往長(zhǎng)方形桌子上放同樣大小的硬幣,硬幣一定要平放在桌面上,后放的硬幣不能壓在先放的硬幣上,放最后一顆的硬幣的人算贏。應(yīng)該先放還是后放才有必勝的把握。

數(shù)學(xué)思想:退到最簡(jiǎn)單、最特殊的地方。

故事二:聰明的渡邊:20世紀(jì)40年代末,手寫工具突破性進(jìn)展圓珠筆問世,它以價(jià)廉、方便、書寫流利在社會(huì)上廣泛流傳,但寫到20萬字時(shí)就會(huì)因圓珠磨小而漏油,影響了銷售。工程師們從圓珠質(zhì)量入手,從改進(jìn)油墨性能入手進(jìn)行改良,但收效甚微。于是廠家打出廣告:解決此問題獲獎(jiǎng)金50萬元。當(dāng)時(shí)山地制筆廠的青年工人渡邊看到女兒把圓珠筆用到快漏油時(shí)就不用這一現(xiàn)象中受到啟發(fā),很好地解決了這一問題,你認(rèn)為他會(huì)怎么做呢?

渡邊的成功之處就在于思維角度新,從問題的側(cè)面輕巧取勝。也正體現(xiàn)了數(shù)學(xué)學(xué)習(xí)中經(jīng)常用到的發(fā)散式思維。在數(shù)學(xué)學(xué)習(xí)中,既要有集中式思維又要有發(fā)散式思維。集中式思維是一種常用思維渠道,即為對(duì)問題的歸納,聯(lián)系思維方式,表現(xiàn)為對(duì)解題方法的模仿和繼承;而發(fā)散式思維即對(duì)問題開拓、創(chuàng)新,表現(xiàn)為對(duì)問題舉一反三,觸類旁通。在解決具體問題中,我們應(yīng)該將兩種思維方式相結(jié)合。

學(xué)數(shù)學(xué)有利于培養(yǎng)人的思維品質(zhì):結(jié)構(gòu)意識(shí)、整體意識(shí)、抽象意識(shí)、化歸意識(shí)、優(yōu)化意識(shí)、反思意識(shí),盡管數(shù)學(xué)在培養(yǎng)學(xué)生的這些思維品質(zhì)方面和其他學(xué)科存在著交集,但數(shù)學(xué)在其中的地位是無法被代替的。總之,學(xué)習(xí)數(shù)學(xué)可以使人思考問題更合乎邏輯,更有條理,更嚴(yán)密精確,更深入簡(jiǎn)潔,更善于創(chuàng)造??

二、如何學(xué)好高中數(shù)學(xué)

與初中數(shù)學(xué)相比,高中數(shù)學(xué)更注重提高數(shù)學(xué)思維能力,要求同學(xué)們?cè)趯W(xué)習(xí)數(shù)學(xué)和運(yùn)用數(shù)學(xué)解決問題時(shí),不斷地經(jīng)歷直觀感知、觀察發(fā)現(xiàn)、歸納類比、空間想象、抽象概括、符號(hào)表示、運(yùn)算求解、數(shù)據(jù)處理、演繹證明、反思與建構(gòu)等思維過程。高一數(shù)學(xué)一開始便在必修1中觸及集合語言、函數(shù)模型,在必修2中涉及空間立體圖形、坐標(biāo)法、文字符號(hào)圖形語言的轉(zhuǎn)換,相對(duì)初中數(shù)學(xué)而言,抽象程度高,邏輯推理強(qiáng),知識(shí)難度大,同學(xué)們會(huì)感到難學(xué),認(rèn)為數(shù)學(xué)神秘莫測(cè),有些章節(jié)如聽天書,從而可能會(huì)產(chǎn)生畏懼感。我認(rèn)為學(xué)好高中數(shù)學(xué)要注意以下幾點(diǎn):

第一:培養(yǎng)數(shù)學(xué)興趣

只有愛好某項(xiàng)事業(yè)或?qū)I(yè)才能對(duì)它產(chǎn)生興趣,才能激發(fā)學(xué)習(xí)、工作和自覺性與積極性;很難說哪個(gè)人天生愛好數(shù)學(xué),愛好都是在生活和學(xué)習(xí)中逐漸產(chǎn)生的。如果你認(rèn)為數(shù)學(xué)枯燥、乏味,那么你不可能真正學(xué)好數(shù)學(xué),只有在學(xué)習(xí)中,逐漸發(fā)現(xiàn)數(shù)學(xué)的簡(jiǎn)單美、對(duì)稱美以及數(shù)學(xué)高度的嚴(yán)謹(jǐn)與和諧,才能在學(xué)習(xí)過程中喜歡這門學(xué)科,才能產(chǎn)生興趣。愛因斯坦說:興趣是最好的老師;在諸多非智力因素中,興趣處于一種特殊的地位,她可以激發(fā)一定的情感,喚起某種動(dòng)機(jī),培養(yǎng)人的意志,也可以改變?nèi)说膽B(tài)度。

