高中數學簡潔教案模板
通過編寫教案,教師可以明確教學目標、教學內容和教學計劃,從而更好地組織教學,提高教學質量和效率。好的高中數學簡潔教案模板是怎樣的?這里給大家提供高中數學簡潔教案模板,供大家參考。
高中數學簡潔教案模板篇1
一:說教材
平面向量的數量積是兩向量之間的乘法,而平面向量的坐標表示把向量之間的運算轉化為數之間的運算。本節內容是在平面向量的坐標表示以及平面向量的數量積及其運算律的基礎上,介紹了平面向量數量積的坐標表示,平面兩點間的距離公式,和向量垂直的坐標表示的充要條件。為解決直線垂直問題,三角形邊角的有關問題提供了很好的辦法。本節內容也是全章重要內容之一。
二:說學習目標和要求
通過本節的學習,要讓學生掌握
(1):平面向量數量積的坐標表示。
(2):平面兩點間的距離公式。
(3):向量垂直的坐標表示的充要條件。
以及它們的一些簡單應用,以上三點也是本節課的重點,本節課的難點是向量垂直的坐標表示的充要條件以及它的靈活應用。
三:說教法
在教學過程中,我主要采用了以下幾種教學方法:
(1)啟發式教學法
因為本節課重點的坐標表示公式的推導相對比較容易,所以這節課我準備讓學生自行推導出兩個向量數量積的坐標表示公式,然后引導學生發現幾個重要的結論:如模的計算公式,平面兩點間的距離公式,向量垂直的坐標表示的充要條件。
(2)講解式教學法
主要是講清概念,解除學生在概念理解上的疑惑感;例題講解時,演示解題過程!
主要輔助教學的手段(powerpoint)
(3)討論式教學法
主要是通過學生之間的相互交流來加深對較難問題的理解,提高學生的自學能力和發現、分析、解決問題以及創新能力。
四:說學法
學生是課堂的主體,一切教學活動都要圍繞學生展開,借以誘發學生的學習興趣,增強課堂上和學生的交流,從而達到及時發現問題,解決問題的目的。通過精講多練,充分調動學生自主學習的積極性。如讓學生自己動手推導兩個向量數量積的坐標公式,引導學生推導4個重要的結論!并在具體的問題中,讓學生建立方程的思想,更好的解決問題!
五:說教學過程
這節課我準備這樣進行:
首先提出問題:要算出兩個非零向量的數量積,我們需要知道哪些量?
繼續提出問題:假如知道兩個非零向量的坐標,是不是可以用這兩個向量的坐標來表示這兩個向量的數量積呢?
引導學生自己推導平面向量數量積的坐標表示公式,在此公式基礎上還可以引導學生得到以下幾個重要結論:
(1) 模的計算公式
(2)平面兩點間的距離公式。
(3)兩向量夾角的余弦的坐標表示
(4)兩個向量垂直的標表示的充要條件
第二部分是例題講解,通過例題講解,使學生更加熟悉公式并會加以應用。
例題1是書上122頁例1,此題是直接用平面向量數量積的坐標公式的題,目的是讓學生熟悉這個公式,并在此題基礎上,求這兩個向量的夾角?目的是讓學生熟悉兩向量夾角的余弦的坐標表示公式例題2是直接證明直線垂直的題,雖然比較簡單,但體現了一種重要的證明方法,這種方法要讓學生掌握,其實這一例題也是兩個向量垂直坐標表示的充要條件的一個應用:即兩個向量的數量積是否為零是判斷相應的兩條直線是否垂直的重要方法之一。
例題3是在例2的基礎上稍微作了一下改變,目的是讓學生會應用公式來解決問題,并讓學生在這要有建立方程的思想。
再配以練習,讓學生能熟練的應用公式,掌握今天所學內容。
高中數學簡潔教案模板篇2
三維目標:
1、知識與技能:正確理解隨機抽樣的概念,掌握抽簽法、隨機數表法的一般步驟;
2、過程與方法:
(1)能夠從現實生活或其他學科中提出具有一定價值的統計問題;
(2)在解決統計問題的過程中,學會用簡單隨機抽樣的方法從總體中抽取樣本。
3、情感態度與價值觀:通過對現實生活和其他學科中統計問題的提出,體會數學知識與現實世界及各學科知識之間的聯系,認識數學的重要性。
4、重點與難點:正確理解簡單隨機抽樣的概念,掌握抽簽法及隨機數法的步驟,并能靈活應用相關知識從總體中抽取樣本。
教學方法:
講練結合法
教學用具:
多媒體
課時安排:
1課時
教學過程:
一、問題情境
假設你作為一名食品衛生工作人員,要對某食品店內的一批小包裝餅干進行衛生達標檢驗,你準備怎樣做?顯然,你只能從中抽取一定數量的餅干作為檢驗的樣本。(為什么?)那么,應當怎樣獲取樣本呢?
二、探究新知
1、統計的有關概念:總體:在統計學中,所有考察對象的全體叫做總體、個體:每一個考察的對象叫做個體、樣本:從總體中抽取的一部分個體叫做總體的一個樣本、樣本容量:樣本中個體的數目叫做樣本的容量、統計的基本思想:用樣本去估計總體、
2、簡單隨機抽樣的概念一般地,設一個總體含有N個個體,從中逐個不放回地抽取n個個體作為樣本(n≤N),如果每次抽取時總體內的各個個體被抽到的機會都相等,就把這種抽樣方法叫做簡單隨機抽樣,這樣抽取的樣本,叫做簡單隨機樣本。
下列抽樣的方式是否屬于簡單隨機抽樣?為什么?
