高中數學簡潔教案大全
通過編寫教案,教師可以將教學計劃、教學重點、難點、教學方法等組織起來,形成完整的教學內容體系。高中數學簡潔教案大全怎么寫才規范?下面給大家分享高中數學簡潔教案大全,希望對大家有所幫助。
高中數學簡潔教案大全篇1
教學目標:明確等差數列的定義,掌握等差數列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養學生觀察能力,進一步提高學生推理、歸納能力,培養學生的&39;應用意識.
教學重點:1.等差數列的概念的理解與掌握.2.等差數列的通項公式的推導及應用.教學難點:等差數列“等差”特點的理解、把握和應用.教學過程:
Ⅰ.復習回顧上兩節課我們共同學習了數列的定義及給出數列的兩種方法——通項公式和遞推公式.這兩個公式從不同的角度反映數列的特點,下面我們看這樣一些例子
Ⅱ.講授新課10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,請同學們仔細觀察這些數列有什么共同的&39;特點?是否可以寫出這些數列的通項公式?(引導學生積極思考,努力尋求各數列通項公式,并找出其共同特點)它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數.也就是說,這些數列均具有相鄰兩項之差“相等”的特點.具有這種特點的數列,我們把它叫做等差數列.
1.定義等差數列:一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.
2.等差數列的通項公式等差數列定義是由一數列相鄰兩項之間關系而得.若一等差數列{an}的首項是a1,公差是d,則據其定義可得:(n-1)個等式若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d即:an=a1+(n-1)d當n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N-時上述公式都成立,所以它可作為數列{an}的通項公式.看來,若已知一數列為等差數列,則只要知其首項a1和公差d,便可求得其通項.由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d
請同學們來思考這樣一個問題.如果在a與b中間插入一個數A,使a、A、b成等差數列,那么A應滿足什么條件?由等差數列定義及a、A、b成等差數列可得:A-a=b-A,即:a=.反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數列.總之,A=a,A,b成等差數列.如果a、A、b成等差數列,那么a叫做a與b的等差中項.例題講解[
例1]在等差數列{an}中,已知a5=10,a15=25,求a25.
思路一:根據等差數列的已知兩項,可求出a1和d,然后可得出該數列的通項公式,便可求出a25.
思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關系式an=am+(n-m)d.這樣可簡化運算.思路三:若注意到在等差數列{an}中,a5,a15,a25也成等差數列,則利用等差中項關系式,便可直接求出a25的值.
[例2](1)求等差數列8,5,2…的第20項.分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項
答案:這個數列的第20項為-49.(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?分析:要想判斷-401是否為這數列的一項,關鍵要求出通項公式,看是否存在正整數n,可使得an=-401.∴-401是這個數列的第100項.
Ⅲ.課堂練習
1.(1)求等差數列3,7,11,……的&39;第4項與第10項.
(2)求等差數列10,8,6,……的第20項.(3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由.2.在等差數列{an}中,
(1)已知a4=10,a7=19,求a1與d;
(2)已知a3=9,a9=3,求a12.
Ⅳ.課時小結通過本節學習,首先要理解與掌握等差數列的定義及數學表達式:an-an-1=d(n≥2).其次,要會推導等差數列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應用.最后,還要注意一重要關系式:an=am+(n-m)d的理解與應用以及等差中項。
Ⅴ.課后作業課本P39習題1,2,3,4
高中數學簡潔教案大全篇2
教學目標:
1、掌握向量的加法運算,并理解其幾何意義;
2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養數形結合解決問題的能力;
3、通過將向量運算與熟悉的數的運算進行類比,使學生掌握向量加法運算的交換律和結合律,并會用它們進行向量計算,滲透類比的數學方法;
教學重點:會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量。
教學難點:理解向量加法的定義。
學法:
數能進行運算,向量是否也能進行運算呢?數的加法啟發我們,從運算的角度看,位移的合成、力的合成可看作向量的加法。借助于物理中位移的合成、力的合成來理解向量的加法,讓學生順理成章接受向量的加法定義。結合圖形掌握向量加法的三角形法則和平行四邊形法則。聯系數的運算律理解和掌握向量加法運算的交換律和結合律。
教具:多媒體或實物投影儀,尺規
授課類型:新授課
教學思路:
一、設置情景:
1、復習:向量的定義以及有關概念
強調:向量是既有大小又有方向的量。長度相等、方向相同的向量相等。因此,我們研究的向量是與起點無關的自由向量,即任何向量可以在不改變它的方向和大小的前提下,移到任何位置
2、情景設置:
(1)某人從A到B,再從B按原方向到C,
則兩次的位移和:AB?BC?AC
(2)若上題改為從A到B,再從B按反方向到C,
則兩次的位移和:AB?BC?AC
(3)某車從A到B,再從B改變方向到C,
則兩次的位移和:AB?BC?ACAB
C
(4)船速為AB,水速為BC,則兩速度和:AB?BC?AC
二、探索研究:
向量的加法:求兩個向量和的運算,叫做向量的加法。ABCABC
高中數學簡潔教案大全篇3
橢圓的簡單幾何性質的重點是性質,難點是應用。橢圓的簡單幾何性質的知識是解析幾何中一個重要內容,是訓練學生邏輯思維,發展空間想像能力,提高分析和解決問題能力等的又一重要素材。新課開始,先復習橢圓定義和方程,然后結合圖形觀察分析得出橢圓有性質(范圍、對稱性、頂點、離心率、準線)。
當然,要真正掌握性質并靈活應用,適當的訓練是必不可少的。由于橢圓的簡單幾何性質安排了六節數學課,還有足夠的時間來開展反饋環節。課本后面的練習及習題比較多,其中習題的第5題及9題難度較大。對于比較簡單的習題,基本上由學生獨立完成,當然學生解題的時間必須要保證。而對于比較難的第5及9題,采取創設問題情境,注重啟發藝術,體現“低起點、小步子、及時反饋”的教學原則,讓盡可能多的學生思維和積極性得到最大的挑戰和提高。當然,教學永遠是一門遺憾的藝術,教學境界是無止境的,“啟而不發,引而不導”是一個不斷完善的操作過程。
對于習題的教學,如何提升習題的潛在價值,如何讓學生得到最大的收獲,這是我們每天面對和思考的焦點。在教學過程中幾乎花了一節課的時間開展習題教學,由于自己一直擔心時間的緊張,學生的主體性沒有得到有效體現,進而數學思維及能力缺少了錘煉的機會。這部分的缺陷,將在今后的教學中找時間來給學生補上,不過這是在教學中應注意的,將要要求自己在今后的教學中盡量做到最好。
高中數學簡潔教案大全篇4
教學目標
(1)正確理解加法原理與乘法原理的意義,分清它們的條件和結論;
(2)能結合樹形圖來幫助理解加法原理與乘法原理;
(3)正確區分加法原理與乘法原理,哪一個原理與分類有關,哪一個原理與分步有關;
(4)能應用加法原理與乘法原理解決一些簡單的應用問題,提高學生理解和運用兩個原理的能力;
(5)通過對加法原理與乘法原理的學習,培養學生周密思考、細心分析的良好習慣。
教學建議
一、知識結構
二、重點難點分析
本節的重點是加法原理與乘法原理,難點是準確區分加法原理與乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。這兩個原理是學習排列組合內容的基礎,貫穿整個內容之中,一方面它是推導排列數與組合數的基礎;另一方面它的結論與其思想在方法本身又在解題時有許多直接應用。
兩個原理回答的,都是完成一件事的所有不同方法種數是多少的問題,其區別在于:運用加法原理的前提條件是, 做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說,完成這件事的各種方法是相互獨立的;運用乘法原理的前提條件是,做一件事有n個驟,只要在每個步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說,完成這件事的各個步驟是相互依存的。簡單的說,如果完成一件事情的所有方法是屬于分類的問題,每次得到的是最后結果,要用加法原理;如果完成一件事情的方法是屬于分步的問題,每次得到的該步結果,就要用乘法原理。
三、教法建議
關于兩個計數原理的教學要分三個層次:
第一是對兩個計數原理的認識與理解.這里要求學生理解兩個計數原理的意義,并弄清兩個計數原理的區別.知道什么情況下使用加法計數原理,什么情況下使用乘法計數原理.(建議利用一課時).
第二是對兩個計數原理的使用.可以讓學生做一下習題(建議利用兩課時):
①用0,1,2,……,9可以組成多少個8位號碼;
②用0,1,2,……,9可以組成多少個8位整數;
③用0,1,2,……,9可以組成多少個無重復數字的4位整數;
④用0,1,2,……,9可以組成多少個有重復數字的4位整數;
⑤用0,1,2,……,9可以組成多少個無重復數字的4位奇數;
⑥用0,1,2,……,9可以組成多少個有兩個重復數字的4位整數等等.
第三是使學生掌握兩個計數原理的綜合應用,這個過程應該貫徹整個教學中,每個排列數、組合數公式及性質的推導都要用兩個計數原理,每一道排列、組合問題都可以直接利用兩個原理求解,另外直接計算法、間接計算法都是兩個原理的一種體現.教師要引導學生認真地分析題意,恰當的分類、分步,用好、用活兩個基本計數原理.
教學設計示例
加法原理和乘法原理
教學目標
正確理解和掌握加法原理和乘法原理,并能準確地應用它們分析和解決一些簡單的問題,從而發展學生的思維能力,培養學生分析問題和解決問題的能力.
教學重點和難點
重點:加法原理和乘法原理.
難點:加法原理和乘法原理的準確應用.
教學用具
投影儀.
教學過程設計
(一)引入新課
從本節課開始,我們將要學習中學代數內容中一個獨特的部分——排列、組合、二項式定理.它們研究對象獨特,研究問題的方法不同一般.雖然份量不多,但是與舊知識的聯系很少,而且它還是我們今后學習概率論的基礎,統計學、運籌學以及生物的選種等都與它直接有關.至于在日常的工作、生活上,只要涉及安排調配的問題,就離不開它.
今天我們先學習兩個基本原理.
