教育巴巴 > 高中教案 > 數學教案 >

高中數學教案免費模板

時間: 新華 數學教案

教案可以幫助教師更好地了解學生,從而更好地滿足學生的學習需求。寫好高中數學教案免費模板要注意什么?小編給大家分享高中數學教案免費模板,希望對大家有所幫助。

高中數學教案免費模板篇1

一、說教材

1、教材的地位和作用

《集合的概念》是人教版第一章的內容(中職數學)。本節課的主要內容:集合以及集合有關的概念,元素與集合間的關系。初中數學課本中已現了一些數和點的集合,如:自然數的集合、有理數的集合、不等式解的集合等,但學生并不清楚“集合”在數學中的含義,集合是一個基礎性的概念,也是也是中職數學的開篇,是我們后續學習的重要工具,如:用集合的語言表示函數的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節的學習,能讓學生領會到數學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發展學生運用數學語言交流的能力。

2、教學目標

(1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念;

b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。

(2)能力目標:a、讓學生感知數學知識與實際生活得密切聯系,培養學生解決實際的能力;

b、學會借助實例分析,探究數學問題,發展學生的觀察歸納能力。

(3)情感目標:a、通過聯系生活,提高學生學習數學的積極性,形成積極的學習態度;

b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的理性和嚴謹。

3、重點和難點

重點:集合的概念,元素與集合的關系。

難點:準確理解集合的概念。

二、學情分析(說學情)

對于中職生來說,學生的數學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數學的自信心不強,學習積極性不高,有厭學情緒。

三、說教法

針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發,提高學生的注意力和激發學生的學習興趣。在創設情境認知策略上給予適當的點撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發學生積極思維,逐步提升學生的數學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。

四、學習指導(說學法)

教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據數學的特點這節課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。

五、教學過程

1、引入新課:

a、創設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。

b、介紹集合論的創始者康托爾

2、究竟什么是集合?(實例探究)切合學生現有的認知水平,以學生熟悉的事物(物體),以實際生活為背景進行探究,為本課教學創造出一種自然和諧的氛圍,充分調動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發,引導學生尋找實例中的共同特征,培養學生觀察,總結能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

3、集合的概念,本課的重點。結合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。

教師在這一環節做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

4、熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。

5、集合的符號記法,為本節重點做好鋪墊。

6、從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數學語言描述,給出元素與集合關系符號表示,在這個環節教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。

7、思考交流本課的重要環節在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。

8、從所舉的例子中抽象出數集的概念,并給出常見數集的記法。

9、學生練習:通過練習,識記常見數集的記法,同時進一步鞏固元素與集合間的關系。

10、知識的實際應用:

問題不難,落實課本能力目標,培養學生運用數學的意識和能力初步培養學生應用集合的眼光觀看世界。

11、課堂小節

以學生小節為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內容,要學會總結反思,使學生的認識進一步升華,培養學生的鬼納總結能力。

六、評價

教學評價的及時能有效調動課堂氣氛,感染學生的情緒,對課堂教學發揮著積極作用,教學過程遵重學生之間的差異培養學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環節。

七、教學反思

1、通過現實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。

2、啟發探究教學,營造學生的學習氛圍,培養學生自主學習,合作交流的能力。

八、板書設計

高中數學教案免費模板篇2

今天我說課的課題是《平面向量的概念》,這是江蘇省職業學校文化課教材《基礎模塊·下冊》第七章平面向量中的第一節的內容,我將嘗試運用新課改的理念、中職學生的認知特點指導本節課的教學,新課標指出,學生是教學的主體,教師的教要本著從學生的認知規律出發,以學生活動為主線,在原有知識的基礎上,建構新的知識體系。下面我將以此為基礎從教材分析、學情分析、教法學法、教學過程、教學評價等五個環節,向各位專家談談我對本節課教材的理解和教學設計。

一、教材分析:

1、教材的地位和作用

向量是高中階段學習的一個新的矢量,向量概念是《平面向量》的最基本內容,它的學習直接影響到我們對向量的進一步研究和學習,如向量間關系、向量的加法、減法以及數乘等運算,還有向量的坐標運算等,因此為后面的學習奠定了基礎。

結合本節課的特點及學生的實際情況我制定了如下的教學目標及教學重難點:

2、教學目標

(1)知識與技能目標

1)識記平面向量的定義,會用有向線段和字母表示向量,能辨別數量與向量;

2)識記向量模的定義,會用字母和線段表示向量的模。

3)知道零向量、單位向量的概念。

(2)過程與方法目標

學生通過對向量的學習,能體會出向量來自于客觀現實,提高觀察、分析、抽象和概括等方面的能力,感悟數形結合的思想。

(3)情感態度與價值觀目標

通過構建和諧的課堂教學氛圍,激發學生的學習興趣,使學生勇于提出問題,同時培養學生團隊合作的精神及積極向上的學習態度。

3、教學重難點

教學重點:向量的定義,向量的幾何表示和符號表示,以及零向量和單位向量

教學難點:向量的幾何表示的理解,對零向量和單位向量的理解

二、學情分析

(1)能力分析:對于我校的學生,基礎知識較薄弱,雖然他們的智力發展已到了形成運演階段,但并不具備較強的抽象思維能力、概括能力及數形結合的思想。

(2)認知分析:之前,學生有了物理中的矢量概念,這為學習向量作了最好的鋪墊。

(3)情感分析:部分學生具有積極的學習態度,強烈的探究欲望,能主動參與研究。

三、教法學法

教法:啟發教學法,引探教學法,問題驅動法,并借助多媒體來輔助教學

學法:在學法上,采用的是探究,發現,歸納,練習。從問題出發,引導學生分析問題,讓學生經歷觀察分析、概括、歸納、類比等發現和探索過程。

四、教學過程

課前:

為了打造高效課堂,以生為本我選擇生本式的教學方式,以穿針引線的方式設計了前置性作業。其中包括一些向量的基本概念,并提出:

1、你學過的其他學科中有沒有可以稱為向量的?

2、向量的特點是什么?有幾種描述向量的表示方法?

3、零向量的特點是什么?

【設計意圖】目的是通過課前的預習明確自己需要在本節課中解決的問題,帶著問題聽課,我會在上課前就學生的完成情況明確主要的教學側重點,真正打造高效課堂。

課上教學過程:

1、創設情境

數學的學習應該是與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中發現數學,探究數學,認識并掌握數學,由生活的實例引入,在對比于物理學中的速度、位移等學生已有的知識給出本章研究的問題平面向量

【設計意圖】形成對概念的初步認識,為進一步抽象概括做準備。

2、形成概念

結合物理學中對矢量的定義,給出向量的描述性概念。對于一個新學的量定義概念后,通常要用符號表示它。怎樣把我們所舉例子中的向量表示出來呢?

采取讓學生先嘗試向量的表示方法,自覺接受用帶有箭頭的線段(有向線段)來表示向量。明確為什么可以用有向線段表示向量,引導學生總結出向量的表示方法,強調印刷體與手寫體的區別。結合板書的有向線段給出向量的模。

單位向量、零向量的概念

【即時訓練】

為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知

3、知識應用

本階段的教學,我采用的是教材上的兩個例題,旨在鞏固學生對平面向量的觀念,提高學生的動手實踐能力,掌握求模的基本方法,提升識圖能力。

4、學以致用

為了調動學生的積極性,培養學生團隊合作的精神,本環節我采用小組競爭的方式開展教學,小組討論并選派代表回答,各組之間取長補短,將課堂教學推向高潮,再次加強學生對向量概念的理解。

5、課堂小結

為了了解學生本節課的學習效果,并且將所學做個很好的總結。設置問題:通過本節課的學習你有哪些收獲?(可以從各種角度入手)

【設計意圖】通過總結使學生明確本節的學習內容,強化重點,為今后的學習打下堅定的基礎

6、布置作業

出選做題的目的是注意分層教學和因材施教,為學有余力的學生提供思考的空間。

以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動眼觀察,動腦思考,層層遞進,親身經歷了知識的形成和發展過程,以問題為驅動,使學生對知識的理解逐步深入。而最后的實際應用又將激發學生的學習興趣,帶領學生進入對本節課更深一步的思考和研究之中,從而達到知識在課堂以外的延伸。

以上就是我對本節課的設計和說明,請各位領導,老師批評指正

高中數學教案免費模板篇3

學習目標

明確排列與組合的聯系與區別,能判斷一個問題是排列問題還是組合問題;能運用所學的排列組合知識,正確地解決的實際問題.

學習過程

一、學前準備

復習:

(課本P28A13)填空:

(1)有三張參觀卷,要在5人中確定3人去參觀,不同方法的種數是;

(2)要從5件不同的禮物中選出3件分送3為同學,不同方法的種數是;

(3)5名工人要在3天中各自選擇1天休息,不同方法的種數是;

(4)集合A有個元素,集合B有個元素,從兩個集合中各取1個元素,不同方法的種數是;

二、新課導學

探究新知(復習教材P14~P25,找出疑惑之處)

問題1:判斷下列問題哪個是排列問題,哪個是組合問題:

(1)從4個風景點中選出2個安排游覽,有多少種不同的方法?

(2)從4個風景點中選出2個,并確定這2個風景點的游覽順序,有多少種不同的方法?

應用示例:

例1:從10個不同的文藝節目中選6個編成一個節目單,如果某女演員的獨唱節目一定不能排在第二個節目的位置上,則共有多少種不同的排法?

例2:7位同學站成一排,分別求出符合下列要求的不同排法的種數.

(1)甲站在中間;

(2)甲、乙必須相鄰;

(3)甲在乙的左邊(但不一定相鄰);

(4)甲、乙必須相鄰,且丙不能站在排頭和排尾;

(5)甲、乙、丙相鄰;

(6)甲、乙不相鄰;

(7)甲、乙、丙兩兩不相鄰。

反饋練習

1、(課本P40A4)某學生邀請10位同學中的6位參加一項活動,其中兩位同學要么都請,要么都不請,共有多少種邀請方法?