(1)從無限多個個體中抽取50個個體作為樣本。
(2)箱子里共有100個零件,從中選出10個零件進行質量檢驗,在抽樣操作中,從中任意取出一個零件進行質量檢驗后,再把它放回箱子。
(3)從8臺電腦中,不放回地隨機抽取2臺進行質量檢查(假設8臺電腦已編好號,對編號隨機抽取)
3、常用的簡單隨機抽樣方法有:
(1)抽簽法的定義。一般地,抽簽法就是把總體中的N個個體編號,把號碼寫在號簽上,將號簽放在一個容器中,攪拌均勻后,每次從中抽取一個號簽,連續抽取n次,就得到一個容量為n的樣本。
思考?你認為抽簽法有什么優點和缺點:當總體中的個體數很多時,用抽簽法方便嗎?例1、若已知高一(6)班總共有57人,現要抽取8位同學出來做游戲,請設計一個抽取的方法,要使得每位同學被抽到的機會相等。
分析:可以把57位同學的學號分別寫在大小,質地都相同的紙片上,折疊或揉成小球,把紙片集中在一起并充分攪拌后,在從中個抽出8張紙片,再選出紙片上的學號對應的同學即可、基本步驟:第一步:將總體的所有N個個體從1至N編號;第二步:準備N個號簽分別標上這些編號,將號簽放在容器中攪拌均勻后每次抽取一個號簽,不放回地連續取n次;第三步:將取出的n個號簽上的號碼所對應的n個個體作為樣本。
(2)隨機數法的定義:利用隨機數表、隨機數骰子或計算機產生的.隨機數進行抽樣,叫隨機數表法,這里僅介紹隨機數表法。怎樣利用隨機數表產生樣本呢?下面通過例子來說明,假設我們要考察某公司生產的500克袋裝牛奶的質量是否達標,現從800袋牛奶中抽取60袋進行檢驗,利用隨機數表抽取樣本時,可以按照下面的步驟進行。第一步,先將800袋牛奶編號,可以編為000,001,799。
第二步,在隨機數表中任選一個數,例如選出第8行第7列的數7(為了便于說明,下面摘取了附表1的第6行至第10行)。1622779439495443548217379323788442175331572455068877047447676301637859169555671998105071753321123429786456078252420744385760863244094727965449174609628735209643842634916421763350258392120676128673580744395238791551001342996602795490528477270802734328第三步,從選定的數7開始向右讀(讀數的方向也可以是向左、向上、向下等),得到一個三位數785,由于785<799,說明號碼785在總體內,將它取出;
繼續向右讀,得到916,由于916>799,將它去掉,按照這種方法繼續向右讀,又取出567,199,507,依次下去,直到樣本的60個號碼全部取出,這樣我們就得到一個容量為60的樣本。
三、課堂練習
四、課堂小結
1、簡單隨機抽樣的概念一般地,設一個總體的個體數為N,如果通過逐個抽取的方法從中抽取一個樣本,且每次抽取時各個個體被抽到的概率相等,就稱這樣的抽樣為簡單隨機抽樣。
2、簡單隨機抽樣的方法:抽簽法隨機數表法
五、課后作業
P57練習1、2
六、板書設計
1、統計的有關概念
2、簡單隨機抽樣的概念
3、常用的簡單隨機抽樣方法有:
(1)抽簽法
(2)隨機數表法
4、課堂練習
高中數學簡潔教案模板篇3
教學目標
1、知識與能力目標:理解掌握基本不等式,并能運用基本不等式解決一些簡單的求最值問題;理解算數平均數與幾何平均數的概念,學會構造條件使用基本不等式;培養學生探究能力以及分析問題解決問題的能力。
2、過程與方法目標:按照創設情景,提出問題→剖析歸納證明→幾何解釋→應用(最值的求法、實際問題的解決)的過程呈現。啟動觀察、分析、歸納、總結、抽象概括等思維活動,培養學生的思維能力,體會數學概念的學習方法,通過運用多媒體的教學手段,引領學生主動探索基本不等式性質,體會學習數學規律的方法,體驗成功的樂趣。
3、情感與態度目標:通過問題情境的設置,使學生認識到數學是從實際中來,培養學生用數學的眼光看世界,通過數學思維認知世界,從而培養學生善于思考、勤于動手的良好品質。
教學重難點
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等);
2、利用基本不等式求解實際問題中的.最大值和最小值。
教學過程
一、創設情景,提出問題;
設計意圖:數學教育必須基于學生的“數學現實”,現實情境問題是數學教學的平臺,數學教師的任務之一就是幫助學生構造數學現實,并在此基礎上發展他們的數學現實.基于此,設置如下情境:
上圖是在北京召開的第24屆國際數學家大會的會標,會標是根據中國古代數學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關系或不等關系嗎?
本背景意圖在于利用圖中相關面積間存在的數量關系,抽象出不等式
在此基礎上,引導學生認識基本不等式。
三、理解升華:
1、文字語言敘述:
兩個正數的算術平均數不小于它們的幾何平均數。
2、聯想數列的知識理解基本不等式
已知a,b是正數,A是a,b的等差中項,G是a,b的正的等比中項,A與G有無確定的大小關系?
兩個正數的等差中項不小于它們正的等比中項。
3、符號語言敘述:
4、探究基本不等式證明方法:
[問]如何證明基本不等式?
(意圖在于引領學生從感性認識基本不等式到理性證明,實現從感性認識到理性認識的升華,前面是從幾何圖形中的面積關系獲得不等式的,下面用代數的思想,利用不等式的性質直接推導這個不等式。)
方法一:作差比較或由
展開證明。
方法二:分析法(完成課本填空)
設計依據:課本是學生了解世界的窗口和工具,所以,課本必須成為學生賴以學會學習的文本.在教學中要讓學生學會認真看書、用心思考,養成講講議議、
動手動筆、仔細觀察、用心體會的好習慣,真正學會讀“數學書”。
點評:證明方法叫做分析法,實際上是尋找結論的充分條件,執果索因的一種思維方法.