(二)講授新課
1.介紹兩個基本原理
先考慮下面的問題:
問題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個班次,汽車有2個班次,輪船有3個班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?
因為一天中乘火車有4種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.
這個問題可以總結為下面的一個基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1+m2+…+mn種不同的方法.
請大家再來考慮下面的問題(打出片子——問題2):
問題2:由A村去B村的道路有3條,由B村去C村的道路有2條(見下圖),從A村經B村去C村,共有多少種不同的走法?
這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達B村后,再從B村到C村又各有2種不同的走法,因此,從A村經B村去C村共有3×2=6種不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n個步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法.
2.淺釋兩個基本原理
兩個基本原理的用途是計算做一件事完成它的所有不同的方法種數.
比較兩個基本原理,想一想,它們有什么區別?
兩個基本原理的區別在于:一個與分類有關,一個與分步有關.
看下面的分析是否正確(打出片子——題1,題2):
題1:找1~10這10個數中的所有合數.第一類辦法是找含因數2的合數,共有4個;第二類辦法是找含因數3的合數,共有2個;第三類辦法是找含因數5的合數,共有1個.
1~10中一共有N=4+2+1=7個合數.
題2:在前面的問題2中,步行從A村到B村的北路需要8時,中路需要4時,南路需要6時,B村到C村的北路需要5時,南路需要3時,要求步行從A村到C村的總時數不超過12時,共有多少種不同的走法?
第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.
題2中的合數是4,6,8,9,10這五個,其中6既含有因數2,也含有因數3;10既含有因數2,也含有因數5.題中的分析是錯誤的.
從A村到C村總時數不超過12時的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.
(此時給出題1和題2的目的是為了引導學生找出應用兩個基本原理的注意事項,這樣安排,不但可以使學生對兩個基本原理的理解更深刻,而且還可以培養學生的學習能力)
進行分類時,要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨完成這件事.只有滿足這個條件,才能直接用加法原理,否則不可以.
如果完成一件事需要分成幾個步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨立,即相對于前一步的每一種方法,下一步都有m種不同的方法,那么計算完成這件事的方法數時,就可以直接應用乘法原理.
也就是說:類類互斥,步步獨立.
(在學生對問題的分析不是很清楚時,教師及時地歸納小結,能使學生在應用兩個基本原理時,思路進一步清晰和明確,不再簡單地認為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯系就用乘法.從而深入理解兩個基本原理中分類、分步的真正含義和實質)
(三)應用舉例
現在我們已經有了兩個基本原理,我們可以用它們來解決一些簡單問題了.
例1 書架上放有3本不同的數學書,5本不同的語文書,6本不同的英語書.
(1)若從這些書中任取一本,有多少種不同的取法?
(2)若從這些書中,取數學書、語文書、英語書各一本,有多少種不同的取法?
(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?
(讓學生思考,要求依據兩個基本原理寫出這3個問題的答案及理由,教師巡視指導,并適時口述解法)
(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數學書中任取1本,有3種方法;第二類辦法是從5本不同的語文書中任取1本,有5種方法;第三類辦法是從6本不同的英語書中任取一本,有6種方法.根據加法原理,得到的取法種數是
N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.
(2)從書架上任取數學書、語文書、英語書各1本,需要分成三個步驟完成,第一步取1本數學書,有3種方法;第二步取1本語文書,有5種方法;第三步取1本英語書,有6種方法.根據乘法原理,得到不同的取法種數是N=m1×m2×m3=3×5×6=90.故,從書架上取數學書、語文書、英語書各1本,有90種不同的方法.
(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數學書、語文書各取1本,需要分兩個步驟,有3×5種方法;第二類辦法是數學書、英語書各取1本,需要分兩個步驟,有3×6種方法;第三類辦法是語文書、英語書各取1本,有5×6種方法.一共得到不同的取法種數是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.
例2 由數字0,1,2,3,4可以組成多少個三位整數(各位上的數字允許重復)?
解:要組成一個三位數,需要分成三個步驟:第一步確定百位上的數字,從1~4這4個數字中任選一個數字,有4種選法;第二步確定十位上的數字,由于數字允許重復,共有5種選法;第三步確定個位上的數字,仍有5種選法.根據乘法原理,得到可以組成的三位整數的個數是N=4×5×5=100.
答:可以組成100個三位整數.
教師的連續發問、啟發、引導,幫助學生找到正確的解題思路和計算方法,使學生的分析問題能力有所提高.教師在第二個例題中給出板書示范,能幫助學生進一步加深對兩個基本原理實質的理解,周密的考慮,準確的表達、規范的書寫,對于學生周密思考、準確表達、規范書寫良好習慣的形成有著積極的促進作用,也可以為學生后面應用兩個基本原理解排列、組合綜合題打下基礎.
(四)歸納小結
歸納什么時候用加法原理、什么時候用乘法原理:
分類時用加法原理,分步時用乘法原理.
應用兩個基本原理時需要注意分類時要求各類辦法彼此之間相互排斥;分步時要求各步是相互獨立的.
(五)課堂練習
P222:練習1~4.
(對于題4,教師有必要對三個多項式乘積展開后各項的構成給以提示)
(六)布置作業
P222:練習5,6,7.
補充題:
1.在所有的兩位數中,個位數字小于十位數字的共有多少個?
(提示:按十位上數字的大小可以分為9類,共有9+8+7+…+2+1=45個個位數字小于十位數字的兩位數)
2.某學生填報高考志愿,有m個不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個不同的志愿,求該生填寫志愿的方式的種數.
(提示:需要按三個志愿分成三步,共有m(m-1)(m-2)種填寫方式)
3.在所有的三位數中,有且只有兩個數字相同的三位數共有多少個?
(提示:可以用下面方法來求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個只有兩個數字相同的三位數)
4.某小組有10人,每人至少會英語和日語中的一門,其中8人會英語,5人會日語,(1)從中任選一個會外語的人,有多少種選法?(2)從中選出會英語與會日語的各1人,有多少種不同的選法?
(提示:由于8+5=13>10,所以10人中必有3人既會英語又會日語.
(1)N=5+2+3;(2)N=5×2+5×3+2×3)
高中數學簡潔教案大全篇5
數列的極限教學設計
西南位育中學肖添憶
一、教材分析
《數列的極限》為滬教版第七章第七節第一課時內容,是一節概念課。極限概念是數學中最重要和最基本的概念之一,因為極限理論是微積分學中的基礎理論,它的產生建立了有限與無限、常量數學與變量數學之間的橋梁,從而彌補和完善了微積分在理論上的欠缺。本節后續內容如:數列極限的運算法則、無窮等比數列各項和的求解也要用到數列極限的運算與性質來推導,所以極限概念的掌握至關重要。
課本在內容展開時,以觀察n??時無窮等比數列an?列an?qn,(q?1)與an?1的發展趨勢為出發點,結合數n21的發展趨勢,從特殊到一般地給出數列極限的描述性定義。在n由定義給出兩個常用極限。但引入部分的表述如“無限趨近于0,但它永遠不會成為0”、“不管n取值有多大,點(n,an)始終在橫軸的上方”可能會造成學生對“無限趨近”的理解偏差。
二、學情分析
通過第七章前半部分的學習,學生已經掌握了數列的有關概念,以及研究一些特殊數列的方法。但對于學生來說,數列極限是一個全新的內容,學生的思維正處于由經驗型抽象思維向理論型抽象思維過渡的階段。
由于已有的學習經驗與不當的推理類比,學生在理解“極限”、“無限趨近”時可能產生偏差,比如認為極限代表著一種無法逾越的程度,或是近似值。這與數學中“極限”的含義相差甚遠。在學習數列極限之前,又曾多次利用“無限趨近”描述反比例函數、指數函數、對數函數的圖像特征,這又與數列中“無限趨近”的含義有所差異,學生往往會因為常數列能達到某一個常數而否定常數列存在極限的事實。
三、教學目標與重難點教學目標:
1、通過數列極限發展史的介紹,感受數學知識的形成與發展,更好地把握極限概念的來龍去脈;
2、經歷極限定義在漫長時期內發展的過程,體會數學家們從概念發現到完善所作出的努力,從數列的變化趨勢,正確理解數列極限的概念和描述性定義;
3、會根據數列極限的意義,由數列的通項公式來考察數列的極限;掌握三個常用極限。教學重點:理解數列極限的概念
教學難點:正確理解數列極限的描述性定義
四、教學策略分析