2、5男5女排成一排,按下列要求各有多少種排法:(1)男女相間;(2)女生按指定順序排列

3、馬路上有12盞燈,為了節約用電,可以熄滅其中3盞燈,但兩端的燈不能熄滅,也不能熄滅相鄰的兩盞燈,那么熄燈方法共有______種.

當堂檢測

1、某班新年聯歡會原定的5個節目已排成節目單,開演前又增加了兩個新節目.如果將這兩個節目插入原節目單中,那么不同插法的種數為()

A.42B.30C.20D.12

2、(課本P40A7)書架上有4本不同的數學書,5本不同的物理書,3本不同的化學書,全部排在同一層,如果不使同類的書分開,一共有多少種排法?

課后作業

1、(課本P41B2)用數字0,1,2,3,4,5組成沒有重復數字的數,問:(1)能夠組成多少個六位奇數?(2)能夠組成多少個大于201345的正整數?

2、(課本P41B4)某種產品的加工需要經過5道工序,問:(1)如果其中某一工序不能放在最后,有多少種排列加工順序的方法?(2)如果其中兩道工序既不能放在最前,也不能放在最后,有多少種排列加工順序的方法?

高中數學教案免費模板篇4

近期,我開設了一節公開課《橢圓的幾何性質1》。在新課程背景下,如何有效利用課堂教學時間,如何盡可能地提高學生的學習興趣,提高學生在課堂上45分鐘的學習效率,是一個很重要的課題。要教好高中數學,首先要對新課標和新教材有整體的把握和認識,這樣才能將知識系統化,注意知識前后的聯系,形成知識框架;其次要了解學生的現狀和認知結構,了解學生此階段的知識水平,以便因材施教;再次要處理好課堂教學中教師的教和學生的學的關系。課堂教學是實施高中新課程教學的主陣地,也是對學生進行思想品德教育和素質教育的主渠道。課堂教學不但要加強雙基而且要提高智力,發展學生的智力,而且要發展學生的創造力;不但要讓學生學會,而且要讓學生會學,特別是自學。尤其是在課堂上,不但要發展學生的智力因素,而且要提高學生在課堂45分鐘的學習效率,在有限的時間里,出色地完成教學任務。

一、要有明確的教學目標

教學目標分為三大領域,即認知領域、情感領域和動作技能領域。因此,在備課時要圍繞這些目標選擇教學的策略、方法和媒體,把內容進行必要的重組。備課時要依據教材,但又不拘泥于教材,靈活運用教材。在數學教學中,要通過師生的共同努力,使學生在知識、能力、技能、心理、思想品德等方面達到預定的目標,以提高學生的綜合素質。

二、要能突出重點、化解難點

每一堂課都要有教學重點,而整堂的教學都是圍繞著教學重點來逐步展開的。為了讓學生明確本堂課的重點、難點,教師在上課開始時,可以在黑板的一角將這些內容簡短地寫出來,以便引起學生的重視。講授重點內容,是整堂課的教學高潮。教師要通過聲音、手勢、板書等的變化或應用模型、投影儀等直觀教具,刺激學生的大腦,使學生能夠興奮起來,對所學內容在大腦中刻下強烈的印象,激發學生的學習興趣,提高學生對新知識的接受能力。尤其是在選擇例題時,例題最好是呈階梯式展現,我在準備例2時,就設置了三個小題,從易到難,便于學生理解接受。

三、要善于應用現代化教學手段

在新課標和新教材的背景下,教師掌握現代化的多媒體教學手段顯得尤為重要和迫切?,F代化教學手段的顯著特點:一是能有效地增大每一堂課的課容量;二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;三是直觀性強,容易激發起學生的學習興趣,有利于提高學生的學習主動性;四是有利于對整堂課所學內容進行回顧和小結。在課堂教學結束時,教師引導學生總結本堂課的內容,學習的重點和難點。同時通過投影儀,同步地將內容在瞬間躍然“幕”上,使學生進一步理解和掌握本堂課的內容。在課堂教學中,對于板演量大的內容,如解析幾何中的一些幾何圖形、一些簡單但數量較多的小問答題、文字量較多應用題,復習課中章節內容的總結、選擇題的訓練等等都可以借助于投影儀來完成。

四、根據具體內容,選擇恰當的教學方法

每一堂課都有規定的教學任務和目標要求。所謂“教學有法,但無定法”,教師要能隨著教學內容的變化,教學對象的變化,教學設備的變化,靈活應用教學方法。這節課是高三的復習課,我采取了讓學生自己回憶講述橢圓的幾何性質,教師補充的方法,改變了傳統的教師講,學生聽的模式,調動了學生的積極性。在例題的解決過程中,我也盡量讓學生多動手,多動腦,激發學生的思維。此外,我們還可以結合課堂內容,靈活采用談話、讀書指導、作業、練習等多種教學方法。在一堂課上,有時要同時使用多種教學方法?!敖虩o定法,貴要得法”。只要能激發學生的學習興趣,提高學生的學習積極性,有助于學生思維能力的培養,有利于所學知識的掌握和運用,都是好的教學方法。

五、關愛學生,及時鼓勵

高中新課程的&39;宗旨是著眼于學生的發展。對學生在課堂上的表現,要及時加以總結,適當給予鼓勵,并處理好課堂的偶發事件,及時調整課堂教學。在教學過程中,教師要隨時了解學的對所講內容的掌握情況。如在講完一個概念后,讓學生復述;講完一個例題后,將解答擦掉,請中等水平學生上臺板演。有時,對于基礎差的學生,可以對他們多提問,讓他們有較多的鍛煉機會,同時教師根據學生的表現,及時進行鼓勵,培養他們的自信心,讓他們能熱愛數學,學習數學。

六、切實重視基礎知識、基本技能和基本方法

眾所周知,近年來數學試題的新穎性、靈活性越來越強,不少師生把主要精力放在難度較大的綜合題上,認為只有通過解

決難題才能培養能力,因而相對地忽視了基礎知識、基本技能、基本方法的教學。教學中急急忙忙把公式、定理推證拿出來,或草草講一道例題就通過大量的題目來訓練學生。其實定理、公式推證的過程就蘊含著重要的解題方法和規律,教師沒有充分暴露思維過程,沒有發掘其內在的規律,就讓學生去做題,試圖通過讓學生大量地做題去“悟”出某些道理。結果是多數學生“悟”不出方法、規律,理解浮淺,記憶不牢,只會機械地模仿,思維水平較低,有時甚至生搬硬套;照葫蘆畫瓢,將簡單問題復雜化。如果教師在教學中過于粗疏或學生在學習中對基本知識不求甚解,都會導致在考試中判斷錯誤。不少學生說:現在的試題量過大,他們往往無法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低。可見,在切實重視基礎知識的落實中同時應重視基本技能和基本方法的培養。

七、滲透教學思想方法,培養綜合運用能力

常用的數學思想方法有:轉化的思想,類比歸納與類比聯想的思想,分類討論的思想,數形結合的思想以及配方法、換元法、待定系數法、反證法等。這些基本思想和方法分散地滲透在中學數學教材的條章節之中。在平時的教學中,教師要在傳授基礎知識的同時,有意識地、恰當在講解與滲透基本數學思想和方法,幫助學生掌握科學的方法,從而達到傳授知識,培養能力的目的,只有這樣。學生才能靈活運用和綜合運用所學的知識。

高中數學教案免費模板篇5

如何在高二這一關鍵性的一年中與這些同學一齊共同進步縮小差距,我選取了從課堂教學、作業布置、評價方式這三個方面入手,激發學生的學習用心性,盡量向學生帶給從事數學活動的機會,幫忙他們在自主探索和合作交流的過程中真正理解和掌握基礎的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。

第一,用多變的課堂教學,充分調動學生的主動性

我認為數學教學是教師思維與學生思維相互溝通的過程。從信息論的角度看,這種溝通就是指數學信息的理解、加工、傳遞的動態過程,在這個過程中充滿了師生之間的數學交流和信息的轉換,離開了學生的參與,整個過程就難以暢通。北京師范大學曹才翰教授指出“數學學習是再創造再發現的過程,務必要主體的用心參與才能實現這個過程”;從當前全面實施素質教育的要求來看,激發學生用心參與課堂教學,就是為了提高課堂教學效率,培養學生的學習潛力和創造思維潛力,這與以培養創造型人才為目的的素質教育完全一致,因此,在數學課堂教學中提高學生的參與度,不僅僅具有提高數學教學質量的近期作用,而且具有提高學生素質的遠期功效。

若要實現這個目標,在教學引入時我常常以問題作為出發點,選取的素材密切聯系學生的現實生活,運用學生的求知欲,使學生感到數學就在他們身邊,與現實世界聯系緊密,同時問題情景的設置又具有必須的挑戰性,引發了學生的思考。

如人教版初二幾何《三角形》的《關于三角形的一些概念》在引入時我提出了以下幾個問題:你能舉出生活中一些有關三角形的實例嗎?你能一筆畫一個三角形嗎?你能用語言敘述你的畫圖過程嗎?