5、探究基本不等式的幾何意義:
借助初中階段學生熟知的幾何圖形,引導學生
幾何解釋實質可認為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認為是,直角三角形斜邊的一半不小于斜邊上的高。
四、探究歸納
下列命題中正確的是
結論:
若兩正數的乘積為定值,則當且僅當兩數相等時,它們的和有最小值;
若兩正數的和為定值,則當且僅當兩數相等時,它們的乘積有最大值。
簡記為:“一正、二定、三相等”。
五、領悟練習:
公式應用之二:(最優化問題)
設計意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強學生的興趣,拓寬學生的視野,更重要的是調動學生探究鉆研的興趣,引導學生加強對生活的關注,讓學生體會:數學就在我們身邊的生活中
(1)在學農期間,生態園中有一塊面積為100m2的矩形茶地,為了保護茶葉的健康生長,學校決定用籬笆圍起來,問這個矩形的長、寬各為多少時,所用籬笆最短。最短的籬笆是多少?
(2)現在學校倉庫有一段長為36m的籬笆,要圍成一個矩形菜園,問這個矩形的長、寬各為多少時,菜園的面積最大。最大面積是多少?
六、反思總結,整合新知:
通過本節課的學習你有什么收獲?取得了哪些經驗教訓?還有哪些問題需要
請教?
設計意圖:通過反思、歸納,培養概括能力;幫助學生總結經驗教訓,鞏固知識技能,提高認知水平.
老師根據情況完善如下:
兩種思想:數形結合思想、歸納類比思想。
三個注意:基本不等式求函數的最大(小)值是注意:“一正二定三相等”
高中數學簡潔教案模板篇4
一、說教材:
1.地位及作用:
“橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書的重點內容之一,也是歷年高考、會考的必考內容,是在學完求曲線方程的基礎上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學習打好基礎,因此本節內容具有承前啟后的作用。
2.教學目標:
根據《教學大綱》,《考試說明》的要求,并根據教材的具體內容和學生的實際情況,確定本節課的教學目標:
(1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。
(2)能力目標:
(a)培養學生靈活應用知識的能力。
(b)培養學生全面分析問題和解決問題的能力。
(c)培養學生快速準確的運算能力。
(3)德育目標:培養學生數形結合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。
3.重點、難點和關鍵點:
因為橢圓的定義和標準方程是解決與橢圓有關問題的重要依據,也是研究雙曲線和拋物線的基礎,因此,它是本節教材的重點;由于學生推理歸納能力較低,在推導橢圓的標準方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點;坐標系建立的好壞直接影響標準方程的推導和化簡,因此建立一個適當的直角坐標系是本節的關鍵。
二、說教材處理
為了完成本節課的教學目標,突出重點、分散難點、根據教材的內容和學生的實際情況,對教材做以下的處理:
1.學生狀況分析及對策:
2.教材內容的組織和安排:
本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:
(1)復習提問(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)布置作業
三、說教法和學法
1.為了充分調動學生學習的積極性,是學生變被動學習為主動而愉快的學習,引導學生自己動手,讓學生的思維活動在教師的引導下層層展開。請學生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學法”。
2.利用電腦所畫圖形的動態演示總結規律。同時利用電腦的動態演示激發學生的學習興趣。
四、教學過程
教學環節
3.設a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。
例1屬基礎,主要反饋學生掌握基本知識的程度。
例2可強化基本技能訓練和基本知識的靈活運用。
小結
為使學生對本節內容有一個完整深刻的認識,教師引導學生從以下幾個方面進行小結。
1.橢圓的定義和標準方程及其應用。
2.橢圓標準方程中a,b,c諸關系。
3.求橢圓方程常用方法和基本思路。
通過小結形成知識體系,加深對本節知識的理解培養學生的歸納總結能力,增強學生學好圓錐曲線的信心。
布置作業
(1)77頁——78頁1,2,3,79頁11
(2)預習下節內容
鞏固本節所學概念,強化基本技能訓練,培養學生良好的學習習慣和品質,發現和彌補教學中的遺漏和不足。
高中數學簡潔教案模板篇5
教學目標
1、明確等差數列的定義。
2、掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題
3、培養學生觀察、歸納能力。
教學重點
1、等差數列的概念;
2、等差數列的通項公式
教學難點
等差數列“等差”特點的理解、把握和應用
教具準備
投影片1張
教學過程
(I)復習回顧
師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)
(Ⅱ)講授新課
師:看這些數列有什么共同的特點?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:積極思考,找上述數列共同特點。
對于數列①(1≤n≤6);(2≤n≤6)
對于數列②-2n(n≥1)(n≥2)
對于數列③(n≥1)(n≥2)
共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。
師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。
一、定義:
等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。
如:上述3個數列都是等差數列,它們的公差依次是1,-2。
二、等差數列的通項公式
師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:
若將這n-1個等式相加,則可得:
即:即:即:……
由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。
如數列①(1≤n≤6)
數列②:(n≥1)
數列③:(n≥1)
由上述關系還可得:即:則:=如:
三、例題講解
例1:(1)求等差數列8,5,2…的第20項
(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。
(Ⅲ)課堂練習
生:(口答)課本P118練習3
(書面練習)課本P117練習1
師:組織學生自評練習(同桌討論)
(Ⅳ)課時小結
師:本節主要內容為:
①等差數列定義。
即(n≥2)
②等差數列通項公式(n≥1)
推導出公式:
(V)課后作業
一、課本P118習題3.21,2
二、1、預習內容:課本P116例2P117例4
2、預習提綱:
①如何應用等差數列的定義及通項公式解決一些相關問題?
②等差數列有哪些性質?