在問題引入時著重突出“萬世不竭”與“講臺可以走到”在認知上的矛盾,激發學生的學習興趣與求知欲,并由此引出本節課的學習內容。在極限概念形成時,結合極限概念的發展史展開教學,讓學生意識到數學理論不是一成不變的,而是不斷發展變化的。數學的歷史發展過程與學生的認知過程有著一定的相似性,學生在某些概念上的進展有時與數學史上的概念進展平行。比如部分學生的想法與許多古希臘的數學家一樣,認為無限擴大的正多邊形不會與圓周重合,它的周長始終小于其外接圓的周長。教師通過梳理極限發展史上的代表性觀點,介紹概念的發展歷程以及前人對此的一系列觀點,能幫助學生發現自己可能也存在著類似于前人的一些錯誤想法。對數學發現的過程以認知角度加以分析,有助于學生學習數學家的思維方式,了解數學概念的發展,進而建構推理過程,使學生發生概念轉變。在課堂練習診斷部分,不但要求回答問題,還需對選擇原因進行辨析,進而強化概念的正確理解。
五、教學過程提綱與設計意圖1.問題引入
讓一名學生從距離講臺一米處朝講臺走動,每次都移動距講臺距離的一半,在黑板上寫出表示學生到講臺距離的數列。這名學生是否能走到講臺呢?類比“一尺之捶,日取其半,萬世不竭”,莊子認為這樣的過程是永遠不會完結的,然而“講臺永遠走不到”這一結果顯然與事實不同,要回答這一矛盾,讓我們看看歷史上的數學家們是如何思考的。【設計意圖】
改編自芝諾悖論的引入問題,與莊子的“一尺之捶”產生了認知沖突,激發學生的學習興趣與求知欲,并引出本節課的學習內容
2.極限概念的發展與完善
極限概念的發展經歷了三個階段:從早期以“割圓術”“窮竭法”為代表的樸素極限思想,到極限概念被提出后因“無窮小量是否為0”的爭論而引發的質疑,再經由柯西、魏爾斯特拉斯等人的工作以及實數理論的形成,嚴格的極限理論至此才真正建立。【設計意圖】
教師引導學生梳理極限發展史上的代表性觀點,了解數學家們提出觀點的時代背景,對照反思自己的想法,發現自己可能也存在著類似于前人的一些錯誤想法。教師在比較概念發展史上被否定的觀點與現今數學界認可的觀點時,會使學生產生認知沖突。從而可能使學生發生概念轉變,拋棄不正確的、不完整的、受限的想法,接受新的概念。在數學教學中,結合數學史展開教學可以讓學生意識到數學理論不是一成不變的,而是不斷發展變化的,從而提升學生概念轉變的動機。
3.數列極限的概念
極限思想的產生最早可追溯于中國古代。極限理論的完善出于社會實踐的需要,不是哪一名數學家苦思冥想得出,而是幾代人奮斗的結果。極限的嚴格定義經歷了相當漫長的時期才得以完善,它是人類智慧高度文明的體現,反映了數學發展的辯證規律。今天的主題,極限的定義,援引的便是柯西對于極限的闡述。
定義:在n無限增大的變化過程中,如果無窮數列{an}中的an無限趨近于一個常數A,那么A叫做數列{an}的極限,或叫做數列{an}收斂于A,記作liman?A,讀作“n趨向于
n??無窮大時,an的極限等于A”。
在數列極限的定義中,可用an-A無限趨近于0來描述an無限趨近于A。
如前闡述,柯西版本的極限定義雖然不是最完美的,但作為擺脫幾何直觀的首次嘗試,也是歷史上一個較為成功的版本,在歷史上的地位頗高。有時,我們也稱其為數列極限的描述性定義。
【設計意圖】
通過比較歷史上不同觀點下的極限定義,教師呈現數列極限的描述性定義,分析該定義的歷史意義,讓學生進一步明確數列極限的含義。4.課堂練習診斷
由數列極限的定義得到三個常用數列的極限:(1)limC?C(C為常數);
n??(2)lim1?0(n?N__);n??nnn??(3)當q判斷下列數列是否存在極限,若存在求出其極限,若不存在請說明理由
20--20--(1)an?;
nsinn?;n(3)1,1,1,1,?,1(2)an?(4)an????4(1?n?1000)
?4(n?1001)?1?1-,n為奇數(5)an??n
??1,n為偶數注:
(1)、(2)考察三個常用極限
(3)考查學生是否能清楚認識到數列極限概念是基于無窮項數列的背景下探討的。當項數無限增大時,數列的項若無限趨近于一個常數,則認為數列的極限存在。因此,數列極限可以看作是數列的一種趨于穩定的發展趨勢。有窮數列的項數是有限的,因而并不存在極限這個概念。
(4)引用柯西的觀點,解釋此處無限趨近的含義,是指隨著數列項數的增加,數列的項與某一常數要多接近就有多接近,由此得出結論:數列極限與前有限項無關且無窮常數數列存在極限的。
(5)擴充對三種趨近方式的理解:小于A趨近、大于A趨近和擺動趨近。本題中的數列沒有呈現出以上三種方式的任意一種。避免學生將趨近誤解為項數與常數間的差距不斷縮小。練習若A=0.9+0.09+0.009+0.0009+...,則以下對A的描述正確的是_____.A、A是小于1的最大正數
B、A的精確值為1C、A的近似值為1
選擇此選項的原因是_________①由于A的小數位都是9,找不到比A大但比1小的數;
②A是由無限多個正數的和組成,它們可以一直不斷得加下去,但總小于2;
③A表示的數是數列0.9,0.99,0.999,0.9999,...的極限;
④1與A的差等于0.00…01。
注:此題是為考查學生對于無窮小量和極限概念的理解。由極限概念的發展史可以看出,數學家們曾長時期陷入對無窮小概念理解的誤區中,極大地阻礙了對極限概念的理解。學生學習極限概念時可能也會遇到類似的誤區。
練習順次連接△ABC各邊中點A1、B1、C1,得到△A1B1C1。取△A1B1C1各邊中點A2、B2、C2并順次連接又得到一個新三角形△A2B2C2。再按上述方法一直進行下去,那么最終得到的圖形是_________.A、一個點
B、一個三角形
C、不確定
選擇此選項的原因是_________.①
無限次操作后所得三角形的面積無限趨近于0但不可能等于0。②
當操作一定次數后,三角形的三點會重合。
③
該項操作可以無限多次進行下去,因而總能作出類似的三角形。
④
無限次操作后所得三角形的三個頂點會趨向于一點。
注:此題從無限觀的角度考察學生對極限概念的的理解。學生容易忽視極限概念中的實無限,他們在視覺上采用無窮疊加的形式,但是會受最后一項的慣性思維,導致采用潛無限的思辨方式。所謂實無限是指把無限的整體本身作為一個現成的單位,是可以自我完成的過程或無窮整體。相對地,潛無限是指把無限看作永遠在延伸著的,一種變化著成長著不斷產生出來的東西。它永遠處在構造中,永遠完成不了,是潛在的,而不是實在的。持有潛無限觀點的學生在理解極限概念時,會將極限理解為是一個漸進過程,或是一個不可達到的極值。
通過習題,分析總結以下三個注意點:
(1)數列{an}有極限必須是一個無窮數列,但無窮數列不一定有極限存在;
1}可以說隨著n的無限增大,n1數列的項與-1會越來越接近,但這種接近不是無限趨近,所以不能說lim??1;
n??n(2)“無限趨近”不能用“越來越接近”代替,例如數列{(3)數列{an}趨向極限A的過程可有多種呈現形式。
【設計意圖】
通過例題與選項原因的分析,消除關于數列極限理解的三類誤區:
第一類是將數列極限等同于如下的三種概念:漸近線、最大限度或是近似值。第二類是學生對于數列趨向于極限方式的錯誤認知。第三類是對于無限的錯誤認知。
5.課堂小結
極限的描述性定義與注意點三個常用的極限
6.作業布置
1>任課老師布置的其他作業
2>學習魏爾斯特拉斯的數列極限定義,并用該定義證明習題的第一第二小問【設計意圖】
通過與數列極限相關的延伸問題,完善極限概念的體系,為學生創設課后自主探究平臺,感受靜態定義中凝結的數學家的智慧。
高中數學簡潔教案大全篇6
一、什么是教學案例
教學案例是真實而又典型且含有問題的事件。簡單地說,一個教學案例就是一個包含有疑難問題的實際情境的描述,是一個教學實踐過程中的故事,描述的是教學過程中“意料之外,情理之中的事”。
這可以從以下幾個層次來理解:
教學案例是事件:教學案例是對教學過程中的一個實際情境的描述。它講述的是一個故事,敘述的是這個教學故事的產生、發展的歷程,它是對教學現象的動態性的把握。
教學案例是含有問題的事件:事件只是案例的基本素材,并不是所有的教學事件都可以成為案例。能夠成為案例的事件,必須包含有問題或疑難情境在內,并且也可能包含有解決問題的方法在內。正因為這一點,案例才成為一種獨特的研究成果的表現形式。
案例是真實而又典型的事件:案例必須是有典型意義的,它必須能給讀者帶來一定的啟示和體會。案例與故事之間的根本區別是:故事是可以杜撰的,而案例是不能杜撰和抄襲的,它所反映的是真是發生的事件,是教學事件的真實再現。是對“當前”課堂中真實發生的實踐情景的描述。它不能用“搖擺椅子上杜撰的事實來替代”,也不能從抽象的、概括化的理論中演繹的事實來替代。
二、如何進行教學案例研究
教學案例是教師教學行為真實、典型的記錄,也是教師教學理念和教學思想的真實體現。因此它是教育教學研究的寶貴資源,也是教師之間交流的重要媒介。進行教學案例的研究是教師不斷反思、改進自己教學的一種方法,能促使教師更為深刻地認識到自己工作中的重點和難點。這個過程就是教師自我教育和成長的過程。
那么如何進行教學案例研究呢?一般情況下,案例研究的程序基本有以下兩個環節:案例研究的準備及實施、案例研究報告的撰寫與反思。
(一)案例研究的準備與實施
1.研究主題的選擇
案例研究都要有研究的重點和主題,這個主題常與教學改革的核心理念、常見的疑難問題和困惑事件相關,一般來說可以從教學的各個方面確定研究的主題,如從教師教學行為確定主題——教學材料的選擇、教學中的提問、教學媒體的使用、教學評價語言、課堂教學調控行為等;也可以從學生的學習方式確定主題——探究性學習、問題解決學習、合作學習、實踐性活動等。另外從學科特點、教學內容等都可以確定研究的主題。
研究者要了解當前教學的大背景,教改的大方向,要熟悉相關的《課程標準》和有針對性地作一些理論準備。還要通過有關的調查,搜集詳盡的材料(如閱讀教師的教學設計,進行訪談等),同時初步確定案例研究的方向、研究任務,即初步確定案例的內容是關于教學策略、學生行為或是教學技能的研究。
一般來說,案例研究主題的確定往往需要思考下面一些問題:即研究的事件是否對于自我發現更有潛力?選擇的事件對學生是否有較大的情感影響(心靈是否受到震撼)?關鍵事件再現了前人(或自己)過去成功的行為嗎?事件呈現的是一個你不能確定怎樣解決的問題?事件需要你做出困難的選擇嗎?事件使得你必須以一種感覺不熟悉的方式或是仍在思考的方式回答嗎?事件暗示一個與道德或道義上相關的問題嗎?研究的主題如果反映以上的一些內容,那么這樣的案例研究在自我學習、內省和深層次理解方面就可能更加富有成效。
高中數學教學案例研究的主題內容主要集中在三方面:(1)學科特點的體現:如數學思想方法的教學、數學思維品質的培養、本質屬性的抽象、數學結論的推廣等;(2)學生數學學習規律的探究:如數學學習習慣、解決問題的思維方式、獨立思考與合作學習等;(3)教師專業知識的提升:如數學板書與電子屏幕的展示對學生思維的影響、數學語言的訓練對人們思維的影響、數學知識模式化教學的優劣等。