第二:要改變一個(gè)觀念。

有人會(huì)說自己的基礎(chǔ)不好。那我問下什么是基礎(chǔ)?今天所學(xué)的知識(shí)就是明天的基礎(chǔ)。明天學(xué)習(xí)的知識(shí)就是后天的基礎(chǔ)。所以要學(xué)好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實(shí)的了。所以現(xiàn)在你們是在同一個(gè)起跑線上的,無所謂基礎(chǔ)好不好。今后的學(xué)習(xí)中,我會(huì)照顧大多數(shù)同學(xué)的數(shù)學(xué)基礎(chǔ)。

第三:養(yǎng)成良好的學(xué)習(xí)習(xí)慣

㈠課前預(yù)習(xí)。怎樣預(yù)習(xí)呢?就是自己在上課之前把內(nèi)容先看一邊,把自己不懂的地方做個(gè)記號(hào)或者打個(gè)問號(hào),以至于上課的時(shí)候重點(diǎn)聽,這樣才能夠很快提高自己的水平。但是預(yù)習(xí)不是很隨便的把課本看一邊,預(yù)習(xí)有個(gè)目標(biāo),那就是通過預(yù)習(xí)可以把書本后面的練習(xí)題可以自己獨(dú)立的完成。一中的同學(xué)預(yù)習(xí)就已經(jīng)有好幾個(gè)層次了,先是課本,再是精編,再是高考題典,上課對(duì)于他們來說是第一輪高考復(fù)習(xí)。

㈡上課認(rèn)真聽講。上課的時(shí)候準(zhǔn)備課本,一只筆,一本草稿。做不做筆記你們自己決定,不過我不大提倡數(shù)學(xué)課做筆記的。不過有一點(diǎn),有些知識(shí)點(diǎn)比較重要,課本上又沒有的,我要求你們把它寫在課本上的相應(yīng)的空白地方。還有如果你覺得某個(gè)例題比較新或者比較重要,也可以把它記在書本的相應(yīng)位置上,這樣以后復(fù)習(xí)起來就一目了然了。那么草稿要來干什么的呢?課堂上你可以自己演算還有做課堂練習(xí)。

㈢關(guān)于作業(yè)。絕對(duì)不允許有抄作業(yè)的情況發(fā)生。如果我發(fā)現(xiàn)有誰抄作業(yè),那么既然他這樣喜歡抄,我就要你把當(dāng)天的作業(yè)多抄幾遍給我。那有人會(huì)問,碰到不會(huì)做的題目怎么辦?有兩個(gè)辦法:一、向同學(xué)請(qǐng)教,請(qǐng)教做題目的思路,而不是整個(gè)過程和答案。同學(xué)之間也要相互幫助,如果你讓他抄襲你的作業(yè)這樣不是幫助他而是害他,這個(gè)道理大家應(yīng)該明白吧。我非常提倡同學(xué)之間的相互討論問題的,這樣才能夠相互促進(jìn)提高。二、向老師請(qǐng)教,要養(yǎng)成多想多問的習(xí)慣。

㈣準(zhǔn)備一本筆記本,作為自己的問題集。把平時(shí)自己不懂的和不大理解的還有易錯(cuò)的記錄下來,并且要及時(shí)的消化,不懂的地方問老師。這是一個(gè)很好的辦法,到考試的時(shí)候就可以有重點(diǎn)、有針對(duì)性的自己復(fù)習(xí)了。我高中的時(shí)候就是采用這樣的方法把數(shù)學(xué)成績(jī)提高。

好的開始是成功的一半,新的學(xué)期開始了,請(qǐng)大家調(diào)整好自己的思想,找到學(xué)習(xí)的原動(dòng)力。播種一種思想,收獲一種行為;播種一種行為,收獲一種習(xí)慣;播種一種習(xí)慣,收獲一種性格;播種一種性格,收獲一種命運(yùn)。愿每位同學(xué)都有個(gè)好的開始。

高中數(shù)學(xué)集合教案的模板篇4

高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強(qiáng),高中很注重自學(xué)能力的培養(yǎng),誰的自學(xué)能力強(qiáng),那么在一定程度上影響著你的成績(jī)以及將來你發(fā)展的前途。同時(shí)還要注意以下幾點(diǎn):

第一、對(duì)數(shù)學(xué)學(xué)科特點(diǎn)有清楚的認(rèn)識(shí)