如人教版初二幾何《三角形》的《三角形全等的判定(一)》在引入時我提出了這樣一個問題:請你任意畫一個三角形,你能否再畫一個與其全等的三角形。畫好后請你剪下來驗證一下。學生的用心性被激發,熱烈的討論,課堂上出現了許多狀況

有的學生用的是先確定一角再確定兩邊的畫法;有的一個學生是利用尺規根據三邊關系畫的(這正是后面所要學的一個三角形全等的判定公理);有的學生是利用了垂直、平行、對頂角來省去作圖中使用量角器的麻煩,學生充分利用已有的數學知識,利用自己對數學圖形的感知,很好的解決了這個問題,透過剪一剪試一試從直觀上驗證了自己的畫法。

如《相似形》的《相似三角形的性質》在引入時我提出了這樣的問題:提到與我國并稱為世界四大禮貌古國的埃及你會想到什么?學生們說到了法老、金字塔、木乃伊等等,說到金字塔你能測量出埃及大金字塔的高度嗎?學生幾乎是異口同聲地告訴我用影長,當時我稱贊他們與我們的幾何學之父古希臘人歐幾里得的測量方法一樣,并講述了歐幾里得的故事,他等到自己在陽光下的影長與他的身高正好相等的時候,測量了金字塔的塔影的長度,這時,他宣布,“這就是大金字塔的高度?!睆亩ぐl了學生探索相似三角形的其它性質的興趣。

我在課堂教學的過程中,為了使成績較差同學減少對于數學的恐懼感,課堂上放慢教學速度,變換教學方法,如人教版初二幾何《三角形》的《關于三角形的一些概念》我是這樣處理的:1、請學生講解三角形的有關概念;2、請學生用折紙的方法講解角平分線和中線,折紙的過程中你還發現了什么?3、請學生任意作一個三角形,并做出這個三角形的一條角平分線和一條中線。三個要求層層深入了學生對于基本概念的理解,變教師講為學生講,取得了較好的效果。

我在課堂上放慢教學速度是能夠照顧到大部分學生的,但一小批優等生就會出現沒事做的狀況,這時學習小組就是他們發揮余熱的地方,在具體的教學過程中給學生建立了數學學習小組,讓學生在各自的小組中相互幫忙,讓每一個學生都能從事小組中不同的工作,并最終完成一個共同的目標。透過小組學習,使學生樹立正確的團隊觀,尊重他人、尊重自己,敢于發表自己的觀點,又不固執己見,對同學的見解,既要樂于理解合理成分,又要勇于表達自己不同的看法。在具體實施的過程中,我越發的認識到討論的重要性,我鼓勵學生質疑,質疑教師,質疑教科書,鼓勵學生爭論,有些知識點在學生的爭論中被突破,知識在爭論中被融會貫通,我發現學生之間的語言他們更容易理解,于是我開始嘗試讓學生講課,講過三角形的分類等。又如學習基本作圖時,教科書就如一本說明書,讓學生以學習小組為單位,閱讀、畫圖,互教互學,實際教學時取得了很好的效果。讓各層次的學生都能有所知,有所得。在認知效果和記憶效果方面比教師直接給出要好。

第二,布置多樣的作業,引導學生的用心性

讓學生作業的目的在于鞏固和消化所學的知識,并使知識轉化為技能技巧。正確組織好學生作業,對于培養學生的獨立學習的潛力和習慣,發展學生的智力和創造潛力有著重大好處。因此,教師應重視作業的布置,《數學課程標準》中明確指出:“義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現人人學有價值的數學,人人都能獲得必需的數學,不同的人在數學上得到不同的發展。”作業布置如何體現這一基本理念,如何調整作業在學生學習活動中的位置,也是提高課堂教學效率的關鍵。

課堂結束新課后,我透過作業的布置滲透數學學習方法如自學,這樣才能真正提高學生數學學習的水平,開始時每一天的第一樣作業是復習,最后一項作業是預習,而且把具體的頁數寫清楚提出具體的預習提綱,加強學生看書的針對性,開始時還帶有必須的強制性如讓家長簽字,從而提高學生閱讀理解的潛力。

對數學的興趣能激發學生的學習動機,富有情境的作業具有必須吸引力,能使學生充分發揮自己的智力水平去完成。趣味性要體現出題型多樣,方式新穎,資料有創造性,如課本習題、自編習題、計算類題目、表述類題目(如單元小結、學習體會、數學故事、小論文等)互相穿插,讓學生感受到作業資料和形式的豐富多采,使之情緒高昂,樂于思考,從而感受作業的樂趣。

根據上課資料所需經常讓學生動手做教具如剪鈍角三角形、銳角三角形、直角三角形,做教具說明三角形具有穩定性而四邊形沒有此特性等,這種做法不但能夠提高學生學習的興趣,而且會有一些意想不到的事情。如:學生做教具說明三角形具有穩定性而四邊形沒有此特性時,有的學生用線繩打結連接四邊,有的學生為了省事用訂書釘訂的,而訂的不同方法得到有的四邊形能動而有的不能,經過學生的討論得出關鍵在于連接處是一個點還是兩個點的問題,學生很受啟發。

高中數學教案免費模板篇6

圓的方程

教學目標

(1)掌握圓的標準方程,能根據圓心坐標和半徑熟練地寫出圓的標準方程,也能根據圓的標準方程熟練地寫出圓的圓心坐標和半徑.

(2)掌握圓的一般方程,了解圓的一般方程的結構特征,熟練掌握圓的標準方程和一般方程之間的互化.

(3)了解參數方程的概念,理解圓的參數方程,能夠進行圓的普通方程與參數方程之間的互化,能應用圓的參數方程解決有關的簡單問題.

(4)掌握直線和圓的位置關系,會求圓的切線.

(5)進一步理解曲線方程的概念、熟悉求曲線方程的方法.

教學建議

教材分析

(1)知識結構

(2)重點、難點分析

①本節內容教學的重點是圓的標準方程、一般方程、參數方程的推導,根據條件求圓的方程,用圓的方程解決相關問題.

②本節的難點是圓的一般方程的結構特征,以及圓方程的求解和應用.

教法建議

(1)圓是最簡單的曲線.這節教材安排在學習了曲線方程概念和求曲線方程之后,學習三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學習做好準備.同時,有關圓的問題,特別是直線與圓的位置關系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學中應加強練習,使學生確實掌握這一單元的知識和方法.

(2)在解決有關圓的問題的過程中多次用到配方法、待定系數法等思想方法,教學中應多總結.

(3)解決有關圓的問題,要經常用到一元二次方程的理論、平面幾何知識和前邊學過的解析幾何的基本知識,教師在教學中要注意多復習、多運用,培養學生運算能力和簡化運算過程的意識.

(4)有關圓的內容非常豐富,有很多有價值的問題.建議適當選擇一些內容供學生研究.例如由過圓上一點的切線方程引申到切點弦方程就是一個很有價值的問題.類似的還有圓系方程等問題.

教學設計示例

圓的一般方程

教學目標:

(1)掌握圓的一般方程及其特點.

(2)能將圓的一般方程轉化為圓的標準方程,從而求出圓心和半徑.

(3)能用待定系數法,由已知條件求出圓的一般方程.

(4)通過本節課學習,進一步掌握配方法和待定系數法.

教學重點:(1)用配方法,把圓的一般方程轉化成標準方程,求出圓心和半徑.

(2)用待定系數法求圓的方程.

教學難點:圓的一般方程特點的研究.

教學用具:計算機.

教學方法:啟發引導法,討論法.

教學過程:

【引入】

前邊已經學過了圓的標準方程

把它展開得

任何圓的方程都可以通過展開化成形如

的方程

【問題1】

形如①的方程的曲線是否都是圓?

師生共同討論分析:

如果①表示圓,那么它一定是某個圓的標準方程展開整理得到的.我們把它再寫成原來的形式不就可以看出來了嗎?運用配方法,得

顯然②是不是圓方程與 是什么樣的數密切相關,具體如下:

(1)當 時,②表示以 為圓心、以 為半徑的圓;

(2)當 時,②表示一個點 ;

(3)當 時,②不表示任何曲線.

總結:任意形如①的方程可能表示一個圓,也可能表示一個點,還有可能什么也不表示.

圓的一般方程的定義:

當 時,①表示以 為圓心、以 為半徑的圓,

此時①稱作圓的一般方程.

即稱形如 的方程為圓的一般方程.

【問題2】圓的一般方程的特點,與圓的標準方程的異同.

(1) 和 的系數相同,都不為0.

(2)沒有形如 的二次項.

圓的一般方程與一般的二元二次方程

相比較,上述(1)、(2)兩個條件僅是③表示圓的必要條件,而不是充分條件或充要條件.

圓的一般方程與圓的標準方程各有千秋:

(1)圓的標準方程帶有明顯的幾何的影子,圓心和半徑一目了然.

(2)圓的一般方程表現出明顯的代數的形式與結構,更適合方程理論的運用.

【實例分析】

例1:下列方程各表示什么圖形.

(1) ;

(2) ;

(3) .

學生演算并回答

(1)表示點(0,0);

(2)配方得 ,表示以 為圓心,3為半徑的圓;

(3)配方得 ,當 、 同時為0時,表示原點(0,0);當 、 不同時為0時,表示以 為圓心, 為半徑的圓.

例2:求過三點 , , 的圓的方程,并求出圓心坐標和半徑.

分析:由于學習了圓的標準方程和圓的一般方程,那么本題既可以用標準方程求解,也可以用一般方程求解.

解:設圓的方程為

因為 、 、 三點在圓上,則有

解得: , ,

所求圓的方程為

可化為

圓心為 ,半徑為5.

請同學們再用標準方程求解,比較兩種解法的區別.

【概括總結】通過學生討論,師生共同總結:

(1)求圓的方程多用待定系數法.其步驟為:由題意設方程(標準方程或一般方程);根據條件列出關于待定系數的方程組;解方程組求出系數,寫出方程.

(2)如何選用圓的標準方程和圓的一般方程.一般地,易求圓心和半徑時,選用標準方程;如果給出圓上已知點,可選用一般方程.

下面再看一個問題:

例3: 經過點 作圓 的割線,交圓 于 、 兩點,求線段 的中點 的軌跡.

解:圓 的方程可化為 ,其圓心為 ,半徑為2.設 是軌跡上任意一點.

化簡得

點 在曲線上,并且曲線為圓 內部的一段圓弧.