2.案例研究的基本方法
(1)課堂觀察。觀察方法是指研究者按照一定的目的和計劃,在課堂教學活動的自然狀態下,用自己的感官和輔助工具對研究對象進行觀察研究的一種方法。它可以是教師自己對教學對象——學生,在課堂活動中的片斷進行觀察,也可以由其他教師來實施觀察,這兩種觀察的目的都是為了掌握課堂教學中的第一手資料。課堂觀察方法不限于用肉眼觀察、耳聽手記,還可利用各種工具如照相、錄音、攝像等作為輔助觀察的手段,以提高觀察的效果。對觀察的資料,可以逐字逐句整理成課堂教學實錄、教學程序表、提問技巧水平檢核表、提問行為類型頻次表、課堂教學時間分配表等,以便以后繼續分析案例提供翔實的原始材料。
(2)訪談與調查。對一些課堂教學不能觀察到的師生內心活動,如教師教學的目的、教學程序的意圖、教學手段的運用以及教學達標的成效等一些需要進一步了解的問題,可以通過與執教教師的交談以及和學生的座談,以豐富和充實課堂教學觀察的材料;對學生在課堂教學活動中回答問題的心理狀態、解題思路等問題,也可以在課后做一些問卷調查;對學生達標的成度、效度,也可以作一些測試調查。從這些訪談、調查的材料中,再分析課堂教學的現象,不難發現造成各種課堂現象與教師教學行為之間的因果關系,然后再具體尋找在哪個教學環節中出現問題,從中提煉出解決問題的對策。
(3)文獻分析。文獻分析是通過查閱文獻資料,從過去和現在的有關研究成果中受到啟發,從中找到課堂教學現象的理論依據,從而增強案例分析的說服力。當然,對廣大第一線教師而言,這里所運用的文獻分析方法,并不是為了論證新教育理論,也不是去歸納教育的宏觀現象,而是通過有關教育理論文獻的查閱,去進一步解讀課堂教學的活動,挖掘案例中的教育思想。如在數學教學中,我們常常通過學生的動手操作來獲得有關的數學概念、法則與公式,那么,為什么要這樣做呢?就可以帶著問題,查閱、分析有關文獻資料,從學習中提高研究者自身的理論水平。
(二)案例研究報告的撰寫
1.常見的案例報告格式
撰寫教學案例,結構可以靈活多樣,并非要千篇一律、一個模式,而是可以有不同的表現形式,如“案例背景——案例描述——案例分析”、“案例過程——案例反思”、“課例——問題——分析”、“主題與背景——情景描述——問題討論——詮釋與研究”等。當前,國內外課堂教學案例編寫的格式有多種多樣。但不管何種編寫格式,它們都有兩個共同的特點:一是對案例的客觀描述;二是對案例中所述問題、關鍵教學事件等的分析。
下面介紹兩種常用的案例編寫的格式:
(1)“描述+分析”式
此格式的特點是將整個案例分為兩大部分,前半部分主要為描述課堂教學活動的情景,后半部分主要針對情景中的一個問題進行理論分析并獲得結論。案例的描述一般是把課堂教學活動中的.某一片斷像講故事一樣原原本本地、具體生動地描繪出來。描述的形式可以是一串問答式的課堂對話,也可以概括式地敘述,主要是提供一個或一連串課堂教學疑難的問題,并把教育理論、教育思想隱藏在描述之中。案例的分析部分是針對描述的情景發表個人或多人的感受,同時加以理論的分析與說明。分析方法可以是對描述中提出的一個問題,從幾個方面加以分析:也可以是對描述中的幾個問題,集中從一個方面加以分析。分析的目的是要從描述的情景中提煉問題的本質,講述理論的解釋,明確正確的方法,最終獲得對關鍵教學事件的正確把握。
(2)“背景+描述+問題+詮釋”式
此格式是一種要求比較高的編寫格式,而且,它在實際教學中的作用也更大。通常它將整個案例分為四個部分:
A.主題與背景
主題是關鍵教學事件中所反映的案例主要觀點,也是整篇案例的核心思想。背景主要敘述案例發生的地點、時間、人物的一些基本情況。當然,這部分的內容不宜很長,只需提綱挈領敘述清楚即可。
B.情景描述
與“描述+分析”式中的描述相同,主要突出主題所反映的課堂教學活動。
C.問題討論
這是根據主題要求與情景描述,進行的分析、歸納、總結與提煉,包括學科知識的要點、教學法和情景特點以及案例的說明與注意事項。這部分內容主要是為案例教學服務的,目的是提高教師的認識水平與學生主動學習的能力。不同的教學觀念,不同的教學手段,所提出的問題也不同。對案例中所提出的主題以及情景描述中提出的問題闡述自己的見解。
D.詮釋與研究
這部分主要是用教育理論對案例情景作多角度的解讀。它包括對課堂教學行為的技術資料、課堂教學實錄以及教學活動背后的故事等作理論上的分析。例如,在課堂教學中,我們常看到這樣的現象,課堂教學的效果高于預期的目標,反之教師期望的目標學生沒有達到或有所偏離,教學內容呈現的先后與學生理解的程度、教學方法運用與學生內在動機的激發等環節存在著矛盾,這些事件的背后,必然隱含著豐富的教育思想。所以,通過詮釋,挖掘這些事件背后的內在思想,揭示其教育規律就顯得十分的必要。
2.案例報告撰寫的關鍵
(1)掌握四個原則。要寫好教學案例,除了平時多積累素材,學習他人的案例作品以提高寫作技巧外,還應把握以下四點:
A.主題性原則:要有捕捉關鍵教學事件的意識,以此確定案例研究的主題。為此要注意了解新的課程改革的動向、把握適合時代要求的數學教育方式、明確學生數學學習的難點和重點,尋找數學教師專業發展的途徑與規律。報告圍繞主題進行情景描述和獲得解決問題的策略。這種描述不是簡單的教學活動實錄,要反映事件發生的過程,重點描述反映關鍵教學事件的變化和戲劇化的情境,猶如記敘文寫作,突出主題,詳寫重點,雕刻高潮。
案例鮮明的主題通常關系到教學的核心理念、常見問題、處理方法等等,可以說,主題就是案例的靈魂。而主題的最佳表現形式就是文題直接體現主題。因此,設計主題就要有新意、有時代感,通俗地說就是與眾不同,要有獨特見解、獨家發現。來源于實踐的教學案例并非都有同等價值,關鍵要看撰寫者對實踐的發展與理論的升華程度,包括對題目的推敲。如有的教學案例重點描述了有戲劇性的情節,用了“細節決定成敗”的題目,給人耳目一新,一下子揪住了讀者的心。再如,一些有創意的題目《“導之有方”方能“導之有效”》、《跳出數學教數學》、《在數學的疑難處悟成長》、《捕捉資源因勢利導》等等,讓人一看題目就有閱讀的欲望。實踐證明,在寫作案例時,選擇有感悟、有新意的內容,在明確主題,恰當擬題后再動筆,才能寫出高質量的案例。
B.理論性原則:解決問題的策略中應當蘊含一定的教育基本原理和教育思想。實際是將自己對教育理念以及教育基本原理的理解滲透于描述的字里行間,比如學生做了什么,參與程度,投入程度如何,教師如何引導點撥,師生心理、行為變化情況等,無不體現教師的教學思想和教育基本原理。
C.敘事性原則:案例報告的書寫方式是敘事式,它不同于論述式。敘事方式必須以課堂教學生動的事實為主要情節,可以夾敘夾議,也可以選擇情景片段,可以是一節課中的情景,也可以是圍繞一個主題的幾節課的情景片段。
D.學科性原則:數學案例報告一定要體現學科的特征,要有較深刻的理性思考,要反映數學的基本思想與方法,要符合課程標準,滿足教材內容的呈現方法,積極培養良好的思維習慣。就是撰寫者的教育思想和教育理念在教學實踐中具體體現。
(2)用好四種表述。教學案例的表述方法很多,可以歸納為以下四種方法:
A.故事式陳述法:就是教學全程或某一精彩教學片段實錄,包括教師和學生的一言一行。陳述時,根據操作程序作一點“簡評”,最后作“總評”。
B.以案說理:對教學過程進行陳述時,舍去與文題不相關或不重要的部分,并強化與主題相關的重要情節,尤其是引發高潮的關鍵行為,然后有較長篇幅的理性思考。
C.圖表展示法:用圖表進行統計的形式體現撰寫者的教育思想,給人以一目了然的感覺,幫助讀者迅速了解撰寫者的寫作意圖,是常用的一種案例撰寫方法。比如,描述學生的參與人數,投入程度,解決問題的質量等多個問題,都可以在一張或數張圖表上用百分比或個(次)數進行統計。在每一張圖表后,應有一段“分析”或“結論”,將撰寫者的教學理念進行理性闡述,亦可在圖表展示后,總的提出自己對案例的分析和建議。
D.分析討論法:在撰寫時,應汲取分析討論中最精彩的部分做深入、細致的全面記錄,最后撰寫者還必須對討論情況做一分析,或提出一些值得今后進一步思考的問題。
3.優秀案例的特征
(1)時代性:一個好的案例描述的是現實生活場景——案例的敘述要把事件置于一個時空框架之中,應該以關注今天所面臨的疑難問題為著眼點,至少應該是近年發生的事情,展示的整個事實材料應該與整個時代及教學背景相照應,這樣的案例讀者更愿意接觸。一個好的案例可以使讀者有身臨其境的感覺,并對案例所涉及的人產生移情作用。
(2)真實性:一個好的案例應該包括從案例所反映的對象那里引述的材料——案例寫作必須持一種客觀的態度,因此可引述一些口頭的或書面的、正式的或非正式的材料,如對話、筆記、信函等,以增強案例的真實感和可讀性。重要的事實性材料應注明資料來源。
(3)適用性:一個好的案例需要針對面臨的疑難問題提出解決辦法——案例不能只是提出問題,它必須提出解決問題的主要思路、具體措施,并包含著解決問題的詳細過程,這應該是案例寫作的重點。如果一個問題可以提出多種解決辦法的話,那么最為適宜的方案,就應該是與特定的背景材料相關最密切的那一個。如果有包治百病、普遍適用的解決問題的辦法,那么案例這種形式就不必要存在了。
(4)反思性:一個好的案例需要有對已經做出的解決問題的決策的評價——評價是為了給新的決策提供參考點。可在案例的開頭或結尾寫下案例作者對自己解決問題策略的評論,以點明案例的基本論點及其價值。
三、案例研究過程中需注意的問題
1.選材面過窄。從內容上看,多數案例是關于課堂教學甚至局限于一節課的研究,往往不能說明問題,或者在一節課中,也只會從簡單的對話分析問題,做不到全方位、多角度。這說明教師對教學情境的豐富性、復雜性和聯系性認識不夠。
2.缺乏典型性。有的案例對教學實踐沒有挖掘與反思,隨意摘取一些教學片段泛泛而談、人云亦云,沒有實用價值。不能夠通過對某一事件現象的分析、處理、詮釋,達到舉一反三的效果,這樣的案例對他人沒什么借鑒作用。
3.主題不明確。主要體現為:
(1)主題渙散。有的案例象記流水帳,沒有根據需要進行恰當的取舍,看不出作者要反映、探討什么問題,缺乏指導性、創新性和參考性。
(2)定題過于隨意。有的案例直接用案例研究依據的文題為題目,如《“三角函數”教學案例》、《“拋物線”教學案例》等,題目不鮮明、不形象,影響讀者的選讀和案例的傳播。