高中數學簡潔教案模板篇6
在預習教材中的例4的基礎上,證明:若分別是橢圓的左、右焦點,則橢圓上任一點p()到焦點的距離(焦半徑),同時思考當橢圓的焦點在y軸上時,結論如何?(此題意圖是引導學生去進一步探究,為進一步研究橢圓的性質做準備)
本堂課是在學生學習了橢圓的定義、標準方程的基礎上,根據方程研究曲線的性質。按照學生的認知特點,改變了教材中原有安排順序,引導學生從觀察課前預習所作的圖形入手,從分析對稱開始,循序漸進進行探究。由教師點撥、指導,學生研究、合作、體驗來完成。
本節課借助多媒體手段創設問題情境,指導學生研究式學習和體驗式學習(興趣是前提)。例如導入,通過“神州五號”這樣一個人們關注的話題引入,有利于激發學生的興趣。再如,這節課是學生第一次利用曲線方程研究曲線性質,為了解決這一難點,在課前設計中改變了教材原有研究順序,讓學生從觀察一個具體橢圓圖形入手,從觀察到對稱性這一宏觀特征開始研究,符合學生的認知特點,調動了學生主動參與教學的積極性,使他們進行自主探究與合作交流,親身體驗幾何性質的形成與論證過程,變靜態教學為動態教學。在研究范圍這一性質時,課前設計中,只要學生能根據不等式知識解出就可以了,但學生采用了多種方法研究,這時教師沒有打斷他的思路,而是引導幫助他研究,鼓勵學生創新,從而也實現了以學生為主,為學生服務。
在離心率這一性質的教學中,充分利用多媒體手段,以輕松愉悅的動畫演示,化解了知識的難點。
但也有不足的地方:在對具體例子的觀察分析中,設計的問題過于具體,可能束縛了學生的思維,還沒有放開。還有就是少講多學方面也是我今后教學中努力的方向。
感悟:新課堂是活動的課堂,討論、合作交流可課堂,德育教育的課堂,應用現代技術的課堂,因此新教育理念、新課改下的新課堂需要教師和學生一起來培育。
高中數學簡潔教案模板篇7
第二教時教材:
1、復習
2、《課課練》及《教學與測試》中的有關內容目的:復習集合的概念;鞏固已經學過的內容,并加深對集合的理解。
過程:
一、復習:(結合提問)
1.集合的概念含集合三要素
2.集合的表示、符號、常用數集、列舉法、描述法
3.集合的分類:有限集、無限集、空集、單元集、二元集
4.關于“屬于”的概念
二、例一用適當的方法表示下列集合:
1.平方后仍等于原數的數集解:{x x2=x}={0,1}
2.比2大3的數的集合解:{x x=2+3}={5}
3.不等式x2-x-6<0的整數解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}
4.過原點的直線的集合解:{(x,y)y=kx}
5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}
6.使函數y=有意義的實數x的集合解:{x x2+x-60}={x x2且x3,xR}
三、處理蘇大《教學與測試》第一課含思考題、備用題
四、處理《課課練》
五、作業《教學與測試》第一課練習題
高中數學簡潔教案模板篇8
數列的相關概念
1.數列概念
①數列是一種特殊的函數。其特殊性主要表現在其定義域和值域上。數列可以看作一個定義域為正整數集N--或其有限子集{1,2,3,…,n}的函數,其中的{1,2,3,…,n}不能省略。
②用函數的觀點認識數列是重要的思想方法,一般情況下函數有三種表示方法,數列也不例外,通常也有三種表示方法:a.列表法;b。圖像法;c.解析法。其中解析法包括以通項公式給出數列和以遞推公式給出數列。
③函數不一定有解析式,同樣數列也并非都有通項公式。
高中數學簡潔教案模板篇9
橢圓的簡單幾何性質中的考查點:
(一)、對性質的考查:
1、范圍:要注意方程與函數的區別與聯系;與橢圓有關的求最值是變量的取值范圍;作橢圓的草圖。
2、對稱性:橢圓的中心及其對稱性;判斷曲線關于x軸、y軸及原點對稱的依據;如果曲線具有關于x軸、y軸及原點對稱中的任意兩種,那么它也具有另一種對稱性;注意橢圓不因坐標軸改變的固有性質。
3、頂點:橢圓的頂點坐標;一般二次曲線的頂點即是曲線與對稱軸的交點;橢圓中a、b、c的幾何意義(橢圓的特征三角形及離心率的三角函數表示)。
4、離心率:離心率的定義;橢圓離心率的取值范圍:(0,1);橢圓的離心率的變化對橢圓的影響:當e趨向于1時:c趨向于a,此時,橢圓越扁平;當e趨向于0時:c趨向于0,此時,橢圓越接近于圓;當且僅當a=b時,c=0,兩焦點重合,橢圓變成圓。
(二)、課本例題的變形考查:
1、近日點、遠日點的概念:橢圓上任意一點p(x,y)到橢圓一焦點距離的最大值:a+c與最小值:a-c及取最值時點p的坐標;
2、橢圓的第二定義及其應用;橢圓的準線方程及兩準線間的距離、焦準距:焦半徑公式。
3、已知橢圓內一點m,在橢圓上求一點p,使點p到點m與到橢圓準線的距離的和最小的求法。
4、橢圓的參數方程及橢圓的離心角:橢圓的參數方程的簡單應用:
5、直線與橢圓的位置關系,直線與橢圓相交時的弦長及弦中點問題。
高中數學簡潔教案模板篇10
教學目標
(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;
(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;
(3)掌握排列數公式,并能根據具體的問題,寫出符合要求的排列數;
(4)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;
(5)通過對排列應用問題的學習,讓學生通過對具體事例的觀察、歸納中找出規律,得出結論,以培養學生嚴謹的學習態度。
教學建議
一、知識結構
二、重點難點分析
本小節的重點是排列的定義、排列數及排列數的公式,并運用這個公式去解決有關排列數的應用問題。難點是導出排列數的公式和解有關排列的應用題。突破重點、難點的關鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應用問題當中。
從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當且僅當他們的元素完全相同,并且元素的排列順序也完全相同。排列數是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數,只要弄清相同排列、不同排列,才有可能計算相應的排列數。排列與排列數是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當于一個排列,而這種有序集的個數,就是相應的排列數。
公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好的推導。
排列的應用題是本節教材的難點,通過本節例題的分析,應注意培養學生解決應用問題的能力。
在分析應用題的`解法時,教材上先畫出框圖,然后分析逐次填入時的種數,這樣解釋比較直觀,教學上要充分利用,要求學生作題時也應盡量采用。
在教學排列應用題時,開始應要求學生寫解法要有簡要的文字說明,防止單純的只寫一個排列數,這樣可以培養學生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。
三、教法建議