【練習鞏固】

(1)方程 表示的曲線是以 為圓心,4為半徑的圓.求 、 、 的值.(結果為4,-6,-3)

(2)求經過三點 、 、 的圓的方程.

分析:用圓的一般方程,代入點的坐標,解方程組得圓的方程為 .

(3)課本第79頁練習1,2.

【小結】師生共同總結:

(1)圓的一般方程及其特點.

(2)用配方法化圓的一般方程為圓的標準方程,求圓心坐標和半徑.

(3)用待定系數法求圓的方程.

【作業】課本第82頁5,6,7,8.

高中數學教案免費模板篇7

教學目標:

1.結合實際問題情景,理解分層抽樣的必要性和重要性;

2.學會用分層抽樣的方法從總體中抽取樣本;

3.并對簡單隨機抽樣、系統抽樣及分層抽樣方法進行比較,揭示其相互關系.

教學重點:

通過實例理解分層抽樣的方法.

教學難點:

分層抽樣的步驟.

教學過程:

一、問題情境

1.復習簡單隨機抽樣、系統抽樣的概念、特征以及適用范圍.

2.實例:某校高一、高二和高三年級分別有學生名,為了了解全校學生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學生活動

能否用簡單隨機抽樣或系統抽樣進行抽樣,為什么?

指出由于不同年級的學生視力狀況有一定的差異,用簡單隨機抽樣或系統抽樣進行抽樣不能準確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

由于樣本的容量與總體的個體數的比為100∶2500=1∶25,

所以在各年級抽取的個體數依次是,,,即40,32,28.

三、建構數學

1.分層抽樣:當已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

說明:①分層抽樣時,由于各部分抽取的個體數與這一部分個體數的比等于樣本容量與總體的個體數的比,每一個個體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應用.

2.三種抽樣方法對照表:

類別

共同點

各自特點

相互聯系

適用范圍

簡單隨機抽樣

抽樣過程中每個個體被抽取的概率是相同的

從總體中逐個抽取

總體中的個體數較少

系統抽樣

將總體均分成幾個部分,按事先確定的規則在各部分抽取

在第一部分抽樣時采用簡單隨機抽樣

總體中的個體數較多

分層抽樣

將總體分成幾層,分層進行抽取

各層抽樣時采用簡單隨機抽樣或系統

總體由差異明顯的幾部分組成

3.分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分.

(2)確定比例:計算各層的個體數與總體的個體數的比.

(3)確定各層應抽取的樣本容量.

(4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統抽樣的方法抽?。?,綜合每層抽樣,組成樣本.

四、數學運用

1.例題.

例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

(2)①教育局督學組到學校檢查工作,臨時在每個班各抽調2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現欲從中抽出8人研討進一步改進教和學;

③某班元旦聚會,要產生兩名“幸運者”.

對這三件事,合適的抽樣方法為()

A.分層抽樣,分層抽樣,簡單隨機抽樣

B.系統抽樣,系統抽樣,簡單隨機抽樣

C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

D.系統抽樣,分層抽樣,簡單隨機抽樣

例2某電視臺在因特網上就觀眾對某一節目的喜愛程度進行調查,參加調查的總人數為12000人,其中持各種態度的人數如表中所示:

很喜愛

喜愛

一般

不喜愛

2435

4567

3926

1072

電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調查,應怎樣進行抽樣?

解:抽取人數與總的比是60∶12000=1∶200,

則各層抽取的人數依次是12.175,22.835,19.63,5.36,

取近似值得各層人數分別是12,23,20,5.

然后在各層用簡單隨機抽樣方法抽?。?/p>

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數分別為12,23,20,5.

說明:各層的抽取數之和應等于樣本容量,對于不能取整數的情況,取其近似值.

(3)某學校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學校在校務公開方面的某意見,擬抽取一個容量為20的樣本.

分析:(1)總體容量較小,用抽簽法或隨機數表法都很方便.

(2)總體容量較大,用抽簽法或隨機數表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數相同,可用系統抽樣.

(3)由于學校各類人員對這一問題的看法可能差異較大,所以應采用分層抽樣方法.

五、要點歸納與方法小結

本節課學習了以下內容:

1.分層抽樣的概念與特征;

2.三種抽樣方法相互之間的區別與聯系.

高中數學教案免費模板篇8

【教學目標】

1、知識與技能

(1)理解等差數列的定義,會應用定義判斷一個數列是否是等差數列:

(2)賬務等差數列的通項公式及其推導過程:

(3)會應用等差數列通項公式解決簡單問題。

2、過程與方法

在定義的理解和通項公式的推導、應用過程中,培養學生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規律,提高熟悉猜想和歸納的能力,滲透函數與方程的思想。

3、情感、態度與價值觀

通過教師指導下學生的自主學習、相互交流和探索活動,培養學生主動探索、用于發現的求知精神,激發學生的學習興趣,讓學生感受到成功的喜悅。在解決問題的過程中,使學生養成細心觀察、認真分析、善于總結的良好習慣。

【教學重點】

①等差數列的概念;

②等差數列的通項公式

【教學難點】

①理解等差數列“等差”的特點及通項公式的含義;

②等差數列的通項公式的推導過程.

【學情分析】

我所教學的學生是我校高一(7)班的學生(平行班學生),經過一年的高中數學學習,大部分學生知識經驗已較為豐富,他們的智力發展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學生的基礎較弱,學習數學的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發,注重引導、啟發、研究和探討以符合這類學生的心理發展特點,從而促進思維能力的進一步發展。

【設計思路】

1、教法

①啟發引導法:這種方法有利于學生對知識進行主動建構;有利于突出重點,突破難點;有利于調動學生的主動性和積極性,發揮其創造性.

②分組討論法:有利于學生進行交流,及時發現問題,解決問題,調動學生的積極性.

③講練結合法:可以及時鞏固所學內容,抓住重點,突破難點.

2、學法

引導學生首先從三個現實問題(數數問題、水庫水位問題、儲蓄問題)概括出數組特點并抽象出等差數列的概念;接著就等差數列概念的特點,推導出等差數列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法.

【教學過程】

一、創設情境,引入新課

1、從0開始,將5的倍數按從小到大的順序排列,得到的數列是什么?

2、水庫管理人員為了保證優質魚類有良好的生活環境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數列?

3、我國現行儲蓄制度規定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內各年末的本利和(單位:元)組成一個什么數列?

教師:以上三個問題中的數蘊涵著三列數.

學生:

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

(設置意圖:從實例引入,實質是給出了等差數列的現實背景,目的是讓學生感受到等差數列是現實生活中大量存在的數學模型.通過分析,由特殊到一般,激發學生學習探究知識的自主性,培養學生的歸納能力.

二、觀察歸納,形成定義

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述數列有什么共同特點?

思考2根據上數列的共同特點,你能給出等差數列的一般定義嗎?

思考3你能將上述的文字語言轉換成數學符號語言嗎?

教師:引導學生思考這三列數具有的共同特征,然后讓學生抓住數列的特征,歸納得出等差數列概念.

學生:分組討論,可能會有不同的答案:前數和后數的差符合一定規律;這些數都是按照一定順序排列的…只要合理教師就要給予肯定.

教師引導歸納出:等差數列的定義;另外,教師引導學生從數學符號角度理解等差數列的定義.

(設計意圖:通過對一定數量感性材料的觀察、分析,提煉出感性材料的本質屬性;使學生體會到等差數列的規律和共同特點;一開始抓?。骸皬牡诙椘?,每一項與它的前一項的差為同一常數”,落實對等差數列概念的&39;準確表達.)

三、舉一反三,鞏固定義

1、判定下列數列是否為等差數列?若是,指出公差d.

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教師出示題目,學生思考回答.教師訂正并強調求公差應注意的問題.

注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數與減數弄顛倒,而且公差可以是正數,負數,也可以為0.

(設計意圖:強化學生對等差數列“等差”特征的理解和應用).

2、思考4:設數列{an}的通項公式為an=3n+1,該數列是等差數列嗎?為什么?

(設計意圖:強化等差數列的證明定義法)

四、利用定義,導出通項

1、已知等差數列:8,5,2,…,求第200項?

2、已知一個等差數列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

教師出示問題,放手讓學生探究,然后選擇列式具有代表性的上去板演或投影展示.根據學生在課堂上的具體情況進行具體評價、引導,總結推導方法,體會歸納思想以及累加求通項的方法;讓學生初步嘗試處理數列問題的常用方法.

(設計意圖:引導學生觀察、歸納、猜想,培養學生合理的推理能力.學生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學生善于動腦、勇于創新的品質,激發學生的創造意識.鼓勵學生自主解答,培養學生運算能力)

五、應用通項,解決問題

1、判斷100是不是等差數列2,9,16,…的項?如果是,是第幾項?

2、在等差數列{an}中,已知a5=10,a12=31,求a1,d和an.

3、求等差數列3,7,11,…的第4項和第10項

教師:給出問題,讓學生自己操練,教師巡視學生答題情況.

學生:教師叫學生代表總結此類題型的解題思路,教師補充:已知等差數列的首項和公差就可以求出其通項公式

(設計意圖:主要是熟悉公式,使學生從中體會公式與方程之間的聯系.初步認識“基本量法”求解等差數列問題.)

六、反饋練習:

教材13頁練習1

七、歸納總結:

1、一個定義:

等差數列的定義及定義表達式

2、一個公式:

等差數列的通項公式

3、二個應用:

定義和通項公式的應用

教師:讓學生思考整理,找幾個代表發言,最后教師給出補充

(設計意圖:引導學生去聯想本節課所涉及到的各個方面,溝通它們之間的聯系,使學生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

【設計反思】

本設計從生活中的數列模型導入,有助于發揮學生學習的主動性,增強學生學習數列的興趣.在探索的過程中,學生通過分析、觀察,歸納出等差數列定義,然后由定義導出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學生分析問題和解決問題的能力.本節課教學采用啟發方法,以教師提出問題、學生探討解決問題為途徑,以相互補充展開教學,總結科學合理的知識體系,形成師生之間的良性互動,提高課堂教學效率.