數(shù)學(xué)的概念、方法、思想都是人類長(zhǎng)期實(shí)踐中自然發(fā)展形成的,以數(shù)域的發(fā)展為例,從自然數(shù)到有理數(shù)到實(shí)數(shù)再到復(fù)數(shù),都是由自然的認(rèn)知沖突引起的。因此,在學(xué)習(xí)過程中我們有必要了解知識(shí)產(chǎn)生的背景,它的形成過程以及它的應(yīng)用,讓數(shù)學(xué)顯得合情合理,渾然天成。數(shù)學(xué)中沒有含糊不清的詞,對(duì)錯(cuò)分明,凡事都要講個(gè)為什么,只要按照數(shù)學(xué)規(guī)則去學(xué)去想就能融會(huì)貫通,但是如果不把來龍去脈想清楚而是“想當(dāng)然”的`話,那就學(xué)不下去了。

第二、要改變一個(gè)觀念。

有人會(huì)說自己的基礎(chǔ)不好。那什么是基礎(chǔ)?今天所學(xué)的知識(shí)就是明天的基礎(chǔ)。明天學(xué)習(xí)的知識(shí)就是后天的基礎(chǔ),

所以只要學(xué)好每一天的內(nèi)容,那么你打的基礎(chǔ)就是最扎實(shí)的了。所以現(xiàn)在你們是在同一個(gè)起跑線上的,無所謂基礎(chǔ)好不好。

第三、學(xué)數(shù)學(xué)要摸索自己的學(xué)習(xí)方法

學(xué)習(xí)重在方法,好的學(xué)習(xí)方法讓學(xué)生事半功倍。學(xué)習(xí)、掌握并能靈活應(yīng)用數(shù)學(xué)的途徑有很多,做習(xí)題、用數(shù)學(xué)知識(shí)解決各種問題是必需的,理解、學(xué)會(huì)證明、領(lǐng)會(huì)思想、掌握方法也是必需的。同時(shí),要注意前后知識(shí)的銜接,類比地學(xué)、聯(lián)系地學(xué),既要從概念中看到它的具體背景,又要在具體的例子中想到它蘊(yùn)含的一般概念。

相關(guān)文章推薦:

1.高中開學(xué)第一周教學(xué)反思

2.開學(xué)第一課教學(xué)反思精選

3.20--初中開學(xué)第一課教學(xué)反思【精選】

4.高三開學(xué)教學(xué)反思

5.高一信息技術(shù)教學(xué)反思

6.開學(xué)第一課語文教學(xué)反思

7.幼兒園開學(xué)第一課反思

8.高中英語教學(xué)反思精選

9.高中生物教育反思

10.20--開學(xué)第一課教學(xué)反思

高中數(shù)學(xué)集合教案的模板篇5

第二教時(shí)教材:

1、復(fù)習(xí)

2、《課課練》及《教學(xué)與測(cè)試》中的有關(guān)內(nèi)容目的:復(fù)習(xí)集合的概念;鞏固已經(jīng)學(xué)過的內(nèi)容,并加深對(duì)集合的理解。

過程:

一、復(fù)習(xí):(結(jié)合提問)

1.集合的概念含集合三要素

2.集合的表示、符號(hào)、常用數(shù)集、列舉法、描述法

3.集合的分類:有限集、無限集、空集、單元集、二元集

4.關(guān)于“屬于”的概念

二、例一用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/p>

1.平方后仍等于原數(shù)的數(shù)集解:{x x2=x}={0,1}

2.比2大3的數(shù)的集合解:{x x=2+3}={5}

3.不等式x2-x-6<0的整數(shù)解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}

4.過原點(diǎn)的直線的集合解:{(x,y)y=kx}

5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}

6.使函數(shù)y=有意義的實(shí)數(shù)x的集合解:{x x2+x-60}={x x2且x3,xR}

三、處理蘇大《教學(xué)與測(cè)試》第一課含思考題、備用題

四、處理《課課練》

五、作業(yè)《教學(xué)與測(cè)試》第一課練習(xí)題

高中數(shù)學(xué)集合教案的模板篇6

教學(xué)目標(biāo)

1、了解基底的含義,理解并掌握平面向量基本定理。會(huì)用基底表示平面內(nèi)任一向量。

2、掌握向量夾角的定義以及兩向量垂直的定義。

學(xué)情分析

前幾節(jié)課已經(jīng)學(xué)習(xí)了向量的基本概念和基本運(yùn)算,如共線向量、向量的加法、減法和數(shù)乘運(yùn)算及向量共線的充要條件等;另外學(xué)生對(duì)向量的物理背景有了初步的了解。如:力的合成與分解、位移、速度的合成與分解等,都為學(xué)習(xí)這節(jié)課作了充分準(zhǔn)備

重點(diǎn)難點(diǎn)

重點(diǎn):對(duì)平面向量基本定理的探究

難點(diǎn):對(duì)平面向量基本定理的理解及其應(yīng)用

教學(xué)過程

4.1第一學(xué)時(shí)教學(xué)活動(dòng)