①在講解排列數的概念時,要注意區分“排列數”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數,而是具體的一件事;排列數是指“從n個不同元素中取出m個元素的所有排列的個數”,它是一個數。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:
ab,ac,ba,bc,ca,cb,
其中每一種都叫一個排列,共有6種,而數字6就是排列數,符號表示排列數。
②排列的定義中包含兩個基本內容,一是“取出元素”,二是“按一定順序排列”。
從定義知,只有當元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。
在定義中“一定順序”就是說與位置有關,在實際問題中,要由具體問題的性質和條件來決定,這一點要特別注意,這也是與后面學習的組合的根本區別。
在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列。
要特別注意,不加特殊說明,本章不研究重復排列問題。
③關于排列數公式的推導的教學。公式推導要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導,,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學生是不難理解的。
導出公式后要分析這個公式的構成特點,以便幫助學生正確地記憶公式,防止學生在“n”、“m”比較復雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數是n,后面每個因數都比它前面一個因數少1,最后一個因數是,共m個因數相乘。”這實際是講三個特點:第一個因數是什么?最后一個因數是什么?一共有多少個連續的自然數相乘。
公式是在引出全排列數公式后,將排列數公式變形后得到的公式。對這個公式指出兩點:
(1)在一般情況下,要計算具體的排列數的值,常用前一個公式,而要對含有字母的排列數的式子進行變形或作有關的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;
(2)為使這個公式在時也能成立,規定,如同時一樣,是一種規定,因此,不能按階乘數的原意作解釋。
④建議應充分利用樹形圖對問題進行分析,這樣比較直觀,便于理解。
⑤學生在開始做排列應用題的作業時,應要求他們寫出解法的簡要說明,而不能只列出算式、得出答數,這樣有利于學生得更加扎實。隨著學生解題熟練程度的提高,可以逐步降低這種要求。
高中數學簡潔教案模板篇11
一、教學內容分析
圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象,恰當地利用定義解題,許多時候能以簡馭繁。因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。
二、學生學習情況分析
我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。
三、設計思想
由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情。在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率。
四、教學目標
1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用定義解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。
2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。
3、借助多媒體輔助教學,激發學習數學的興趣。
五、教學重點與難點:
教學重點
1、對圓錐曲線定義的理解
2、利用圓錐曲線的定義求“最值”
3、“定義法”求軌跡方程
教學難點:
巧用圓錐曲線定義解題
六、教學過程設計
【設計思路】
(一)開門見山,提出問題
一上課,我就直截了當地給出例題1:
(1)已知A(-2,0),B(2,0)動點M滿足MA+MB=2,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)線段(D)不存在
(2)已知動點M(x,y)滿足(x1)2(y2)23x4y,則點M的軌跡是()。
(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線
【設計意圖】
定義是揭示概念內涵的邏輯方法,熟悉不同概念的不同定義方式,是學習和研究數學的一個必備條件,而通過一個階段的學習之后,學生們對圓錐曲線的定義已有了一定的認識,他們是否能真正掌握它們的本質,是我本節課首先要弄清楚的問題。
為了加深學生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準備了兩道練習題。
【學情預設】
估計多數學生能夠很快回答出正確答案,但是部分學生對于圓錐曲線的定義可能并未真正理解,因此,在學生們回答后,我將要求學生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學完圓錐曲線這部分知識的學生來說,并不是什么難事。但問題(2)就可能讓學生們費一番周折——如果有學生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25
這樣,很快就能得出正確結果。如若不然,我將啟發他們從等式兩端的式子3x4y5入手,考慮通過適當的變形,轉化為學生們熟知的兩個距離公式。
在對學生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標是,實軸長為,焦距為。以深化對概念的理解。
(二)理解定義、解決問題
例2:
(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內切,求△ABC面積的最大值。
(2)在(1)的條件下,給定點P(-2,2),求PA
【設計意圖】
運用圓錐曲線定義中的數量關系進行轉化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學生們比較容易混淆的一類問題。例2的設置就是為了方便學生的辨析。
【學情預設】
根據以往的經驗,多數學生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關鍵在于能準確寫出點A的軌跡,有了練習題1的鋪墊,這個問題對學生們來講就顯得頗為簡單,因此面對例2(1),多數學生應該能準確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學生就無從下手。我提醒學生把3/5和離心率聯系起來,這樣就容易和第二定義聯系起來,從而找到解決本題的突破口。
(三)自主探究、深化認識
如果時間允許,練習題將為學生們提供一次數學猜想、試驗的機會。
練習:
設點Q是圓C:(x1)2225AB的最小值。3y225上動點,點A(1,0)是圓內一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。
引申:若將點A移到圓C外,點M的軌跡會是什么?