高中數學教案免費模板篇9

一、教學內容

本節主要內容為:經歷探索30°、45°、60°角的三角函數值的過程,能夠進行含有30°、45°、60°角的三角函數值的計算。

二、教學目標

1、經歷探索30°、45°、60°角的三角函數值的過程,能夠進行有關推理,進一步體會三角函數的意義。

2、能夠進行含有30°、45°、60°角的三角函數值的計算。

3、能夠根據30°、45°、60°角的三角函數值,說出相應的銳角的大小。

三、過程與方法

通過進行有關推理,探索30°、45°、60°角的三角函數值。在具體教學過程中,教師可在教材的基礎上適當拓展,使得內容更為豐富.教師可以運用和學生共同探究式的教學方法,學生可以采取自主探討式的學習方法.

四、教學重點和難點

重點:進行含有30°、45°、60°角的三角函數值的計算

難點:記住30°、45°、60°角的三角函數值

五、教學準備

教師準備

預先準備教材、教參以及多媒體課件

學生準備

教材、同步練習冊、作業本、草稿紙、作圖工具等

六、教學步驟

教學流程設計

教師指導學生活動

1.新章節開場白.1.進入學習狀態.

2.進行教學.2.配合學習.

3.總結和指導學生練習.3記錄相關內容,完成練習.

教學過程設計

1、從學生原有的認知結構提出問題

2、師生共同研究形成概念

3、隨堂練習

4、小結

5、作業

板書設計

1、敘述三角函數的意義

2、30°、45°、60°角的三角函數值

3、例題

七、課后反思

本節課基本上能夠突出重點、弱化難點,在時間上也能掌控得比較合理,學生也比較積極投入學習中,但是學生好像并不是掌握得很好,在今后的教學中應該再加強關于這方面的學習。

高中數學教案免費模板篇10

●知識梳理

函數的綜合應用主要體現在以下幾方面:

1.函數內容本身的相互綜合,如函數概念、性質、圖象等方面知識的綜合.

2.函數與其他數學知識點的綜合,如方程、不等式、數列、解析幾何等方面的內容與函數的綜合.這是高考主要考查的內容.

3.函數與實際應用問題的綜合.

●點擊雙基

1.已知函數f(x)=lg(2x-b)(b為常數),若x[1,+)時,f(x)0恒成立,則

A.b1B.b1C.b1D.b=1

解析:當x[1,+)時,f(x)0,從而2x-b1,即b2x-1.而x[1,+)時,2x-1單調增加,

b2-1=1.

答案:A

2.若f(x)是R上的減函數,且f(x)的圖象經過點A(0,3)和B(3,-1),則不等式f(x+1)-12的解集是___________________.

解析:由f(x+1)-12得-2

又f(x)是R上的減函數,且f(x)的圖象過點A(0,3),B(3,-1),

f(3)

答案:(-1,2)

●典例剖析

【例1】取第一象限內的點P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差數列,1,y1,y2,2依次成等比數列,則點P1、P2與射線l:y=x(x0)的關系為

A.點P1、P2都在l的上方B.點P1、P2都在l上

C.點P1在l的下方,P2在l的上方D.點P1、P2都在l的下方

剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1

P1、P2都在l的下方.

答案:D

【例2】已知f(x)是R上的偶函數,且f(2)=0,g(x)是R上的奇函數,且對于xR,都有g(x)=f(x-1),求f(20__)的值.

解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),xR.

f(x)為周期函數,其周期T=4.

f(20__)=f(4500+2)=f(2)=0.

評述:應靈活掌握和運用函數的奇偶性、周期性等性質.

【例3】函數f(x)=(m0),x1、x2R,當x1+x2=1時,f(x1)+f(x2)=.

(1)求m的值;

(2)數列{an},已知an=f(0)+f()+f()++f()+f(1),求an.

解:(1)由f(x1)+f(x2)=,得+=,

4+4+2m=[4+m(4+4)+m2].

∵x1+x2=1,(2-m)(4+4)=(m-2)2.

4+4=2-m或2-m=0.

∵4+42=2=4,

而m0時2-m2,4+42-m.

m=2.

(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).

2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.

an=.

深化拓展

用函數的思想處理方程、不等式、數列等問題是一重要的思想方法.

【例4】函數f(x)的定義域為R,且對任意x、yR,有f(x+y)=f(x)+f(y),且當x0時,f(x)0,f(1)=-2.

(1)證明f(x)是奇函數;

(2)證明f(x)在R上是減函數;

(3)求f(x)在區間[-3,3]上的最大值和最小值.

(1)證明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.從而有f(x)+f(-x)=0.

f(-x)=-f(x).f(x)是奇函數.

(2)證明:任取x1、x2R,且x10.f(x2-x1)0.

-f(x2-x1)0,即f(x1)f(x2),從而f(x)在R上是減函數.

(3)解:由于f(x)在R上是減函數,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.從而最大值是6,最小值是-6.

深化拓展

對于任意實數x、y,定義運算x__y=ax+by+cxy,其中a、b、c是常數,等式右邊的運算是通常的加法和乘法運算.現已知1__2=3,2__3=4,并且有一個非零實數m,使得對于任意實數x,都有x__m=x,試求m的值.

提示:由1__2=3,2__3=4,得

b=2+2c,a=-1-6c.

又由x__m=ax+bm+cmx=x對于任意實數x恒成立,

b=0=2+2c.

c=-1.(-1-6c)+cm=1.

-1+6-m=1.m=4.

答案:4.

●闖關訓練

夯實基礎

1.已知y=f(x)在定義域[1,3]上為單調減函數,值域為[4,7],若它存在反函數,則反函數在其定義域上

A.單調遞減且最大值為7B.單調遞增且最大值為7

C.單調遞減且最大值為3D.單調遞增且最大值為3

解析:互為反函數的兩個函數在各自定義區間上有相同的增減性,f-1(x)的值域是[1,3].

答案:C

2.關于x的方程x2-4x+3-a=0有三個不相等的實數根,則實數a的值是___________________.

解析:作函數y=x2-4x+3的圖象,如下圖.

由圖象知直線y=1與y=x2-4x+3的圖象有三個交點,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三個不相等的實數根,因此a=1.

答案:1

3.若存在常數p0,使得函數f(x)滿足f(px)=f(px-)(xR),則f(x)的一個正周期為__________.

解析:由f(px)=f(px-),

令px=u,f(u)=f(u-)=f[(u+)-],T=或的整數倍.

答案:(或的整數倍)

4.已知關于x的方程sin2x-2sinx-a=0有實數解,求a的取值范圍.

解:a=sin2x-2sinx=(sinx-1)2-1.

∵-11,0(sinx-1)24.

a的范圍是[-1,3].

5.記函數f(x)=的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a1)的定義域為B.

(1)求A;

(2)若BA,求實數a的取值范圍.

解:(1)由2-0,得0,

x-1或x1,即A=(-,-1)[1,+).

(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.

∵a1,a+12a.B=(2a,a+1).

∵BA,2a1或a+1-1,即a或a-2.

而a1,1或a-2.

故當BA時,實數a的取值范圍是(-,-2][,1).

培養能力

6.(理)已知二次函數f(x)=x2+bx+c(b0,cR).

若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.

解:設符合條件的f(x)存在,

∵函數圖象的對稱軸是x=-,

又b0,-0.

①當-0,即01時,

函數x=-有最小值-1,則

或(舍去).

②當-1-,即12時,則

(舍去)或(舍去).

③當--1,即b2時,函數在[-1,0]上單調遞增,則解得

綜上所述,符合條件的函數有兩個,

f(x)=x2-1或f(x)=x2+2x.

(文)已知二次函數f(x)=x2+(b+1)x+c(b0,cR).

若f(x)的定義域為[-1,0]時,值域也是[-1,0],符合上述條件的函數f(x)是否存在?若存在,求出f(x)的表達式;若不存在,請說明理由.

解:∵函數圖象的對稱軸是

x=-,又b0,--.

設符合條件的f(x)存在,

①當--1時,即b1時,函數f(x)在[-1,0]上單調遞增,則

②當-1-,即01時,則

(舍去).

綜上所述,符合條件的函數為f(x)=x2+2x.

7.已知函數f(x)=x+的定義域為(0,+),且f(2)=2+.設點P是函數圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值.

(2)問:PMPN是否為定值?若是,則求出該定值;若不是,請說明理由.

(3)設O為坐標原點,求四邊形OMPN面積的最小值.

解:(1)∵f(2)=2+=2+,a=.

(2)設點P的坐標為(x0,y0),則有y0=x0+,x00,由點到直線的距離公式可知,PM==,PN=x0,有PMPN=1,即PMPN為定值,這個值為1.

(3)由題意可設M(t,t),可知N(0,y0).

∵PM與直線y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).

又y0=x0+,t=x0+.

S△OPM=+,S△OPN=x02+.

S四邊形OMPN=S△OPM+S△OPN=(x02+)+1+.

當且僅當x0=1時,等號成立.

此時四邊形OMPN的面積有最小值1+.

探究創新

8.有一塊邊長為4的正方形鋼板,現對其進行切割、焊接成一個長方體形無蓋容器(切、焊損耗忽略不計).有人應用數學知識作了如下設計:如圖(a),在鋼板的四個角處各切去一個小正方形,剩余部分圍成一個長方體,該長方體的高為小正方形邊長,如圖(b).

(1)請你求出這種切割、焊接而成的長方體的最大容積V1;

(2)由于上述設計存在缺陷(材料有所浪費),請你重新設計切、焊方法,使材料浪費減少,而且所得長方體容器的容積V2V1.