活動(dòng)1【導(dǎo)入】情景設(shè)置

火箭在升空的某一時(shí)刻,速度可以分解成豎直向上和水平向前的兩個(gè)分速度v=vx+vy=6i+4j。

活動(dòng)2【活動(dòng)】探究

已知平面中兩個(gè)不共線向量e1,e2,c是平面內(nèi)任意向量,求向量

c=___e1+___e2(課堂上準(zhǔn)備好幾張帶格子的紙張,上面有三個(gè)向量,e1,e2,c)

做法:

作OA=e1,OB=e2,OC=c,過點(diǎn)C作平行于OB的直線,交直線OA于M;過點(diǎn)C作平行于OA的直線,交OB于N,則有且只有一對(duì)實(shí)數(shù)l1,l2,使得OM=l1e1,ON=l2e2。

因?yàn)镺C=OM+ON,所以c=6e1+6e2。

向量c=__6__e1+___6__e2

活動(dòng)3【練習(xí)】動(dòng)手做一做

請(qǐng)同學(xué)們自己作出一向量a,并把向量a表示成:a=31;31;31;31;____e1+_____

(做完后,思考一下,這樣的一組實(shí)數(shù)是否是唯一的呢?)(是唯一的)

由剛才的幾個(gè)實(shí)例,可以得出結(jié)論:如果給定向量e1,e2,平面內(nèi)的任一向量a,都可以表示成a=入1e1+入2e2。

活動(dòng)4【活動(dòng)】思考

問題2:如果e1,e2是平面內(nèi)任意兩向量,那么平面內(nèi)的任一向量a還可以表示成a=入1e1+入2e2的形式嗎?

生:不行,e1,e2必須是平面內(nèi)兩不共線向量

活動(dòng)5【講授】平面向量基本定理

平面向量基本定理:如果e1,e2是平面內(nèi)兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)l1,l2,使a=l1e1+l2e2。我們把不共線向量e1,e2叫做這一平面內(nèi)所有向量的一組基底。一個(gè)平面向量用一組基底e1,e2表示成a=l1e1+l2e2的形式,我們稱它為向量的分解。當(dāng)e1,e2互相垂直時(shí),就稱為向量的正交分解。

說明:

(1)基底不惟一,關(guān)鍵是作為基底的兩個(gè)向量不共線。

(2)由定理可將任一向量a在給出基底e1,e2的條件下進(jìn)行分解,基底給定時(shí),分解形式惟一,即l1,l2是被a,e1,e2惟一確定的數(shù)量。

活動(dòng)6【講授】平面向量基底運(yùn)用

例1.如圖所示,平行四邊形ABCD的對(duì)角線AC和BD交于點(diǎn)M,AB=a,AD=b,試用基底a,b表示MC,MA,MB和MD

活動(dòng)7【講授】向量夾角的定義

閱讀教材P94,回答如下問題:

1、兩個(gè)向量夾角是如何形成的?,必須要滿足什么條件才是它們的夾角。

2、有向量夾角范圍是多少?有夾角大小來描述一下向量同向,反向,垂直?

活動(dòng)8【練習(xí)】完成《聚焦課堂》活動(dòng)9【講授】課后小結(jié)

1、平面向量基本定理

2、平面向量基本定理的運(yùn)用

3、向量夾角的定義。

活動(dòng)10【作業(yè)】課后作業(yè)

1、已知向量e1,e2,求做:-3e1+2e2

2、做育才報(bào)第八期專項(xiàng)訓(xùn)練1

高中數(shù)學(xué)集合教案的模板篇7

一 教材分析

本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)常考一些解答題。因此,正弦定理和余弦定理的知識(shí)非常重要。

根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。

教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

二 教法

根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點(diǎn)

三 學(xué)法:

指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

四 教學(xué)過程

第一:創(chuàng)設(shè)情景,大概用2分鐘

第二:實(shí)踐探究,形成概念,大約用25分鐘

第三:應(yīng)用概念,拓展反思,大約用13分鐘

(一)創(chuàng)設(shè)情境,布疑激趣

“興趣是的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

(二)探尋特例,提出猜想

1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。

3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

在三角形中,角與所對(duì)的邊滿足關(guān)系

這為下一步證明樹立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

(三)邏輯推理,證明猜想

1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

2.鼓勵(lì)學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

(四)歸納總結(jié),簡(jiǎn)單應(yīng)用

1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。

2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

3.運(yùn)用正弦定理求解本節(jié)課引入的三角形零件邊長(zhǎng)的問題。自己參與實(shí)際問題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

(五)講解例題,鞏固定理

1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

例1簡(jiǎn)單,結(jié)果為解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來解三角形。

2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形。完了把時(shí)間交給學(xué)生。

(六)課堂練習(xí),提高鞏固

1.在△ABC中,已知下列條件,解三角形.

(1)A=45°,C=30°,c=10cm

(2)A=60°,B=45°,c=20cm

2. 在△ABC中,已知下列條件,解三角形.