4.結構不合理。案例作為一種文體,有它自己的寫作結構,只有優化案例的結構,才能增強案例的可讀性和指導性。如寫成一般的教學設計,一般包括“備課思路、教學目標、教學重點、教學方法、課前準備、教學內容、教學過程”等內容;寫成教學實錄,把一堂課從頭到尾詳盡地記錄下來,再寫上作者的看法;重記錄輕分析,過程描述多,評析少等等。沒有創新,平淡無趣,看不出案例研究和反映的問題。
5.描述與分析脫節。有的案例描述與分析矛盾,讓人不知所云;有時反映的是一種觀點,分析闡明的是另一種觀點,雖然不矛盾,但聯系不緊密;有的分析中熱衷于抄錄教育理論的一些條條,脫離案例描述的事件而空談理論,顯得空泛無物。
高中數學簡潔教案大全篇7
一、單元教學內容
(1)算法的基本概念
(2)算法的基本結構:順序、條件、循環結構
(3)算法的基本語句:輸入、輸出、賦值、條件、循環語句
二、單元教學內容分析
算法是數學及其應用的重要組成部分,是計算科學的重要基礎。隨著現代信息技術飛速發展,算法在科學技術、社會發展中發揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經成為現代人應具備的一種數學素養。需要特別指出的是,中國古代數學中蘊涵了豐富的算法思想。在本模塊中,學生將在中學教育階段初步感受算法思想的基礎上,結合對具體數學實例的分析,體驗程序框圖在解決問題中的作用;通過模仿、操作、探索,學習設計程序框圖表達解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發展有條理的思考與表達的能力,提高邏輯思維能力。
三、單元教學課時安排:
1、算法的基本概念3課時
2、程序框圖與算法的基本結構5課時
3、算法的基本語句2課時
四、單元教學目標分析
1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義
2、通過模仿、操作、探索,經歷通過設計程序框圖表達解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結構:順序、條件、循環結構。
3、經歷將具體問題的程序框圖轉化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環語句,進一步體會算法的基本思想。
4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
五、單元教學重點與難點分析
1、重點
(1)理解算法的含義
(2)掌握算法的基本結構
(3)會用算法語句解決簡單的實際問題
2、難點
(1)程序框圖
(2)變量與賦值
(3)循環結構
(4)算法設計
六、單元總體教學方法
本章教學采用啟發式教學,輔以觀察法、發現法、練習法、講解法。采用這些方法的原因是學生的邏輯能力不是很強,只能通過對實例的認真領會及一定的練習才能掌握本節知識。
七、單元展開方式與特點
1、展開方式
自然語言→程序框圖→算法語句
2、特點
(1)螺旋上升分層遞進
(2)整合滲透前呼后應
(3)三線合一橫向貫通
(4)彈性處理多樣選擇
八、單元教學過程分析
1、算法基本概念教學過程分析
對生活中的實際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。
2、算法的流程圖教學過程分析
對生活中的實際問題通過模仿、操作、探索,經歷通過設計流程圖表達解決問題的過程,了解算法和程序語言的區別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結構:順序、條件分支、循環,會用流程圖表示算法。
3、基本算法語句教學過程分析
經歷將具體生活中問題的流程圖轉化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環語句,進一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達算法,
4、通過閱讀中國古代數學中的算法案例,體會中國古代數學對世界數學發展的貢獻。
九、單元評價設想
1、重視對學生數學學習過程的評價
關注學生在數學語言的學習過程中,是否對用集合語言描述數學和現實生活中的問題充滿興趣;在學習過程中,能否體會集合語言準確、簡潔的特征;是否能積極、主動地發展自己運用數學語言進行交流的能力。
2、正確評價學生的數學基礎知識和基本技能
關注學生在本章(節)及今后學習中,讓學生集中學習算法的初步知識,主要包括算法的基本結構、基本語句、基本思想等。算法思想將貫穿高中數學課程的相關部分,在其他相關部分還將進一步學習算法
高中數學簡潔教案大全篇8
一、教學內容分析
二面角是我們日常生活中經常見到的一個圖形,它是在學生學過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進一步完善了空間角的概念。掌握好本節課的知識,對學生系統地理解直線和平面的知識、空間想象能力的培養,乃至創新能力的培養都具有十分重要的意義。
二、教學目標設計
理解二面角及其平面角的概念;能確認圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關問題。
三、教學重點及難點
二面角的平面角的概念的形成以及二面角的平面角的作法。
四、教學流程設計
五、教學過程設計
一、新課引入
1。復習和回顧平面角的有關知識。
平面中的角
定義從一個頂點出發的兩條射線所組成的圖形,叫做角
圖形
結構射線點射線
表示法AOB,O等
2。復習和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉化為平面角)
3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關,而山坡面與水平面所成的角就是兩個平面所成的角。在實際生活當中,能夠轉化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關。)從而,引出二面角的定義及相關內容。
二、學習新課
(一)二面角的定義
平面中的角二面角
定義從一個頂點出發的兩條射線所組成的圖形,叫做角課本P17
圖形
結構射線點射線半平面直線半平面
表示法AOB,O等二面角a或—AB—
(二)二面角的圖示
1。畫出直立式、平臥式二面角各一個,并分別給予表示。
2。在正方體中認識二面角。
(三)二面角的平面角
平面幾何中的角可以看作是一條射線繞其端點旋轉而成,它有一個旋轉量,它的大小可以度量,類似地,二面角也可以看作是一個半平面以其棱為軸旋轉而成,它也有一個旋轉量,那么,二面角的大小應該怎樣度量?
1。二面角的平面角的定義(課本P17)。
2。AOB的大小與點O在棱上的位置無關。
[說明]①平面與平面的位置關系,只有相交或平行兩種情況,為了對相交平面的相互位置作進一步的探討,有必要來研究二面角的度量問題。
②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。
③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內;角的兩邊分別與棱垂直。
3。二面角的平面角的范圍:
(四)例題分析
例1一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個的二面角,求此時B、C兩點間的距離。
[說明]①檢查學生對二面角的平面角的定義的掌握情況。
②翻折前后應注意哪些量的位置和數量發生了變化,哪些沒變?
例2如圖,已知邊長為a的等邊三角形所在平面外有一點P,使PA=PB=PC=a,求二面角的大小。
[說明]①求二面角的步驟:作證算答。
②引導學生掌握解題可操作性的通法(定義法和線面垂直法)。
例3已知正方體,求二面角的大小。(課本P18例1)
[說明]使學生進一步熟悉作二面角的平面角的方法。
(五)問題拓展
例4如圖,山坡的傾斜度(坡面與水平面所成二面角的度數)是,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是,沿這條路上山,行走100米后升高多少米?
[說明]使學生明白數學既來源于實際又服務于實際。
三、鞏固練習
1。在棱長為1的正方體中,求二面角的大小。
2。若二面角的大小為,P在平面上,點P到的距離為h,求點P到棱l的距離。
四、課堂小結
1。二面角的定義
2。二面角的平面角的定義及其范圍
3。二面角的平面角的常用作圖方法
4。求二面角的大小(作證算答)
五、作業布置
1。課本P18練習14。4(1)
2。在二面角的一個面內有一個點,它到另一個面的距離是10,求它到棱的距離。
3。把邊長為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成的二面角,求A、C兩點的距離。
六、教學設計說明
本節課的設計不是簡單地將概念直接傳受給學生,而是考慮到知識的形成過程,設法從學生的數學現實出發,調動學生積極參與探索、發現、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運用了類比的手段和方法。教學過程中通過教師的層層鋪墊,學生的主動探究,使學生經歷概念的形成、發展和應用過程,有意識地加強了知識形成過程的教學。
高中數學簡潔教案大全篇9
教學目標
1使學生理解本章的知識結構,并通過本章的知識結構掌握本章的全部知識;
2對線段、射線、直線、角的概念及它們之間的關系有進一步的認識;
3掌握本章的全部定理和公理;
4理解本章的數學思想方法;
5了解本章的題目類型。
教學重點和難點
重點是理解本章的知識結構,掌握本章的全部定和公理;難點是理解本章的數學思想方法。
教學設計過程
一、本章的知識結構
二、本章中的概念
1直線、射線、線段的概念。
2線段的中點定義。
3角的兩個定義。
4直角、平角、周角、銳角、鈍角的概念。
5互余與互補的角。
三、本章中的公理和定理
1直線的公理;線段的公理。
2補角和余角的性質定理。
四、本章中的主要習題類型
1對直線、射線、線段的概念的理解。
例1下列說法中正確的是()。
A延長射線OPB延長直線CD
C延長線段CDD反向延長直線CD
解:C因為射線和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯誤的。而線段有兩個端點,可以向兩方延長。
例2如圖1-57中的線段共有多少條?