解:(1)設切去正方形邊長為x,則焊接成的長方體的底面邊長為4-2x,高為x,

V1=(4-2x)2x=4(x3-4x2+4x)(0

V1=4(3x2-8x+4).

令V1=0,得x1=,x2=2(舍去).

而V1=12(x-)(x-2),

又當x時,V10;當

當x=時,V1取最大值.

(2)重新設計方案如下:

如圖①,在正方形的兩個角處各切下一個邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長方體容器.

新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積V2=321=6,顯然V2V1.

故第二種方案符合要求.

●思悟小結

1.函數知識可深可淺,復習時應掌握好分寸,如二次函數問題應高度重視,其他如分類討論、探索性問題屬熱點內容,應適當加強.

2.數形結合思想貫穿于函數研究的各個領域的全部過程中,掌握了這一點,將會體會到函數問題既千姿百態,又有章可循.

●教師下載中心

教學點睛

數形結合和數形轉化是解決本章問題的重要思想方法,應要求學生熟練掌握用函數的圖象及方程的曲線去處理函數、方程、不等式等問題.

拓展題例

【例1】設f(x)是定義在[-1,1]上的奇函數,且對任意a、b[-1,1],當a+b0時,都有0.

(1)若ab,比較f(a)與f(b)的大小;

(2)解不等式f(x-)

(3)記P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范圍.

解:設-1x1

0.

∵x1-x20,f(x1)+f(-x2)0.

f(x1)-f(-x2).

又f(x)是奇函數,f(-x2)=-f(x2).

f(x1)

f(x)是增函數.

(1)∵ab,f(a)f(b).

(2)由f(x-)

-.

不等式的解集為{x-}.

(3)由-11,得-1+c1+c,

P={x-1+c1+c}.

由-11,得-1+c21+c2,

Q={x-1+c21+c2}.

∵PQ=,

1+c-1+c2或-1+c1+c2,

解得c2或c-1.

【例2】已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在區間(0,2]上為減函數,求實數a的取值范圍.

(理)若g(x)=f(x)+,且g(x)在區間(0,2]上為減函數,求實數a的取值范圍.

解:(1)設f(x)圖象上任一點坐標為(x,y),點(x,y)關于點A(0,1)的對稱點(-x,2-y)在h(x)的圖象上.

2-y=-x++2.

y=x+,即f(x)=x+.

(2)(文)g(x)=(x+)x+ax,

即g(x)=x2+ax+1.

g(x)在(0,2]上遞減-2,

a-4.

(理)g(x)=x+.

∵g(x)=1-,g(x)在(0,2]上遞減,

1-0在x(0,2]時恒成立,

即ax2-1在x(0,2]時恒成立.

∵x(0,2]時,(x2-1)max=3,

a3.

【例3】在4月份(共30天),有一新款服裝投放某專賣店銷售,日銷售量(單位:件)f(n)關于時間n(130,nN__)的函數關系如下圖所示,其中函數f(n)圖象中的點位于斜率為5和-3的兩條直線上,兩直線的交點的橫坐標為m,且第m天日銷售量最大.

(1)求f(n)的表達式,及前m天的銷售總數;

(2)按規律,當該專賣店銷售總數超過400件時,社會上流行該服裝,而日銷售量連續下降并低于30件時,該服裝的流行會消失.試問該服裝在社會上流行的天數是否會超過10天?并說明理由.

解:(1)由圖形知,當1m且nN__時,f(n)=5n-3.

由f(m)=57,得m=12.

f(n)=

前12天的銷售總量為

5(1+2+3++12)-312=354件.

(2)第13天的銷售量為f(13)=-313+93=54件,而354+54400,

從第14天開始銷售總量超過400件,即開始流行.

設第n天的日銷售量開始低于30件(1221.

從第22天開始日銷售量低于30件,

即流行時間為14號至21號.

該服裝流行時間不超過10天.

高中數學教案免費模板篇11

教學準備

教學目標

掌握三角函數模型應用基本步驟:

(1)根據圖象建立解析式;

(2)根據解析式作出圖象;

(3)將實際問題抽象為與三角函數有關的簡單函數模型·

教學重難點

·利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型·

教學過程

一、練習講解:《習案》作業十三的第3、4題

3、一根為Lcm的線,一端固定,另一端懸掛一個小球,組成一個單擺,小球擺動時,離開平衡位置的位移s(單位:cm)與時間t(單位:s)的函數關系是

(1)求小球擺動的周期和頻率;(2)已知g=24500px/s2,要使小球擺動的周期恰好是1秒,線的長度l應當是多少?

(1)選用一個函數來近似描述這個港口的水深與時間的函數關系,并給出整點時的`水深的近似數值

(精確到0·001)·

(2)一條貨船的吃水深度(船底與水面的距離)為4米,安全條例規定至少要有1·5米的安全間隙(船底與洋底的距離),該船何時能進入港口?在港口能呆多久?

(3)若某船的吃水深度為4米,安全間隙為1·5米,該船在2:00開始卸貨,吃水深度以每小時0·3

米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?

本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發動螺旋槳。

練習:教材P65面3題

三、小結:1、三角函數模型應用基本步驟:

(1)根據圖象建立解析式;

(2)根據解析式作出圖象;

(3)將實際問題抽象為與三角函數有關的簡單函數模型·

2、利用收集到的數據作出散點圖,并根據散點圖進行函數擬合,從而得到函數模型·

四、作業《習案》作業十四及十五。

高中數學教案免費模板篇12

一、教學背景

《同角三角函數基本關系式》是人教版高中數學必修第四冊第一章第二節中的內容。本節課的內容在教材中有著承上啟下的作用,是在學習了任意角和弧度,并了解正弦、余弦、正切的基本概念之后進行教學的,同時同角三角函數的基本關系也為之后學習兩角和差公式奠定了基礎,起著銜接作用。運用同角三角函數關系,能夠更好的解決有關三角函數中求同角的其他三角函數值使解題更方便。學生在獲得三角函數定義的過程中已經充分認識到了借助單位圓、利用數形結合思想是研究三角函數的重要工具。本節課內容中所體現的數學思想與方法在整個中學數學學習中起重要作用。

高中學生已經具備了初等代數、初等幾何的相關知識,以及一定的抽象思維能力和邏輯推理能力。學生已經比較熟練的掌握了三角函數定義的兩種推導方法,從方法上看,學生已經對數形結合,猜想證明有所了解。從學習情感方面看,大部分學生愿意主動學習。從能力上看,學生主動學習能力、探究能力較弱。因而通過本節課的學習,學生能較好地培養學生的思維能力、推理能力、探究能力及創新意識。

根據新課標的要求,以及對教材和學情的分析,我確立了如下三維教學目標:

1、知識與技能目標:掌握三種基本關系式之間的聯系,熟練掌握已知一個角的三角函數值求其它三角函數值的方法。

2、過程與方法目標:牢固掌握同角三角函數的八個關系式,并能靈活運用于解題,提高學生分析、解決三角的思維能力,能靈活運用同角三角函數關系式的不同變形,提高三角恒等變形的能力。

3、情感與態度目標:通過用數學知識解決實際問題,讓學生體會數學與自然及人類社會的密切聯系,激發學生學習數學的興趣,增強學生學習數學的信心。

根據本節課的地位和作用以及新課程標準的具體要求,確定本節課的重點為:同角三角函數基本關系式sin2α+cos2α=1;tanα=sinα/cosα的運用。教學難點為:理三角函數值的符號的確定,同角三角函數的基本關系式的變式應用。

二、活動評價

在課堂教學過程中,我將對學生的學習情況進行及時而有效的評價。注重課程中的過程性評價,無論是在學生開始遇到問題、產生疑惑、給出猜想的時候,還是在逐步思考、交流、探索的教學過程中,我都會注重對于學生學習成果的評價。比如,在課堂討論較難理解的問題時,我將先請一位平時善于解決數學問題的學生來回答,并請其他同學對其進行評價,然后再請大家給出不同的意見,從而形成良性的互動,在學生們的思維碰撞之中,正確、完善的結論將自然形成。從始至終,我都將貫徹以學生為主體、教師為主導的教學思想。

三、課程設計

在新課改理念的指導下,針對本課的教學目標和重難點,我將采用故事法、探究法、自主學習和合作探究等教學法,先從一個情境問題出發,然后引導學生循序漸進地對一組問題進行思考和探究,逐步歸納總結出同角三角函數的基本關系式,并在期間采用學生自評、小組互評、教師評價等多種方式,培養學生積極主動參與學習的興趣。下面我將詳細闡述本節課的教學過程。

1、趣味導入:上課伊始,我會通過多媒體講述“蝴蝶效應”的故事,引導學生理解事物是普遍聯系的觀點,如果說南美亞馬遜雨林中的一只蝴蝶與北美德克薩斯的龍卷風這兩種看來是毫不相干的事物,都會有這樣的聯系,那么同一個角的三角函數應當也會有著非常密切的關系。通過這樣的故事導入,能夠激發學生的學習興趣和探索熱情,活躍其思維,為本節課的學習埋下伏筆。

2、溫故知新:在這一環節,我將引導學生回顧三種常見三角函數的概念,單位圓中的任意角概念,以及初中學段學習的同角三角函數的兩個基本關系式,進而引導學生思考如何證明任意角的三角函數也具備相應的基本關系。在這個過程中,我會請不同層次的學生起來回答,并請其他學生進行補充,引導全體學生進行復習和思考。學生依據以往證明三角函數平方關系的思路,能夠較快想到利用單位圓中的勾股定理關系,證明得到sin2α+cos2α=1,同樣的,根據任意角的正切函數定義,得到tanα=sinα/cosα。