(1)a=20cm,b=11cm,B=30°

(2)c=54cm,b=39cm,C=115°

學(xué)生板演,老師巡視,及時(shí)發(fā)現(xiàn)問題,并解答。

(七)小結(jié)反思,提高認(rèn)識(shí)

通過以上的研究過程,同學(xué)們主要學(xué)到了那些知識(shí)和方法?你對(duì)此有何體會(huì)?

1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

2.它表述了三角形的邊與對(duì)角的正弦值的關(guān)系。

3.定理證明分別從直角、銳角、鈍角出發(fā),運(yùn)用分類討論的思想。

(從實(shí)際問題出發(fā),通過猜想、實(shí)驗(yàn)、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點(diǎn)是從特殊到一般,我們不僅收獲著結(jié)論,而且整個(gè)探索過程我們也掌握了研究問題的一般方法。在強(qiáng)調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動(dòng)學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動(dòng)的教學(xué)。)

(八)任務(wù)后延,自主探究

如果已知一個(gè)三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。

五 板書設(shè)計(jì)

板書設(shè)計(jì)可以讓學(xué)生一目了然本節(jié)課所學(xué)的知識(shí),證明正弦定理的方法以及正弦定理可以解決的兩類問題。

高中數(shù)學(xué)集合教案的模板篇8

一、教學(xué)目標(biāo):

1、知識(shí)與技能:

了解平面向量基本定理及其意義,理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來表示;能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表示。

2、過程與方法:

讓學(xué)生經(jīng)歷平面向量基本定理的探索與發(fā)現(xiàn)的形成過程,體會(huì)由特殊到一般和數(shù)形結(jié)合的數(shù)學(xué)思想,初步掌握應(yīng)用平面向量基本定理分解向量的方法,培養(yǎng)學(xué)生分析問題與解決問題的能力。

3、情感、態(tài)度和價(jià)值觀

通過對(duì)平面向量基本定理的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)習(xí)積極性,增強(qiáng)學(xué)生向量的應(yīng)用意識(shí),并培養(yǎng)學(xué)生合作交流的意識(shí)及積極探索勇于發(fā)現(xiàn)的學(xué)習(xí)品質(zhì)、

二、教學(xué)重點(diǎn):

平面向量基本定理、

三、教學(xué)難點(diǎn):

平面向量基本定理的理解與應(yīng)用、

四、教學(xué)方法:

探究發(fā)現(xiàn)、講練結(jié)合

五、授課類型:

新授課

六、教具:

電子白板、黑板和課件

七、教學(xué)過程:

(一)情境引課,板書課題

由導(dǎo)彈的發(fā)射情境,引出物理中矢量的分解,進(jìn)而探究我們數(shù)學(xué)中的向量是不是也可以沿兩個(gè)不同方向的向量進(jìn)行分解呢?

(二)復(fù)習(xí)鋪路,漸進(jìn)新課

在共線向量定理的復(fù)習(xí)中,自然地、漸進(jìn)地融入到平面向量基本定理的師生互動(dòng)合作的探究與發(fā)現(xiàn)中去,感受著從特殊到一般、分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想碰撞的火花,體驗(yàn)著學(xué)習(xí)的快樂。

(三)歸納總結(jié),形成定理

讓學(xué)生在發(fā)現(xiàn)學(xué)習(xí)的過程中歸納總結(jié)出平面向量基本定理,并給出基底的定義。

(四)反思定理,解讀要點(diǎn)

反思平面向量基本定理的實(shí)質(zhì)即向量分解,思考基底的不共線、不惟一和非零性及實(shí)數(shù)對(duì)

的存在性和唯一性。

(五)跟蹤練習(xí),反饋測(cè)試

及時(shí)跟蹤練習(xí),反饋測(cè)試定理的理解程度。

(六)講練結(jié)合,鞏固理解

即講即練定理的應(yīng)用,講練結(jié)合,進(jìn)一步鞏固理解平面向量基本定理。

(七)夾角概念,順勢(shì)得出

不共線向量的不同方向的位置關(guān)系怎么表示,夾角概念順勢(shì)得出。然后數(shù)形結(jié)合,講清本質(zhì):夾角共起點(diǎn)。再結(jié)合例題鞏固加深。

(八)課堂小結(jié),畫龍點(diǎn)睛

回顧本節(jié)的學(xué)習(xí)過程,小結(jié)學(xué)習(xí)要點(diǎn)及數(shù)學(xué)思想方法,老師的“教”與學(xué)生的“學(xué)”渾然一體,一氣呵成。

(九)作業(yè)布置,回味思考。

布置課后作業(yè),檢驗(yàn)教學(xué)效果。回味思考,更加理解定理的實(shí)質(zhì)。

八、板書設(shè)計(jì):

1、平面向量基本定理:如果是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任意向量,有且只有一對(duì)實(shí)數(shù)

2、基底:

(1)不共線向量

叫做表示這一平面內(nèi)所有向量的一組基底;