解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。
2線段的和、差、倍、分。
例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD=BC,那么線段AD是線段AC的()。
A.B.C.D.
解:B如圖1-58,因為AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。
例4如圖1-59,B為線段AC上的一點,AB=4cm,BC=3cm,M,N分別為AB,BC的中點,求MN的長。
解:因為AB=4,M是AB的中點,所以MB=2,又因為N是BC的中點,所以BN=1.5。則MN=2+1.5=3.5
3角的概念性質及角平分線。
例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的.度數。
解:因為OD是∠AOB的平分線,所以∠BOD=∠AOB;又因為OE是∠BOC的平分線,所以∠BOE=∠BOC;又∠AOB+∠BOC=180°,
所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。
則∠EOD=90°。
例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數的比是多少?
解:因為∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。
又∠COD=90°,所以∠COB=30°。
則∠AOC=60°,(同角的余角相等)
∠AOC與∠COB的度數的比是2∶1。
4互余與互補角的性質。
例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數。
解:因為COD為直線,∠BOE=90°,∠BOD=45°,
所以∠COE=180°-90°-45°=45°
又AOB為直線,∠BOE=90°,∠COE=45°
故∠COA=180°-90°-45°=45°,
而AOB為直線,∠BOD=45°,
因此∠AOD=180°-45°=135°。
例8一個角是另一個角的3倍,且小有的余角與大角的余角之差為20°,求這兩個角的度數。
解:設第一個角為x°,則另一個角為3x°,
依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。
答:一個角為10°,另一個角為30°。
5度分秒的換算及和、差、倍、分的計算。
例9(1)將4589°化成度、分、秒的形式。
(2)將80°34′45″化成度。
(3)計算:(36°55′40″-23°56′45″)。
解:(1)45°53′24″。
(2)約為8058°。
(3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進位,做除法后得9°44′11″)
五、本章中所學到的數學思想
1運動變化的觀點:幾何圖形不是孤立和靜止的,也應看作不斷發展和變化的,如線段向一個方向延長,就發展成為射線;射線向另一方向延長就發展成直線。又如射線饒它的端點旋轉就形成角;角的終邊不斷旋轉就變化成直角、平角和周角。從圖形的運動中可以看到變化,從變化中看到聯系和區別及特性。
2數形結合的思想:在幾何的知識中經常遇到計算問題,對形的研究離不開數。正如數學家華羅庚所說:“數缺形時少直觀,形缺數時難如微”。本章的知識中,將線段的長度用數量表示,利用方程的方法解決余角與補角的問題。因此我們對幾何的學習不能與代數的學習截然分開,在形的問題難以解決時,發揮數的功能,在數的問題遇到困難時,畫出與它相關的圖形,都會給問題的解決帶來新的思路。從幾何的起始課,就注意數形結合,就會養成良好的思維習慣。
3聯系實際,從實際事物中抽象出數學模型。數學的產生來源于生產和生活實踐,因此學習數學不能脫離實際生活,尤其是幾乎何的學習更離不開實際生活。一方面要讓學生知道本章的主要內容是線和角,都在生活中有大量的原型存在,另一方面又要引導學生將所學的知識去解決某些簡單的實際問題,這才是理論聯系實際的觀點。
六、本章的疑點和誤點分析
概念在應用中的混淆。
例10判斷正誤:
(1)在∠AOB的邊OA的延長線上取一點D。
(2)大于90°的角是鈍角。
(3)任何一個角都可以有余角。
(4)∠A是銳角,則∠A的所有余角都相等。
(5)兩個銳角的和一定小于平角。
(6)直線MN是平角。
(7)互補的兩個角的和一定等于平角。
(8)如果一個角的補角是銳角,那么這個角就沒有余角。
(9)鈍角一定大于它的補角。
(10)經過三點一定可以畫一條直線。
解:(1)錯。因為角的兩邊是射線,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。
(2)錯。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。
(3)錯。余角的定義是:如果兩個角的和是一個直角,這兩個角互為余角。因此大于直角的角沒有余角。
(4)對.∠A的所有余角都是90°-∠A。
(5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.
(6)錯。平角是一個角就要有頂點,而直線上沒有表示平角頂點的點。如果在直線上標出表示角的頂點的點,就可以了。
(7)對。符合互補的角的定義。
(8)對。如果一個角的補角是銳角,那么這個角一定是鈍角,而鈍角是沒有余角的。
(9)對。因為鈍角的補角是銳角,鈍角一定大于銳角。
(10)錯。這個題應該分情況討論:如果這三點在同一條直線上,這個結論是正確的。如果這三個點不在同一條直線上,那么過這三個點就不能畫一條直線。
板書設計
回顧與反思
(一)知識結構(四)主要習題類型(五)本章的數學思想
略例11
·2
(二)本章概念·3
略·(六)疑誤點分析
(三)本章的公理和定理·
例9
高中數學簡潔教案大全篇10
教學目標:①掌握對數函數的性質。
②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。
③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。
教學重點與難點:對數函數的性質的應用。
教學過程設計:
⒈復習提問:對數函數的概念及性質。
⒉開始正課
1 比較數的大小
例 1 比較下列各組數的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數有何特征?
生:這兩個對數底相等。
師:那么對于兩個底相等的對數如何比大小?
生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1
板書:
解:Ⅰ)當0∵5.1<5.9 ∴loga5.1>loga5.9
Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,∵5.1<5.9 ∴loga5.1
師:請同學們觀察一下⑵中這三個對數有何特征?
生:這三個對數底、真數都不相等。
師:那么對于這三個對數如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。
2 函數的定義域, 值 域及單調性。
例 2 ⑴求函數y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,
再根據對數函數的單調性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數的值域和單調區間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。
下面請同學們來解⑴。
生:此函數可看作是由y= log0.5u, u= x- x2復合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)
注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則函數都不存在,性質就無從談起。
師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區別?
生:⑴的底數是常值,⑵的底數是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結
這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。
⒋作業
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)
⑵已知函數y=loga(x2-2x),(a>0,a≠1)
①求它的單調區間;②當0
⑶已知函數y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的奇偶性; ③討論它的單調性。
⑷已知函數y=loga(ax-1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數值大于1;③討論它的單調性。
5.課堂教學設計說明
這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。
高中數學簡潔教案大全篇11
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域。
一.教學過程:
1. 使學生熟練掌握函數的概念和映射的定義;
2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法。
二.教學內容:
1.函數的定義
設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:
(),yfA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()|}fA?叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.
2.構成函數的三要素 定義域、對應關系和值域。
3、映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區間及寫法:
設a、b是兩個實數,且a
(1) 滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];
(2) 滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);
5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法
高中數學簡潔教案大全篇12
排列問題的應用題是學生學習的難點,也是高考的必考內容,筆者在教學中嘗試將排列問題歸納為三種類型來解決:
下面就每一種題型結合例題總結其特點和解法,并附以近年的高考原題供讀者參研.
一.能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題)
解決此類問題的關鍵是特殊元素或特殊位置優先.或使用間接法.
例1.(1)7位同學站成一排,其中甲站在中間的位置,共有多少種不同的排法?
(2)7位同學站成一排,甲、乙只能站在兩端的排法共有多少種?
(3)7位同學站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?
(4)7位同學站成一排,其中甲不能在排頭、乙不能站排尾的排法共有多少種?
解析:(1)先考慮甲站在中間有1種方法,再在余下的6個位置排另外6位同學,共種方法;
(2)先考慮甲、乙站在兩端的排法有種,再在余下的5個位置排另外5位同學的排法有種,共種方法;
(3)先考慮在除兩端外的5個位置選2個安排甲、乙有種,再在余下的5個位置排另外5位同學排法有種,共種方法;本題也可考慮特殊位置優先,即兩端的排法有,中間5個位置有種,共種方法;
(4)分兩類乙站在排頭和乙不站在排頭,乙站在排頭的排法共有種,乙不站在排頭的排法總數為:先在除甲、乙外的5人中選1人安排在排頭的方法有種,中間5個位置選1個安排乙的方法有,再在余下的5個位置排另外5位同學的排法有,故共有種方法;本題也可考慮間接法,總排法為,不符合條件的甲在排頭和乙站排尾的排法均為,但這兩種情況均包含了甲在排頭和乙站排尾的情況,故共有種.
例2.某天課表共六節課,要排政治、語文、數學、物理、化學、體育共六門課程,如果第一節不排體育,最后一節不排數學,共有多少種不同的排課方法?
解法1:對特殊元素數學和體育進行分類解決
(1)數學、體育均不排在第一節和第六節,有種,其他有種,共有種;
(2)數學排在第一節、體育排在第六節有一種,其他有種,共有種;
(3)數學排在第一節、體育不在第六節有種,其他有種,共有種;
(4)數學不排在第一節、體育排在第六節有種,其他有種,共有種;
所以符合條件的排法共有種
解法2:對特殊位置第一節和第六節進行分類解決
(1)第一節和第六節均不排數學、體育有種,其他有種,共有種;
(2)第一節排數學、第六節排體育有一種,其他有種,共有種;
(3)第一節排數學、第六節不排體育有種,其他有種,共有種;
(4)第一節不排數學、第六節排體育有種,其他有種,共有種;
所以符合條件的排法共有種.