接下來,我將引導學生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)學生可能會躍躍欲試,先用平方關系式計算余弦值,但卻會遇到開方時判別正負號的問題,于是才會根據α是第二象限角這個條件進行判斷。這時我將會引導學生學會先判斷任意角的區間及其三角函數的符號,再利用公式進行計算的解題思路。這樣學生就能夠更輕松地探索出例2的解答方法。例2當中,由于根據余弦值的范圍,確定α可能在第二或第三象限出現,于是學生就能夠想到采用分類思想進行解答。通過學生的自主思考和我的適當引導,可以自然而然地突破本課的難點。

3、歸納總結

經過前面的師生共同參與的探究討論,就逐步歸納總結出了同角三角函數的基本關系式。在這個過程中,我會根據不同學生的特點,分別請他們發言,并請其他同學進行補充,在師生互動中,共同推導出結論,這種方法既可以有效地突出本課的重點,又自然而然地突破了本課的難點。

4、實踐應用

為鞏固所學知識,我會從教材中分梯度選取習題,給學生進行課堂練習,并請2-3位同學在黑板上完成,在練習后我會進行及時講解。

在布置作業時,為了使所有學生都能夠根據自身情況鞏固所學知識,我將布置一類“必做題”和一類“探究題”,其中“探究題”是提供給那些學有余力的學生在課余時間完成的,幫助其拓展思維,培養興趣。

5、課程總結

本節課的內容是極富探索性,我通過提問式復習和情境問題導入,學生產生好奇心和探索熱情。接著,以學生為主體,我來引導學生根據已學的知識和方法,循序漸進地進行探究,逐步歸納總結出同角三角函數的基本關系式,從而自然地完成本課的教學過程,同時幫助學生體會數形結合的思想方法。

在板書設計方面,我會用簡潔、工整的方式給出相關探究問題,同時以多媒體輔助展示平移動畫,便于學生進行觀察和探究。

四、教學體會

本節課我主要采用的是“引導發現、合作探究”的教學方法,以學生熟知的足球運動為情境引入新課,以問題為載體,以師生合作探究為主線,以思維訓練為核心,以能力發展為目標,充分調動一切可利用的因素,激發學生的參與意識,使學生經歷知識的形成、發展和應用的過程,在和諧、愉悅的氛圍中獲取知識,掌握方法。整個教學中既突出了學生的主體地位,又發揮了教師的指導作用。在課堂隨機提問以及討論結果的過程中,我采用多層次多角度的評價方式,不僅能促使學生思考問題,掌握學習知識的技巧和方法,還能調動學生積極性,激發課堂氣氛。

高中數學教案免費模板篇13

說課內容:普通高中課程標準實驗教科書(人教A版)《數學必修4》第二章第四節“平面向量的數量積”的第一課時---平面向量數量積的物理背景及其含義。

下面,我從背景分析、教學目標設計、課堂結構設計、教學過程設計、教學媒體設計及教學評價設計六個方面對本節課的思考進行說明。

一、背景分析

1、學習任務分析

平面向量的數量積是繼向量的線性運算之后的又一重要運算,也是高中數學的一個重要概念,在數學、物理等學科中應用十分廣泛。本節內容教材共安排兩課時,其中第一課時主要研究數量積的概念,第二課時主要研究數量積的坐標運算,本節課是第一課時。

本節課的主要學習任務是通過物理中“功”的事例抽象出平面向量數量積的概念,在此基礎上探究數量積的性質與運算律,使學生體會類比的思想方法,進一步培養學生的抽象概括和推理論證的能力。其中數量積的概念既是對物理背景的抽象,又是研究性質和運算律的基礎。同時也因為在這個概念中,既有長度又有角度,既有形又有數,是代數、幾何與三角的最佳結合點,不僅應用廣泛,而且很好的體現了數形結合的數學思想,使得數量積的概念成為本節課的核心概念,自然也是本節課教學的重點。

2、學生情況分析

學生在學習本節內容之前,已熟知了實數的運算體系,掌握了向量的概念及其線性運算,具備了功等物理知識,并且初步體會了研究向量運算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發,在與實數運算類比的基礎上研究性質和運算律。這為學生學習數量積做了很好的鋪墊,使學生倍感親切。但也正是這些干擾了學生對數量積概念的理解,一方面,相對于線性運算而言,數量積的結果發生了本質的變化,兩個有形有數的向量經過數量積運算后,形卻消失了,學生對這一點是很難接受的;另一方面,由于受實數乘法運算的影響,也會造成學生對數量積理解上的偏差,特別是對性質和運算律的理解。因而本節課教學的難點數量積的概念。

二、教學目標設計

《普通高中數學課程標準(實驗)》對本節課的要求有以下三條:

(1)通過物理中“功”等事例,理解平面向量數量積的含義及其物理意義。

(2)體會平面向量的數量積與向量投影的關系。

(3)能用運數量積表示兩個向量的夾角,會用數量積判斷兩個平面向量的垂直關系。

從以上的背景分析可以看出,數量積的概念既是本節課的重點,也是難點。為了突破這一難點,首先無論是在概念的引入還是應用過程中,物理中“功”的實例都發揮了重要作用。其次,作為數量積概念延伸的性質和運算律,不僅能夠使學生更加全面深刻地理解概念,同時也是進行相關計算和判斷的理論依據。最后,無論是數量積的性質還是運算律,都希望學生在類比的基礎上,通過主動探究來發現,因而對培養學生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

綜上所述,結合“課標”要求和學生實際,我將本節課的教學目標定為:

1、了解平面向量數量積的物理背景,理解數量積的含義及其物理意義;

2、體會平面向量的數量積與向量投影的關系,掌握數量積的性質和運算律,

并能運用性質和運算律進行相關的運算和判斷;

3、體會類比的數學思想和方法,進一步培養學生抽象概括、推理論證的能力。

三、課堂結構設計

本節課從總體上講是一節概念教學,依據數學課程改革應關注知識的發生和發展過程的理念,結合本節課的知識的邏輯關系,我按照以下順序安排本節課的教學:

即先從數學和物理兩個角度創設問題情景,通過歸納和抽象得到數量積的概念,在此基礎上研究數量積的性質和運算律,使學生進一步加深對概念的理解,然后通過例題和練習使學生鞏固概念,加深印象,最后通過課堂小結提高學生認識,形成知識體系。

四、教學媒體設計

和“大綱”教材相比,“課標”教材在本節課的內容安排上,雖然將向量的夾角在“平面向量基本定理”一節提前做了介紹,但卻將原來分兩節課完成的內容合并成一節,相比較而言本節課的教學任務加重了許多。為了保證教學任務的完成,順利實現本節課的教學目標,考慮到本節課的實際特點,在教學媒體的使用上,我的設想主要有以下兩點:

1、制作高效實用的電腦多媒體課件,主要作用是改變相關內容的呈現方式,以此來節約課時,增加課堂容量。

2、設計科學合理的板書(見下),一方面使學生加深對主要知識的印象,另一方面使學生清楚本節內容知識間的邏輯關系,形成知識網絡。

平面向量數量積的物理背景及其含義

一、數量積的概念二、數量積的性質四、應用與提高

1、概念:例1:

2、概念強調(1)記法例2:

(2)“規定”三、數量積的運算律例3:

3、幾何意義:

4、物理意義:

五、教學過程設計

課標指出:數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下六個活動:

活動一:創設問題情景,激發學習興趣

正如教材主編寄語所言,數學是自然的,而不是強加于人的。平面向量的數量積這一重要概念,和向量的線性運算一樣,也有其數學背景和物理背景,為了體現這一點,我設計以下幾個問題:

問題1:我們已經研究了向量的哪些運算?這些運算的結果是什么?

問題2:我們是怎么引入向量的加法運算的?我們又是按照怎樣的順序研究了這種運算的?

期望學生回答:物理模型→概念→性質→運算律→應用

問題3:如圖所示,一物體在力F的作用下產生位移S,

(1)力F所做的功W=。

(2)請同學們分析這個公式的特點:

W(功)是量,

F(力)是量,

S(位移)是量,

α是。

問題1的設計意圖在于使學生了解數量積的數學背景,讓學生明白本節課所要研究的數量積與向量的加法、減法及數乘一樣,都是向量的運算,但與向量的線性運算相比,數量積運算又有其特殊性,那就是其結果發生了本質的變化。

問題2的設計意圖在于使學生在與向量加法類比的基礎上明了本節課的研究方法和順序,為教學活動指明方向。

問題3的設計意圖在于使學生了解數量積的物理背景,讓學生知道,我們研究數量積絕不僅僅是為了數學自身的完善,而是有其客觀背景和現實意義的,從而產生了進一步研究這種新運算的愿望。同時,也為抽象數量積的概念做好鋪墊。

活動二:探究數量積的概念

1、概念的抽象

在分析“功”的計算公式的基礎上提出問題4

問題4:你能用文字語言來表述功的計算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結果又該如何表述?

學生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個向量的大小及其夾角余弦的乘積。這樣,學生事實上已經得到數量積概念的文字表述了,在此基礎上,我進一步明晰數量積的概念。

2、概念的明晰

已知兩個非零向量

,它們的夾角為

,我們把數量︱

︱·︱

︱cos

叫做

的數量積(或內積),記作:

·

,即:

·

=︱

︱·︱

︱cos

在強調記法和“規定”后,為了讓學生進一步認識這一概念,提出問題5

問題5:向量的數量積運算與線性運算的結果有什么不同?影響數量積大小的因素有哪些?并完成下表:

的范圍0°≤

<90°

=90°0°<

≤180°

·

的符號

通過此環節不僅使學生認識到數量積的結果與線性運算的結果有著本質的不同,而且認識到向量的夾角是決定數量積結果的重要因素,為下面更好地理解數量積的性質和運算律做好鋪墊。

3、探究數量積的幾何意義

這個問題教材是這樣安排的:在給出向量數量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運算律的第三條才直接以結論的形式呈現給學生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學生自己歸納得出,所以做了調整。為此,我首先給出給出向量投影的概念,然后提出問題5。

如圖,我們把│

│cos

(│

│cos

)叫做向量

方向上(

方向上)的投影,記做:OB1=│

│cos

問題6:數量積的幾何意義是什么?