(2)基底:不共線,不唯一,非零

(3)基底給定,分解形式唯一,實(shí)數(shù)對(duì)

存在且唯一;

(4)基底不同,分解形式不唯一,實(shí)數(shù)對(duì)

可同可異。

例1例2

3、夾角:

(1)兩向量共起點(diǎn);

(2)夾角范圍:

例3

4、小結(jié)

5、作業(yè)

高中數(shù)學(xué)集合教案的模板篇9

1、教材分析:

集合是現(xiàn)代數(shù)學(xué)的基本語言,可以簡(jiǎn)潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容。本節(jié)是讓學(xué)生學(xué)會(huì)用集合的語言來描述對(duì)象,章末我們會(huì)用集合和對(duì)應(yīng)的語言來描述函數(shù)的概念,可見它是今后數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),也是培養(yǎng)學(xué)生抽象概括能力的重要素材。

2、教材目標(biāo):

根據(jù)素質(zhì)教育的要求和新課改的精神,我確定教學(xué)目標(biāo)如下:

①知識(shí)與技能:

(1)了解集合的含義與集合中元素的特征

(2)熟記常用數(shù)集符號(hào)

(3)能用列舉、描述法表示具體集合

②過程與方法:讓學(xué)生經(jīng)歷從集合實(shí)例中抽象概括出集合共同特征的過程,感知集合的含義.讓學(xué)生通過觀察、歸納、總結(jié)的過程,提高抽象概括能力。

③情感態(tài)度與價(jià)值觀:使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.

3、教學(xué)重點(diǎn)、難點(diǎn)

教學(xué)重點(diǎn):集合的基本概念與表示方法;

教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡(jiǎn)單的集合;說教法

1.學(xué)情分析

《集合的含義及表示》這一課時(shí)是學(xué)生進(jìn)入高中階段學(xué)習(xí)、接觸到高中數(shù)學(xué)的第一堂課,它直接影響到了學(xué)生對(duì)高中階段數(shù)學(xué)學(xué)習(xí)的認(rèn)識(shí);如果我們教學(xué)上過于草率,學(xué)生很容易對(duì)數(shù)學(xué)失去學(xué)習(xí)興趣。再者,這是高中數(shù)學(xué)課程的第一章的第一課時(shí),是整個(gè)高中數(shù)學(xué)的奠基部分,所以我們不僅要正確地傳授知識(shí),更要把握好教學(xué)的難度。如果傳授得過于簡(jiǎn)單,那么學(xué)生容易麻痹大意,對(duì)今后的學(xué)習(xí)埋下隱患;如果講得太深,那么學(xué)生會(huì)有畏難心理,也會(huì)對(duì)今后的學(xué)習(xí)造成影響。

2.方法選擇

在教學(xué)中注意啟發(fā)引導(dǎo),通過預(yù)習(xí)學(xué)案的形式把知識(shí)問題化,通過實(shí)例引導(dǎo)學(xué)生觀察歸納,上課組織學(xué)生分組討論,讓他們經(jīng)歷觀察、猜測(cè)、推理、交流、反思的理性思維的基本過程,切實(shí)改變學(xué)生的學(xué)習(xí)方法。

說學(xué)法

讓學(xué)生通過課前結(jié)合學(xué)案,閱讀教材,自主預(yù)習(xí),課上交流、討論、概括,課后復(fù)習(xí)鞏固三個(gè)環(huán)節(jié),更好地完成本節(jié)課的教學(xué)目標(biāo)。值得提出的是:集合作為一種數(shù)學(xué)語言,最好的學(xué)習(xí)方法是使用,所以應(yīng)該多做轉(zhuǎn)換練習(xí),

說教學(xué)程序

(一)創(chuàng)設(shè)情境,揭示課題

軍訓(xùn)前學(xué)校通知:x月x日x點(diǎn),高一年段在體育館集合進(jìn)行軍訓(xùn)動(dòng)員;試問這個(gè)通知的對(duì)象是全體的高一學(xué)生還是個(gè)別學(xué)生?

在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對(duì)象的總體,而不是個(gè)別的對(duì)象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合(宣布課題),即是一些研究對(duì)象的總體。

通過學(xué)生熟悉的實(shí)際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實(shí)的距離,激發(fā)了學(xué)生求知欲,調(diào)動(dòng)了學(xué)生主動(dòng)參與的積極性。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光去關(guān)注生活。

(二)研探新知,建構(gòu)概念

讓學(xué)生閱讀課本P2內(nèi)容,讓小組思考討論,代表發(fā)言,師生共同補(bǔ)充答案它們的共同特征:它們都是指定的一組對(duì)象。這時(shí)我借此引入集合的概念,把一些元素組成的總體叫做集合,簡(jiǎn)稱集,通常用大寫字母A,B,C,?表示。把研究的對(duì)象稱為元素,通常用小寫拉丁字母a,b,c,?表示;