解法3:本題也可采用間接排除法解決
不考慮任何限制條件共有種排法,不符合題目要求的排法有:(1)數學排在第六節有種;(2)體育排在第一節有種;考慮到這兩種情況均包含了數學排在第六節和體育排在第一節的情況種所以符合條件的排法共有種
附:1、(20__北京卷)五個工程隊承建某項工程的五個不同的子項目,每個工程隊承建1項,其中甲工程隊不能承建1號子項目,則不同的承建方案共有()
(A)種(B)種(C)種(D)種
解析:本題在解答時將五個不同的子項目理解為5個位置,五個工程隊相當于5個不同的元素,這時問題可歸結為能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題),先排甲工程隊有,其它4個元素在4個位置上的排法為種,總方案為種.故選(B).
2、(20__全國卷Ⅱ)在由數字0,1,2,3,4,5所組成的沒有重復數字的四位數中,不能被5整除的數共有個.
解析:本題在解答時只須考慮個位和千位這兩個特殊位置的限制,個位為1、2、3、4中的某一個有4種方法,千位在余下的4個非0數中選擇也有4種方法,十位和百位方法數為種,故方法總數為種.
3、(20__福建卷)從6人中選出4人分別到巴黎、倫敦、悉尼、莫斯科四個城市游覽,要求每個城市有一人游覽,每人只游覽一個城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有()
A.300種B.240種C.144種D.96種
解析:本題在解答時只須考慮巴黎這個特殊位置的要求有4種方法,其他3個城市的排法看作標有這3個城市的3個簽在5個位置(5個人)中的排列有種,故方法總數為種.故選(B).
上述問題歸結為能排不能排排列問題,從特殊元素和特殊位置入手解決,抓住了問題的本質,使問題清晰明了,解決起來順暢自然.
二.相鄰不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)
相鄰排列問題一般采用大元素法,即將相鄰的元素捆綁作為一個元素,再與其他元素進行排列,解答時注意釋放大元素,也叫捆綁法.不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)一般采用插空法.
例3.7位同學站成一排,
(1)甲、乙和丙三同學必須相鄰的排法共有多少種?
(2)甲、乙和丙三名同學都不能相鄰的排法共有多少種?
(3)甲、乙兩同學間恰好間隔2人的排法共有多少種?
解析:(1)第一步、將甲、乙和丙三人捆綁成一個大元素與另外4人的排列為種,
第二步、釋放大元素,即甲、乙和丙在捆綁成的大元素內的排法有種,所以共種;
(2)第一步、先排除甲、乙和丙之外4人共種方法,第二步、甲、乙和丙三人排在4人排好后產生的5個空擋中的任何3個都符合要求,排法有種,所以共有種;(3)先排甲、乙,有種排法,甲、乙兩人中間插入的2人是從其余5人中選,有種排法,將已經排好的4人當作一個大元素作為新人參加下一輪4人組的排列,有種排法,所以總的排法共有種.
附:1、(20__遼寧卷)用1、2、3、4、5、6、7、8組成沒有重復數字的八位數,要求1和2相鄰,3與4相鄰,5與6相鄰,而7與8不相鄰,這樣的八位數共有個.(用數字作答)
解析:第一步、將1和2捆綁成一個大元素,3和4捆綁成一個大元素,5和6捆綁成一個大元素,第二步、排列這三個大元素,第三步、在這三個大元素排好后產生的4個空擋中的任何2個排列7和8,第四步、釋放每個大元素(即大元素內的每個小元素在捆綁成的大元素內部排列),所以共有個數.
2、(20__.重慶理)某校高三年級舉行一次演講賽共有10位同學參賽,其中一班有3位,
二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學恰
好被排在一起(指演講序號相連),而二班的2位同學沒有被排在一起的概率為()
A.B.C.D.
解析:符合要求的基本事件(排法)共有:第一步、將一班的3位同學捆綁成一個大元素,第二步、這個大元素與其它班的5位同學共6個元素的全排列,第三步、在這個大元素與其它班的5位同學共6個元素的全排列排好后產生的7個空擋中排列二班的2位同學,第四步、釋放一班的3位同學捆綁成的大元素,所以共有個;而基本事件總數為個,所以符合條件的概率為.故選(B).
3、(20__京春理)某班新年聯歡會原定的5個節目已排成節目單,開演前又增加了兩個新節目.如果將這兩個節目插入原節目單中,那么不同插法的種數為()
A.42B.30C.20D.12
解析:分兩類:增加的兩個新節目不相鄰和相鄰,兩個新節目不相鄰采用插空法,在5個節目產生的6個空擋排列共有種,將兩個新節目捆綁作為一個元素叉入5個節目產生的6個空擋中的一個位置,再釋放兩個新節目捆綁成的大元素,共有種,再將兩類方法數相加得42種方法.故選(A).
三.機會均等排列問題(即某兩或某些元素按特定的方式或順序排列的排列問題)
解決機會均等排列問題通常是先對所有元素進行全排列,再借助等可能轉化,即乘以符合要求的某兩(或某些)元素按特定的方式或順序排列的排法占它們(某兩(或某些)元素)全排列的比例,稱為等機率法或將特定順序的排列問題理解為組合問題加以解決.
例4、7位同學站成一排.
(1)甲必須站在乙的左邊?
(2)甲、乙和丙三個同學由左到右排列?
解析:(1)7位同學站成一排總的排法共種,包括甲、乙在內的7位同學排隊只有甲站在乙的左邊和甲站在乙的右邊兩類,它們的機會是均等的,故滿足要求的排法為,本題也可將特定順序的排列問題理解為組合問題加以解決,即先在7個位置中選出2個位置安排甲、乙,由于甲在乙的左邊共有種,再將其余5人在余下的5個位置排列有種,得排法數為種;
(2)參見(1)的分析得(或).
高中數學簡潔教案大全篇13
目標
1、通過觀察粘貼活動,尋找兩個集合交集、差集中元素,依據特征進行嘗試擺放;發展幼兒多緯度的思維能力。
2、培養幼兒的嘗試精神,發展幼兒思維的敏捷性、邏輯性。
3、有興趣參加數學活動。
準備
?水果找家》、《圖形組合物》幻燈片個1張(no.86—87),幼兒每人相同內容練習紙2張(見練習冊no.4—5),如圖(1)和圖(2)。
過程
(一)觀察
1、出示《水果》幻燈片,引導幼兒思考:
(1)兩個圈內分別有什么?各有幾個?
(2)左圈內的水果么特征?(有葉子)
(3)右圈內的水果么特征?(有梗子)
(4)兩圈相交部分中的水果么特征?(有葉子且有梗子)
2、出示《圖形組合物》幻燈片,引導幼兒思考:
(1)兩個圈內分別有什么特征?各有一個?
(2)左圈內的東西有什么特征?(紅色)
(3)右圈內的東西有什么特征?(個數是5個)
(4)兩圈相交部分中的東西有什么特征?(紅色且個數是5個)
(二)區分
讓幼兒思考:依據特征,如把右邊的水果或左邊的娃娃臉擺放到圈內,該分別放在哪里?
個別幼兒口述位置和理由,如圖(1)中的桃子該放在左圈但不在右圈中,因為桃子有葉無梗;圖(2)中的圓臉娃娃該放在兩圈相交部分,因為她是紅色且組成的圓形個數是5個。
(三)粘貼
幼兒在練習紙上將左(右)邊的各圖示物一一撕下,分別粘貼在兩個圈中的相對位置。
(教師巡回指導,幫助幼兒正確粘貼)
建議
(一)本活動設計內容亦可分兩次進行。
(二)亦可用實物材料在集合擺放圈中進行分類擺放,見《兒童數形寶盒》說明圖29。觀察記錄與評估。
高中數學簡潔教案大全篇14
一、教學目標
(一)知識與技能
1、進一步熟練掌握求動點軌跡方程的基本方法。
2、體會數學實驗的直觀性、有效性,提高幾何畫板的操作能力。
(二)過程與方法
1、培養學生觀察能力、抽象概括能力及創新能力。
2、體會感性到理性、形象到抽象的思維過程。
3、強化類比、聯想的方法,領會方程、數形結合等思想。
(三)情感態度價值觀
1、感受動點軌跡的動態美、和諧美、對稱美
2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發提出問題和解決問題的勇氣
二、教學重點與難點
教學重點:運用類比、聯想的方法探究不同條件下的軌跡
教學難點:圖形、文字、符號三種語言之間的過渡
三、、教學方法和手段
【教學方法】觀察發現、啟發引導、合作探究相結合的教學方法。啟發引導學生積極思考并對學生的思維進行調控,幫助學生優化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數學思維。
【教學手段】利用網絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現知識產生的過程,通過多媒體動態演示,突破學生在舊知和新知形成過程中的障礙(靜態到動態);另一方面:節省了時間,提高了課堂教學的效率,激發了學生學習的興趣。
【教學模式】重點中學實施素質教育的課堂模式"創設情境、激發情感、主動發現、主動發展"。
四、教學過程
1、創設情景,引入課題
生活中我們四處可見軌跡曲線的影子
【演示】這是美麗的城市夜景圖
【演示】許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數目越多,軌跡種類也越多
【演示】建筑中也有許多美麗的軌跡曲線
設計意圖:讓學生感受數學就在我們身邊,感受軌跡曲線的動態美、和諧美、對稱美,激發學習興趣。
2、激發情感,引導探索
靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優美的曲線飛出去呢?我們把這個問題轉化為數學問題就是新教材高二上冊88頁20題,也就是這里的例題1;
例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。
第一步:讓學生借助畫板動手驗證軌跡
第二步:要求學生求出軌跡方程
法一:設,則
由得,
化簡得
法二:設,由得
化簡得
法三:設, 由點到定點的距離等于定長,
根據圓的定義得;
第三步:復習求軌跡方程的一般步驟
(1)建立適當的坐標系
(2)設動點的坐標M(x,y)
(3)列出動點相關的約束條件p(M)
(4)將其坐標化并化簡,f(x,y)=0
(5)證明
其中,最關鍵的一步是根據題意尋求等量關系,并把等量關系坐標化
設計意圖:在這里我借助幾何畫板的動畫功能,先讓學生直觀地、形象地、動態地感受動點的軌跡是圓,接著要求學生求出軌跡方程,最后師生共同回顧求軌跡方程的一般步驟,達到熟練掌握直譯法、定義法,體會從感性到理性、從形象到抽象的思維過程。
3、主動發現、主動發展
由上述例1可知,如果人站在梯子中間,則他會劃了一段優美的圓弧飛出去。學生很自然就會想,如果人不是站在中間,而是隨意站,結果會怎樣呢?讓學生動手探究M不是中點時的軌跡。
第一步:利用網絡平臺展示學生得到的軌跡(教師有意識的整合在一起)
設計意圖:借助數學實驗,把原本屬于教師行為的設疑激趣還原于學生,讓學生自己在實踐過程中發現疑問,更容易激發學生學習的熱情,促使他們主動學習。
第二步:分解動作,向學生提出3個問題:
問題1:當M位置不同時,線段BM與MA的大小關系如何?