【設計意圖】練習題設置的目的是為學生課外自主探究學習提供平臺,當然,如果課堂上時間允許的話,
可借助“多媒體課件”,引導學生對自己的結論進行驗證。
【知識鏈接】
(一)圓錐曲線的定義
1、圓錐曲線的第一定義
2、圓錐曲線的統一定義
(二)圓錐曲線定義的應用舉例
1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準線的距離。
2、PF1PF22P為等軸雙曲線x2y2a2上一點,F1、F2為兩焦點,O為雙曲線的中心,求的PO取值范圍。
3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標。
4、例題:
(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求MA+MF的最小值。
(2)已知A(,3)為一定點,F為雙曲線1的右焦點,M在雙曲線右支上移動,當AMMF最小時,求M點的坐標。
(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使PM+FM最小。
5、已知A(4,0),B(2,2)是橢圓1內的點,M是橢圓上的動點,求MA+MB的最小值與最大值。
七、教學反思
1、本課將借助于,將使全體學生參與活動成為可能,使原來令人難以理解的抽象的數學理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學,節省了板演的時間,從而給學生留出更多的時間自悟、自練、自查,充分發揮學生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學理念的有機結合的教學優勢。
2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結果的檢測研究,培養學生思維能力,使學生從學會一個問題的求解到掌握一類問題的解決方法,循序漸進的讓學生把握這類問題的解法;將學生容易混淆的兩類求“最值問題”并為一道題,方便學生進行比較、分析。雖然從表面上看,我這一堂課的教學容量不大,但事實上,學生們的思維運動量并不會小。
總之,如何更好地選擇符合學生具體情況,滿足教學目標的例題與練習、靈活把握課堂教學節奏仍是我今后工作中的一個重要研究課題,而要能真正進行素質教育,培養學生的創新意識,自己首先必須更新觀念——在教學中適度使用多媒體技術,讓學生有參與教學實踐的機會,能夠使學生在學習新知識的同時,激發起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質,提高了數學思維能力。
高中數學簡潔教案模板篇12
一、課程性質與任務
數學是研究空間形式和數量關系的科學,是科學和技術的基礎,是人類文化的重要組成部分。數學課程是中等職業學校學生必修的一門公共基礎課。本課程的任務是:使學生掌握必要的數學基礎知識,具備必需的相關技能與能力,為學習專業知識、掌握職業技能、繼續學習和終身發展奠定基礎。二、課程教學目標
1.在九年義務教育基礎上,使學生進一步學習并掌握職業崗位和生活中所必要的數學基礎知識。2.培養學生的計算技能、計算工具使用技能和數據處理技能,培養學生的觀察能力、空間想象能力、分析與解決問題能力和數學思維能力。
3.引導學生逐步養成良好的學習習慣、實踐意識、創新意識和實事求是的科學態度,提高學生就業能力與創業能力。三、教學內容結構
本課程的教學內容由基礎模塊、職業模塊和拓展模塊三個部分構成。
1.基礎模塊是各專業學生必修的基礎性內容和應達到的基本要求,教學時數為128學時。2.職業模塊是適應學生學習相關專業需要的限定選修內容,各學校根據實際情況進行選擇和安排教學,教學時數為32~64學時。
3.拓展模塊是滿足學生個性發展和繼續學習需要的任意選修內容,教學時數不做統一規定。四、教學內容與要求
(一)本大綱教學要求用語的表述1.認知要求(分為三個層次)
了解:初步知道知識的含義及其簡單應用。
理解:懂得知識的概念和規律(定義、定理、法則等)以及與其他相關知識的聯系。掌握:能夠應用知識的概念、定義、定理、法則去解決一些問題。2.技能與能力培養要求(分為三項技能與四項能力)
計算技能:根據法則、公式,或按照一定的操作步驟,正確地進行運算求解。計算工具使用技能:正確使用科學型計算器及常用的數學工具軟件。數據處理技能:按要求對數據(數據表格)進行處理并提取有關信息。觀察能力:根據數據趨勢,數量關系或圖形、圖示,描述其規律。
空間想象能力:依據文字、語言描述,或較簡單的幾何體及其組合,想象相應的空間圖形;能夠在基本圖形中找出基本元素及其位置關系,或根據條件畫出圖形。
分析與解決問題能力:能對工作和生活中的簡單數學相關問題,作出分析并運用適當的數學方法予以解決。
數學思維能力:依據所學的數學知識,運用類比、歸納、綜合等方法,對數學及其應用問題能進行有條理的思考、判斷、推理和求解;針對不同的問題(或需求),會選擇合適的模型(模式)。
(二)教學內容與要求1.基礎模塊(128學時)第1單元集合(10學時)
第2單元不等式(8學時)
第3單元函數(12學時)
第4單元指數函數與對數函數(12學時)
第5單元三角函數(18學時)
第6單元數列(10學時)
第7單元平面向量(矢量)(10學時)
第8單元直線和圓的方程(18學時)
第9單元立體幾何(14學時)
第10單元概率與統計初步(16學時)
2.職業模塊
第1單元三角計算及其應用(16學時)
第2單元坐標變換與參數方程(12學時)
第3單元復數及其應用(10學時)
高中數學簡潔教案模板篇13
【教學目標】
1、知識與技能
(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:
(2)賬務等差數列的通項公式及其推導過程:
(3)會應用等差數列通項公式解決簡單問題。
2、過程與方法
在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。
3、情感、態度與價值觀
通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。
【教學重點】
①等差數列的概念;
②等差數列的通項公式
【教學難點】
①理解等差數列“等差”的特點及通項公式的含義;
②等差數列的通項公式的推導過程.
【學情分析】
我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。
【設計思路】
1、教法
①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.
②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.
③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.
2、學法
引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.
【教學過程】
一、創設情境,引入新課
1、從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?
2、水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?
3、我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?
教師:以上三個問題中的數蘊涵著三列數.
學生:
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.
二、觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數列有什么共同特點?
思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?
思考3你能將上述的文字語言轉換成數學符號語言嗎?
教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.
學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.
(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數”,落實對等差數列概念的&39;準確表達.)
三、舉一反三,鞏固定義
1、判定下列數列是否為等差數列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.