接下來,我引導(dǎo)學(xué)生把集合的涵義進(jìn)行拓展,期間結(jié)合一些師生互動(dòng):我們班上的女生能不能構(gòu)成一個(gè)集合,班上身高在1.75米以上的男生能不能構(gòu)成一個(gè)集合,班上高的男生能不能構(gòu)成一個(gè)集合??,通過身邊這些大量例子,讓學(xué)生了解集合的概念,并切實(shí)感受到學(xué)習(xí)集合語言的重要性。

對(duì)于集合元素的特征:確定性、互異性、無序性。我則在學(xué)生了解集合概念基礎(chǔ)上,通過設(shè)置三個(gè)問題(1)班里個(gè)子高的同學(xué)能否構(gòu)成一個(gè)集合?(2)在一個(gè)給定的集合中能否有相同的元素?(3)班里的全體同學(xué)組成一個(gè)集合,調(diào)整座位后這個(gè)集合有沒有變化?調(diào)整后的集合和原來的集合是什么關(guān)系?讓學(xué)生思考:任意一組對(duì)象是否都能組成一個(gè)集合?集合中的元素有什么特征?

這樣設(shè)計(jì)將知識(shí)問題化,問題生活化,激發(fā)學(xué)生學(xué)習(xí)的主動(dòng)性,引導(dǎo)學(xué)生歸納出集合中元素的三大特性,用簡(jiǎn)練的語言概括為——確定性、互異性、無序性用兩集合相等的概念。

思考3:(1)設(shè)集合A表示“1~20以內(nèi)的所有質(zhì)數(shù)”,那么3,4,5,6這四個(gè)元素哪些在集合A中?哪些不在集合A中?

(2)對(duì)于一個(gè)給定的集合A,那么某元素a與集合A有哪幾種可能關(guān)系?

(3)如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

(4)如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?用符號(hào)∈或?填空:

[設(shè)計(jì)說明]這幾個(gè)問題比較簡(jiǎn)單,直接提問同學(xué)回答,并師生一起完善答案。通過問題的層層深入,目的是引導(dǎo)學(xué)生歸納出元素與集合的關(guān)系及表示方法。

反饋練習(xí):

(1)設(shè)A為所有亞洲國(guó)家組成的集合,則

中國(guó)____A,美國(guó)____A,

印度____A,英國(guó)____A;

對(duì)于集合中常用的符號(hào),我做了這樣處理:簡(jiǎn)要介紹后,讓學(xué)生用兩三分鐘的時(shí)間結(jié)合符號(hào)特點(diǎn)記憶。目的在于給學(xué)生一個(gè)信號(hào):課堂上能消化的東西要及時(shí)記住。

2.集合的表示法:列舉法和描述法

讓學(xué)生自習(xí)閱讀課本P3——P4的內(nèi)容5-7分鐘,接著讓同學(xué)試著解決如下三個(gè)問題

(1)由大于10小于20的所有整數(shù)組成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以內(nèi)的所有素?cái)?shù)組成的集合;

把集合的元素一一列舉出來,并用花括號(hào)“{}”括起來表示的方法叫做列舉法。用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號(hào)內(nèi)先寫上表示這個(gè)集合元素的一般符號(hào)及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個(gè)集合中元素所具有的共同特征。

通過三個(gè)問題不僅檢驗(yàn)了學(xué)生的自學(xué)效果,同時(shí)也讓學(xué)生明白列舉法和描述法兩種方法各自的優(yōu)缺點(diǎn),更重要的是對(duì)集合的列舉法和描述法的規(guī)范表達(dá)做進(jìn)一步強(qiáng)調(diào),最后,我?guī)ьI(lǐng)學(xué)生分析了課本P4的例題,對(duì)集合的列舉法和描述法的規(guī)范表達(dá)做進(jìn)一

步的強(qiáng)調(diào),讓學(xué)生完成書上的習(xí)題,并請(qǐng)幾個(gè)學(xué)生上臺(tái)來演練,通過練習(xí)達(dá)到及時(shí)的反饋。

(四)歸納整理,整體認(rèn)識(shí)

1.本節(jié)課我們學(xué)習(xí)了哪些知識(shí)內(nèi)容?

2.你認(rèn)為學(xué)習(xí)集合有什么意義?

3.比較列舉法與描述法的優(yōu)缺點(diǎn)。

(五)布置作業(yè)

作業(yè):習(xí)題1.1A組:2、3、4.