問題2、體現BM與MA大小關系還有什么常見的形式?
問題3、你能類比例1把這種數量關系表達出來嗎?
第三步:展示學生歸納、概括出來的數學問題
1、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。
2、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。
3、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。(說明是什么軌跡)
第四步:課堂完成學生歸納出來的問題1,問題2和3課后完成
4、合作探究、實現創新
改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當的指導(這里固定A點,運動B點)
學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。
5、布置作業、實現拓展
1、把上述同學們探究得到的軌跡圖形用文字、符號描述出來,(仿造例1),并求出軌跡方程。
2、已知A(4,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。
3、已知A(2,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。
4若把上述問題中垂線改為一般的垂線與直線OB相交于點P,請同學們利用畫板驗證點P 的軌跡。
以下是學生課后探究得到的一些軌跡圖形
課后有學生問,如果X軸和Y軸不垂直會有什么結果?定長的線段在上面滑動怎么做出來?
可以說,學生的這些問題我之前并沒有想過,給了我很大的觸動,同時也促使我更進一步去研究幾何畫板,提高自己的能力。在這里,我體會到了教師不再只是一根根蠟燭,更像是一盞盞明燈,在照亮別人的同時也照亮自己。
以下是X軸和Y軸不垂直時的軌跡圖形
五、教學設計說明:
(一)、教材
《平面動點的軌跡》是高二一節探究課,軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角、平面幾何等基礎知識,其中滲透著運動與變化、方程的思想、數形結合的思想等,是中學數學的重要內容,也是歷年高考數學考查的重點之一。
(二)、校情、學情
校情:我校是一所省一級達標校,省級示范性高中,學校的硬件設施比較完善,每間教室都具備多媒體教學的功能,另外有兩間網絡教室和一個學生電子閱室,并且能隨時上網。
學情:大部分學生家里都有電腦,而且能隨時上網。對學生進行了幾何畫板基本操作的培訓,學生能較快的畫出圓、橢圓、雙曲線、拋物線等基本的圓錐曲線。學生對求軌跡方程的基本方法有了一定的掌握,但是對文字、圖形、符號三種語言之間的轉換還存在很大的差異,在合作交流意識方面,發展不均衡,有待加強。
(三)學法
觀察、實驗、交流、合作、類比、聯想、歸納、總結
(四)、教學過程
1、創設情景,引入課題
2、激發情感,引導探索
由梯子滑落問題抽象、概括出數學問題
第一步:讓學生借助畫板動手驗證軌跡
第二步:要求學生求出軌跡方程
第三步:復習求軌跡方程的一般步驟
3、主動發現、主動發展
探究M不是中點時的軌跡
第一步:利用網絡平臺展示學生得到的軌跡
第二步:分解動作,向學生提出3個問題:
第三步:展示學生歸納、概括出來的數學問題
4、合作探究、實現創新
改變A、點的運動方式,同樣考慮中點的軌跡,教師進行適當的指導(這里固定A點,運動B點)
學生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應的軌跡。
5、布置作業、實現拓展
(五)、教學特色:
借助網絡、多媒體教學平臺,讓學生自己動手實驗,發現問題并解決問題,同時把學生的學習情況及時的展現出來,做到大家一起學習,一起評價的效果。同時節省了時間,提高了課堂效率。
整個教學過程,體現了四個統一:既學習書本知識與投身實踐的統一、書本學習與現代信息技術學習的統一、書本知識與資源拓展的統一、課堂學習與課外實踐的統一。
本節課學生精神飽滿、興趣濃厚、合作積極,與我保持良好的互動,還不時產生一些爭執,給我提出了一些新的問題,折射出我不足的方面,促進了我的進步與提高,師生間的教與學就像一面鏡子,互相折射,共同進步。
高中數學簡潔教案大全篇15
尊敬的各位專家、評委:
下午好!
我的抽簽序號是___,今天我說課的課題是《______》第__課時。我嘗試利用新課標的理念來指導教學,對于本節課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、教法學法分析、教學過程分析和評價分析四方面來談談我對教材的理解和教學的設計,敬請各位專家、評委批評指正。
一、教材分析
(一)地位與作用
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面數列作為一種特殊的函數與函數思想密不可分;另一方面學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
(二)學情分析
(1)學生已熟練掌握_________________。
(2)學生的知識經驗較豐富,具備了教強的抽象思維能力和演繹推理能力。
(3)學生思維活潑,積極性高,已初步形成對數學問題的合作探究能力。
(4)學生層次參次不齊,個體差異比較明顯。
二、目標分析
新課標指出“三維目標”是一個密切聯系的有機整體,應該以獲得知識與技能的過程,同時成為學會學習和正確價值觀。這要求我們在教學中以知識技能的培養為主線,透情感態度與價值觀,并把這兩者充分體現在教學過程中,新課標指出教學的主體是學生,因此目標的制定和設計必須從學生的角度出發,根據__在教材內容中的地位與作用,結合學情分析,本節課教學應實現如下教學目標:
(一)教學目標
(1)知識與技能
使學生理解函數單調性的概念,初步掌握判別函數單調性的方法;。
(2)過程與方法
引導學生通過觀察、歸納、抽象、概括,自主建構單調增函數、單調減函數等概念;能運用函數單調性概念解決簡單的問題;使學生領會數形結合的數學思想方法,培養學生發現問題、分析問題、解決問題的能力。
(3)情感態度與價值觀
在函數單調性的學習過程中,使學生體驗數學的科學價值和應用價值,培養學生善于觀察、勇于探索的良好習慣和嚴謹的科學態度。
(二)重點難點
本節課的教學重點是________,教學難點是_________。
三、教法、學法分析
(一)教法
基于本節課的內容特點和高二學生的年齡特征,按照臨沂市高中數學“三五四”課堂教學策略,采用探究――體驗教學法為主來完成教學,為了實現本節課的教學目標,在教法上我采取了:
1、通過學生熟悉的實際生活問題引入課題,為概念學習創設情境,拉近數學與現實的距離,激發學生求知欲,調動學生主體參與的積極性.
2、在形成概念的過程中,緊扣概念中的關鍵語句,通過學生的主體參與,正確地形成概念.
3、在鼓勵學生主體參與的同時,不可忽視教師的主導作用,要教會學生清晰的思維、嚴謹的推理,并順利地完成書面表達.
(二)學法在學法上我重視了:1、讓學生利用圖形直觀啟迪思維,并通過正、反例的構造,來完成從感性認識到理性思維的質的飛躍。2、讓學生從問題中質疑、嘗試、歸納、總結、運用,培養學生發現問題、研究問題和分析解決問題的能力。
四、教學過程分析
(一)教學過程設計
教學是一個教師的“導”,學生的“學”以及教學過程中的“悟”構成的和諧整體。教師的“導”也就是教師啟發、誘導、激勵、評價等為學生的學習搭建支架,把學習的任務轉移給學生,學生就是接受任務,探究問題、完成任務。如果在教學過程中把“教與學”完美的結合也就是以“問題”為核心,通過對知識的發生、發展和運用過程的演繹、解釋和探究來組織和推動教學。
(1)創設情境,提出問題。新課標指出:“應該讓學生在具體生動的情境中學習數學”。在本節課的教學中,從我們熟悉的生活情境中提出問題,問題的
設計改變了傳統目的明確的設計方式,給學生最大的思考空間,充分體現學生主體地位。
(2)引導探究,建構概念。數學概念的形成來自解決實際問題和數學自身發展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經驗和已有的知識基礎出發,經歷“數學化”、“再創造”的活動過程.
(3)自我嘗試,初步應用。有效的數學學習過程,不能單純的模仿與記憶,數學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經歷和實踐體驗,師生互動學習,生生合作交流,共同探究.
(4)當堂訓練,鞏固深化。通過學生的主體參與,使學生深切體會到本節課的主要內容和思想方法,從而實現對知識識的再次深化。
(5)小結歸納,回顧反思。小結歸納不僅是對知識的簡單回顧,還要發揮學生的主體地位,從知識、方法、經驗等方面進行總結。我設計了三個問題:(1)通過本節課的學習,你學到了哪些知識?(2)通過本節課的學習,你最大的體驗是什么?(3)通過本節課的學習,你掌握了哪些技能?
(二)作業設計
作業分為必做題和選做題,必做題對本節課學生知識水平的反饋,選做題是對本節課內容的延伸與,注重知識的延伸與連貫,強調學以致用。通過作業設置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發學生飽滿的學習興趣,促進學生自主發展、合作探究的學習氛圍的形成.
我設計了以下作業:(1)必做題(2)選做題
(三)板書設計板書要基本體現整堂課的內容與方法,體現課堂進程,能簡明扼要反映知識結構及其相互聯系;能指導教師的教學進程、引導學生探索知識;通過使用幻燈片輔助板書,節省課堂時間,使課堂進程更加連貫。
五、評價分析
學生學習的結果評價當然重要,但是更重要的是學生學習的過程評價。我采用及時點評、延時點評與學生互評相結合,全面考查學生在知識、思想、能力等方面的發展情況,在質疑探究的過程中,評價學生是否有積極的情感態度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發展,通過鞏固練習考查學生對____是否有一個完整的集訓,并進行及時的調整和補充。以上就是我對本節課的理解和設計,敬請各位專家、評委批評指正。謝謝!