(設計意圖:強化學生對等差數列“等差”特征的理解和應用).
2、思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?
(設計意圖:強化等差數列的證明定義法)
四、利用定義,導出通項
1、已知等差數列:8,5,2,…,求第200項?
2、已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.
(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)
五、應用通項,解決問題
1、判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?
2、在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差數列3,7,11,…的第4項和第10項
教師:給出問題,讓學生自己操練,教師巡視學生答題情況.
學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式
(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)
六、反饋練習:
教材13頁練習1
七、歸納總結:
1、一個定義:
等差數列的定義及定義表達式
2、一個公式:
等差數列的通項公式
3、二個應用:
定義和通項公式的應用
教師:讓學生思考整理,找幾個代表發言,最后教師給出補充
(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)
【設計反思】
本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.
高中數學簡潔教案模板篇14
分享目標:
1、通過與學生交流《課程綱要》,使學生了解本學期的課程內容、課程目標及課程評價。
2、通過了解教師對學生的評價方法,激發學生自主學習的主動性。
分享重點:
了解本學期的學習內容和評價方法。
分享難點:
通過分享《課程綱要》明確學習目標。
分享時間:一課時
分享準備:《三年級綜實課程綱要》PPT
分享過程:
一、談話導入
1、師:同學們,新年新氣象,新的學期又是新的開始。本學期的第二節綜實課,老師要帶領大家認識一個新朋友,它就像向導一樣,能夠指引大家在本學期的學習中找準學習目標,理清學習內容、了解學習安排,真正成為學習的小主人,它就是課程綱要。(板書課題)
二、內容新授
1、師:怎樣才能做學習的小主人呢?首先我們要了解本學期的學習內容。我們本學期將會學習那些內容呢?《課程綱要》來一一為我們介紹。
2、師:本學期我們只進行一個綜合實踐活動課的主題,它就是有趣的姓氏。
3、師:主題確定了,那么課下就需要你們想想,圍繞這些主題可以引出什么呢?(生說)
4、師:對,是子課題。說明大家上學期上課大家認真聽講了。除了想一想可以確定哪些子課題,還要想想你準備怎樣做,使用哪些方法等等。
5、師:接下來我來說說我們這學期綜實課分組的問題。這學期分組,以主題確定后,你們自己找搭檔,找助手,一起同心協力更好的完成各個主題活動。
6、師:本學期的課程內容大家都了解了,那本學期的評獎方式是什么呢?
①每節課課余1-3分鐘,根據本節舉手回答問題的次數,以及課堂表現,來老師這里為個人加分,各組組長也負責記錄并統計出每星期、每個月加分最多的組員上報老師,老師會授予這些同學優秀之星的稱號,獲得優秀之星稱號的同學會得到學習星以及才藝星的獎勵。
②課前準備綜實成長記錄袋以及A4白紙15張,作為平時作業及記錄板書內容的筆記本。老師批閱,每月月末總檢,作為評分獎勵的內容之一。
③平時按照老師要求,準備工具、材料,期末獎勵進步獎。
三、課堂小結
師:同學們,通過對本學期《課程綱要》的學習,你是否對本學期的學習充滿信心呢?老師相信,每個孩子都能成為學習的小主人。
高中數學簡潔教案模板篇15
教學目標:
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
(2)理解直線與二元一次方程的關系及其證明
(3)培養學生抽象概括能力、分類討論能力、逆向思維的習慣和形成特殊與一般辯證統一的觀點.
教學重點、難點:直線方程的一般式.直線與二元一次方程(、不同時為0)的對應關系及其證明.
教學用具:計算機
教學方法:啟發引導法,討論法
教學過程:
下面給出教學實施過程設計的簡要思路:
教學設計思路:
(一)引入的設計
前邊學習了如何根據所給條件求出直線方程的方法,看下面問題:
問:說出過點(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.
肯定學生回答,并糾正學生中不規范的表述.再看一個問題:
問:求出過點,的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因為未知數有兩個,它們的最高次數為一次.
肯定學生回答后強調“也是二元一次方程,都是因為未知數有兩個,它們的最高次數為一次”.
啟發:你在想什么(或你想到了什么)?誰來談談?各小組可以討論討論.
學生紛紛談出自己的想法,教師邊評價邊啟發引導,使學生的認識統一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節主體內容教學的設計
這是本節課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學生或獨立研究,或合作研究,教師巡視指導.
經過一定時間的研究,教師組織開展集體討論.首先讓學生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在.
當存在時,直線的截距也一定存在,直線的方程可表示為,它是二元一次方程.
當不存在時,直線的方程可表示為形式的方程,它是二元一次方程嗎?
學生有的認為是有的認為不是,此時教師引導學生,逐步認識到把它看成二元一次方程的合理性:
平面直角坐標系中直線上點的坐標形式,與其它直線上點的坐標形式沒有任何區別,根據直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.
綜合兩種情況,我們得出如下結論:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的關于、的二元一次方程.
至此,我們的問題1就解決了.簡單點說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成或的形式,準確地說應該是“要么形如這樣,要么形如這樣的方程”.
同學們注意:這樣表達起來是不是很啰嗦,能不能有一個更好的表達?
學生們不難得出:二者可以概括為統一的形式.
這樣上邊的結論可以表述如下:
在平面直角坐標系中,對于任何一條直線,都有一條表示這條直線的形如(其中、不同時為0)的二元一次方程.
啟發:任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關的問題呢?
【問題2】任何形如(其中、不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結論只是直線與方程相互關系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認真地研究,得到明確的結論.那么如何研究呢?
師生共同討論,評價不同思路,達成共識:
回顧上邊解決問題的思路,發現原路返回就是非常好的思路,即方程(其中、不同時為0)系數是否為0恰好對應斜率是否存在,即
(1)當時,方程可化為
這是表示斜率為、在軸上的截距為的直線.