作業(yè)的布置是要突出本節(jié)課的重點(diǎn)——集合概念的理解以及集合的表示法,讓學(xué)生對(duì)數(shù)學(xué)符號(hào)的適用在課外進(jìn)行延伸和鞏固。

說板書

在教學(xué)中我把黑板分為三部分,把知識(shí)要點(diǎn)寫在左側(cè),中間是課本例題演練,右側(cè)是實(shí)例應(yīng)用。在左側(cè)的知識(shí)要點(diǎn)主要列出了集合、元素的概念、元素的特性:確定性,互異性,無序性,和集合的表示法:列舉法和描述法。

以上是我對(duì)《集合的含義與表示》這節(jié)教材的認(rèn)識(shí)和對(duì)教學(xué)過程的設(shè)計(jì)。對(duì)這節(jié)課的設(shè)計(jì),我始終在努力貫徹一教師為主導(dǎo),以學(xué)生為主題,以問題為基礎(chǔ),以能力、方法為主線,有計(jì)劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實(shí)踐能力、思維能力為指導(dǎo)思想,利用各種教學(xué)手段激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對(duì)學(xué)生創(chuàng)新意識(shí)的培養(yǎng)。

高中數(shù)學(xué)集合教案的模板篇10

教學(xué)目標(biāo):

1.了解復(fù)數(shù)的幾何意義,會(huì)用復(fù)平面內(nèi)的點(diǎn)和向量來表示復(fù)數(shù);了解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.

2.通過建立復(fù)平面上的點(diǎn)與復(fù)數(shù)的一一對(duì)應(yīng)關(guān)系,自主探索復(fù)數(shù)加減法的幾何意義.

教學(xué)重點(diǎn):

復(fù)數(shù)的幾何意義,復(fù)數(shù)加減法的幾何意義.

教學(xué)難點(diǎn):

復(fù)數(shù)加減法的幾何意義.

教學(xué)過程:

一、問題情境

我們知道,實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示.那么,復(fù)數(shù)是否也能用點(diǎn)來表示呢?

二、學(xué)生活動(dòng)

問題1任何一個(gè)復(fù)數(shù)a+bi都可以由一個(gè)有序?qū)崝?shù)對(duì)(a,b)惟一確定,而有序?qū)崝?shù)對(duì)(a,b)與平面直角坐標(biāo)系中的點(diǎn)是一一對(duì)應(yīng)的,那么我們?cè)鯓佑闷矫嫔系狞c(diǎn)來表示復(fù)數(shù)呢?

問題2平面直角坐標(biāo)系中的點(diǎn)A與以原點(diǎn)O為起點(diǎn),A為終點(diǎn)的向量是一一對(duì)應(yīng)的,那么復(fù)數(shù)能用平面向量表示嗎?

問題3任何一個(gè)實(shí)數(shù)都有絕對(duì)值,它表示數(shù)軸上與這個(gè)實(shí)數(shù)對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.任何一個(gè)向量都有模,它表示向量的長(zhǎng)度,那么相應(yīng)的,我們可以給出復(fù)數(shù)的模(絕對(duì)值)的概念嗎?它又有什么幾何意義呢?

問題4復(fù)數(shù)可以用復(fù)平面的向量來表示,那么,復(fù)數(shù)的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個(gè)復(fù)數(shù)差的模有什么幾何意義?

三、建構(gòu)數(shù)學(xué)

1.復(fù)數(shù)的幾何意義:在平面直角坐標(biāo)系中,以復(fù)數(shù)a+bi的實(shí)部a為橫坐標(biāo),虛部b為縱坐標(biāo)就確定了點(diǎn)Z(a,b),我們可以用點(diǎn)Z(a,b)來表示復(fù)數(shù)a+bi,這就是復(fù)數(shù)的幾何意義.

2.復(fù)平面:建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面.其中x軸為實(shí)軸,y軸為虛軸.實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù).

3.因?yàn)閺?fù)平面上的點(diǎn)Z(a,b)與以原點(diǎn)O為起點(diǎn)、Z為終點(diǎn)的向量一一對(duì)應(yīng),所以我們也可以用向量來表示復(fù)數(shù)z=a+bi,這也是復(fù)數(shù)的幾何意義.

4.復(fù)數(shù)加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個(gè)復(fù)數(shù)差的模就是復(fù)平面內(nèi)與這兩個(gè)復(fù)數(shù)對(duì)應(yīng)的兩點(diǎn)間的距離.同時(shí),復(fù)數(shù)加減法的法則與平面向量加減法的坐標(biāo)形式也是完全一致的。

100835 主站蜘蛛池模板: 夹江县| 洛阳市| 崇仁县| 疏勒县| 富顺县| 南靖县| 河北区| 泸水县| 玉山县| 仁布县| 石台县| 蒲江县| 陇南市| 沧源| 鹤岗市| 汾西县| 杭锦旗| 太原市| 额济纳旗| 扬中市| 东宁县| 台中县| 仲巴县| 汝阳县| 定襄县| 安西县| 沂水县| 潞城市| 阳朔县| 台安县| 亚东县| 句容市| 武胜县| 武安市| 定陶县| 慈利县| 巴青县| 北宁市| 安达市| 兴山县| 平江县|