(2)當時,由于、不同時為0,必有,方程可化為
這表示一條與軸垂直的直線.
因此,得到結論:
在平面直角坐標系中,任何形如(其中、不同時為0)的二元一次方程都表示一條直線.
為方便,我們把(其中、不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發現上述兩個問題其實是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應關系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉化關系.
(三)練習鞏固、總結提高、板書和作業等環節的設計
略
高中數學簡潔教案模板篇16
一、課前檢測
1.在數列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數列{bn}的前n項的和.
解:由已知得:an=1n+1(1+2+3++n)=n2,
bn=2n2n+12=8(1n-1n+1)數列{bn}的前n項和為
Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.
2.已知在各項不為零的數列中,。
(1)求數列的通項;
(2)若數列滿足,數列的前項的和為,求
解:(1)依題意,,故可將整理得:
所以即
,上式也成立,所以
(2)
二、知識梳理
(一)前n項和公式Sn的定義:Sn=a1+a2+an。
(二)數列求和的方法(共8種)
5.錯位相減法:適用于差比數列(如果等差,等比,那么叫做差比數列)即把每一項都乘以的公比,向后錯一項,再對應同次項相減,轉化為等比數列求和。
如:等比數列的前n項和就是用此法推導的.
解讀:
6.累加(乘)法
解讀:
7.并項求和法:一個數列的前n項和中,可兩兩結合求解,則稱之為并項求和.
形如an=(-1)nf(n)類型,可采用兩項合并求。
解讀:
8.其它方法:歸納、猜想、證明;周期數列的求和等等。
解讀:
三、典型例題分析
題型1錯位相減法
例1求數列前n項的和.
解:由題可知{}的通項是等差數列{2n}的通項與等比數列{}的通項之積
設①
②(設制錯位)
①-②得(錯位相減)
變式訓練1(20__昌平模擬)設數列{an}滿足a1+3a2+32a3++3n-1an=n3,nN__.
(1)求數列{an}的通項公式;
(2)設bn=nan,求數列{bn}的&39;前n項和Sn.
解:(1)∵a1+3a2+32a3++3n-1an=n3,①
當n2時,a1+3a2+32a3++3n-2an-1=n-13.②
①-②得3n-1an=13,an=13n.
在①中,令n=1,得a1=13,適合an=13n,an=13n.
(2)∵bn=nan,bn=n3n.
Sn=3+232+333++n3n,③
3Sn=32+233+334++n3n+1.④
④-③得2Sn=n3n+1-(3+32+33++3n),
即2Sn=n3n+1-3(1-3n)1-3,Sn=(2n-1)3n+14+34.
小結與拓展:
題型2并項求和法
例2求=1002-992+982-972++22-12
解:=1002-992+982-972++22-12=(100+99)+(98+97)++(2+1)=5050.
變式訓練2數列{(-1)nn}的前20__項的和S2010為(D)
A.-20__B.-1005C.20__D.1005
解:S2010=-1+2-3+4-5++2008-2009+2010
=(2-1)+(4-3)+(6-5)++(2010-2009)=1005.
小結與拓展:
題型3累加(乘)法及其它方法:歸納、猜想、證明;周期數列的求和等等
例3(1)求之和.
(2)已知各項均為正數的數列{an}的前n項的乘積等于Tn=(nN__),
,則數列{bn}的前n項和Sn中最大的一項是(D)
A.S6B.S5C.S4D.S3
解:(1)由于(找通項及特征)
=(分組求和)==
=
(2)D.
變式訓練3(1)(20__福州八中)已知數列則,。答案:100.5000。
(2)數列中,,且,則前20__項的和等于(A)
A.1005B.20__C.1D.0
小結與拓展:
四、歸納與總結(以學生為主,師生共同完成)
以上一個8種方法雖然各有其特點,但總的原則是要善于改變原數列的形式結構,使
其能進行消項處理或能使用等差數列或等比數列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規律,就能使數列求和化難為易,迎刃而解。
高中數學簡潔教案模板篇17
教學類型:探究研究型
設計思路:通過一系列的猜想得出德·摩根律,但是這個結論僅僅是猜想,數學是一門科學,所以需要論證它的正確性,因此本節通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課·
教學過程:
一、片頭
(20秒以內)
內容:你好,現在讓我們一起來學習《集合的運算——自己探索也能發現的&39;數學規律(第二講)》。
第1張PPT
12秒以內
二、正文講解
(4分20秒左右)
1·引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發現。”
上節課老師和大家學習了集合的運算,得出了一個有趣的規律。課后,你舉例驗證了這個規律嗎?
那么,這個規律是偶然的,還是一個恒等式呢?
第2張PPT
28秒以內
2·規律的`驗證:
試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用
第3張PPT
2分10秒以內
3·抽象概括:通過我們的觀察和驗證,我們發現這個規律是一個恒等式。
而這個規律就是180年前著名的英國數學家德摩根發現的。
為了紀念他,我們將它稱為德摩根律。
原來我們通過自己的探索也能發現這么偉大的數學規律。
第4張PPT
30秒以內
4·例題應用:使用例題形式,將的德摩根定律的結論加以應用,讓學生更加熟悉集合的運算
第5張PPT
1分20秒以內
三、結尾
(20秒以內)
通過這在道題的解答,我們發現德摩根律為解答集合運算問題提供了更為簡便的方法。
希望你在今后的學習中,勇于探索,發現更多有趣的規律。
第6張PPT
10秒以內
教學反思(自我評價)
學生在學習集合時會接觸到很多的集合運算,往往學生覺得這是集合中的難點,因此本節課通過一系列的猜想,以精彩的動畫展示,讓學生在直觀的環境下輕松的學習,提高學生學習數學的興趣,并通過層層深入的講解,讓學生進一步加強對集合運算的理解和應用能力,效果非常好·