這樣做不僅讓學生從“形”的角度重新認識數量積的概念,從中體會數量積與向量投影的關系,同時也更符合知識的連貫性,而且也節約了課時。

4、研究數量積的物理意義

數量積的概念是由物理中功的概念引出的,學習了數量積的概念后,學生就會明白功的數學本質就是力與位移的數量積。為此,我設計以下問題一方面使學生嘗試計算數量積,另一方面使學生理解數量積的物理意義,同時也為數量積的性質埋下伏筆。

問題7:

(1)請同學們用一句話來概括功的數學本質:功是力與位移的數量積。

(2)嘗試練習:一物體質量是10千克,分別做以下運動:

①、在水平面上位移為10米;

②、豎直下降10米;

③、豎直向上提升10米;

④、沿傾角為30度的斜面向上運動10米;

分別求重力做的功。

活動三:探究數量積的運算性質

1、性質的發現

教材中關于數量積的三條性質是以探究的形式出現的,為了很好地完成這一探究活動,在完成上述練習后,我不失時機地提出問題8:

(1)將嘗試練習中的①②③的結論推廣到一般向量,你能得到哪些結論?

(2)比較︱

·

︱與︱

︱×︱

︱的大小,你有什么結論?

在學生討論交流的基礎上,教師進一步明晰數量積的性質,然后再由學生利用數量積的定義給予證明,完成探究活動。

2、明晰數量積的性質

3、性質的證明

這樣設計體現了教師只是教學活動的引領者,而學生才是學習活動的主體,讓學生成為學習的研究者,不斷地體驗到成功的喜悅,激發學生參與學習活動的熱情,不僅使學生獲得了知識,更培養了學生由特殊到一般的思維品質。

活動四:探究數量積的運算律

1、運算律的發現

關于運算律,教材仍然是以探究的形式出現,為此,首先提出問題9

問題9:我們學過了實數乘法的哪些運算律?這些運算律對向量是否也適用?

通過此問題主要是想使學生在類比的基礎上,猜測提出數量積的運算律。

學生可能會提出以下猜測:①

·

=

·

②(

·

)

=

(

·

)③(

+

=

·

+

·

猜測①的正確性是顯而易見的。

關于猜測②的正確性,我提示學生思考下面的問題:

猜測②的左右兩邊的結果各是什么?它們一定相等嗎?

學生通過討論不難發現,猜測②是不正確的。

這時教師在肯定猜測③的基礎上明晰數量積的運算律:

2、明晰數量積的運算律

3、證明運算律

學生獨立證明運算律(2)

我把運算運算律(2)的證明交給學生完成,在證明時,學生可能只考慮到λ>0的情況,為了幫助學生完善證明,提出以下問題:

當λ<0時,向量

與λ

,

與λ

的方向的關系如何?此時,向量λ

與λ

的夾角與向量

的夾角相等嗎?

師生共同證明運算律(3)

運算律(3)的證明對學生來說是比較困難的,為了節約課時,這個證明由師生共同完成,我想這也是教材的本意。

在這個環節中,我仍然是首先為學生創設情景,讓學生在類比的基礎上進行猜想歸納,然后教師明晰結論,最后再完成證明,這樣做不僅培養了學生推理論證的能力,同時也增強了學生類比創新的意識,將知識的獲得和能力的培養有機的結合在一起。

活動五:應用與提高

例1、(師生共同完成)已知︱

︱=6,︱

︱=4,

的夾角為60°,求

(

+2

)·(

-3

),并思考此運算過程類似于哪種運算?

例2、(學生獨立完成)對任意向量

,b是否有以下結論:

(1)(

+

)2=

2+2

·

+

2

(2)(

+

)·(

-

)=

2—

2

例3、(師生共同完成)已知︱

︱=3,︱

︱=4,且

不共線,k為何值時,向量

+k

-k

互相垂直?并思考:通過本題你有什么收獲?

本節教材共安排了四道例題,我根據學生實際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數量積的性質和運算律的綜合應用,教學時,我重點從對運算原理的分析和運算過程的規范書寫兩個方面加強示范。完成計算后,進一步提出問題:此運算過程類似于哪種運算?目的是想讓學生在類比多項式乘法的基礎上自己猜測提出例2給出的.兩個公式,再由學生獨立完成證明,一方面這并不困難,另一方面培養了學生通過類比這一思維模式達到創新的目的。例3的主要作用是,在繼續鞏固性質和運算律的同時,教給學生如何利用數量積來判斷兩個向量的垂直,是平面向量數量積的基本應用之一,教學時重點給學生分析數與形的轉化原理。

為了使學生更好的理解數量積的含義,熟練掌握性質及運算律,并能夠應用數量積解決有關問題,再安排如下練習:

1、下列兩個命題正確嗎?為什么?

①、若

≠0,則對任一非零向量

,有

·

≠0.

②、若

≠0,

·

=

·

,則

=

.

2、已知△ABC中,

=

,

=

,當

·

<0或

·

=0時,試判斷△ABC的形狀。

安排練習1的主要目的是,使學生在與實數乘法比較的基礎上全面認識數量積這一重要運算,

通過練習2使學生學會用數量積表示兩個向量的夾角,進一步感受數量積的應用價值。

活動六:小結提升與作業布置

1、本節課我們學習的主要內容是什么?

2、平面向量數量積的兩個基本應用是什么?

3、我們是按照怎樣的思維模式進行概念的歸納和性質的探究?在運算律的探究過程中,滲透了哪些數學思想?

4、類比向量的線性運算,我們還應該怎樣研究數量積?

通過上述問題,使學生不僅對本節課的知識、技能及方法有了更加全面深刻的認識,同時也為下

一節做好鋪墊,繼續激發學生的求知欲。

布置作業:

1、課本P121習題2.4A組1、2、3。

2、拓展與提高:

已知

都是非零向量,且

+3

與7

-5

垂直,

-4

與7

-2

垂直求

的夾角。

在這個環節中,我首先考慮檢測全體學生是否都達到了“課標”的基本要求,因此安排了一組教材中的習題,目的是讓所有的學生繼續加深對數量積概念的理解和應用,為后續學習打好基礎。其次,為了能讓不同的學生在數學領域得到不同的發展,我又安排了一道有一定難度的問題供學有余力的同學選做。

六、教學評價設計

評價方式的轉變是新課程改革的一大亮點,課標指出:相對于結果,過程更能反映每個學生的發展變化,體現出學生成長的歷程。因此,數學學習的評價既要重視結果,也要重視過程。結合“課標”對數學學習的評價建議,對本節課的教學我主要通過以下幾種方式進行:

1、通過與學生的問答交流,發現其思維過程,在鼓勵的基礎上,糾正偏差,并對其進行定

性的評價。

2、在學生討論、交流、協作時,教師通過觀察,就個別或整體參與活動的態度和表現做出評價,以此來調動學生參與活動的積極性。

3、通過練習來檢驗學生學習的效果,并在講評中,肯定優點,指出不足。

4、通過作業,反饋信息,再次對本節課做出評價,以便查漏補缺。

高中數學教案免費模板篇14

本文題目:高三數學復習教案:古典概型復習教案

【高考要求】古典概型(B);互斥事件及其發生的概率(A)

【學習目標】:1、了解概率的頻率定義,知道隨機事件的發生是隨機性與規律性的統一;

2、理解古典概型的特點,會解較簡單的古典概型問題;

3、了解互斥事件與對立事件的概率公式,并能運用于簡單的概率計算.

【知識復習與自學質疑】

1、古典概型是一種理想化的概率模型,假設試驗的結果數具有性和性.解古典概型問題關鍵是判斷和計數,要掌握簡單的記數方法(主要是列舉法).借助于互斥、對立關系將事件分解或轉化是很重要的方法.

2、(A)在10件同類產品中,其中8件為正品,2件為次品。從中任意抽出3件,則下列4個事件:①3件都是正品;②至少有一件是正品;③3件都是次品;④至少有一件是次品.是必然事件的是.

3、(A)從5個紅球,1個黃球中隨機取出2個,所取出的兩個球顏色不同的概率是。

4、(A)同時拋兩個各面上分別標有1、2、3、4、5、6均勻的正方體玩具一次,向上的兩個數字之和為3的概率是.

5、(A)某人射擊5槍,命中3槍,三槍中恰好有2槍連中的概率是.

6、(B)若實數,則曲線表示焦點在y軸上的雙曲線的概率是.

【例題精講】

1、(A)甲、乙兩人參加知識競答,共有10道不同的題目,其中選擇題6道,判斷題4道,甲、乙兩人依次各抽一題.(1)甲抽到選擇題、乙抽到判斷題的概率是多少?

(2)甲、乙兩人中至少有一人抽到選擇題的概率是多少?

2、(B)黃種人群中各種血型的人所占的比例如下表所示:

血型ABABO

該血型的人所占的比(%)2829835

已知同種血型的人可以輸血,O型血可以輸給任一種血型的人,任何人的血都可以輸給AB型血的人,其他不同血型的人不能互相輸血.小明是B型血,若小明因病需要輸血,問:

(1)任找一個人,其血可以輸給小明的概率是多少?

(2)任找一個人,其血不能輸給小明的概率是多少?

3、(B)將兩粒骰子投擲兩次,求:(1)向上的點數之和是8的概率;(2)向上的點數之和不小于8的概率;(3)向上的點數之和不超過10的概率.

4、(B)將一個各面上均涂有顏色的正方體鋸成(n個同樣大小的正方體,從這些小正方體中任取一個,求下列事件的概率:(1)三面涂有顏色;(2)恰有兩面涂有顏色;

(3)恰有一面涂有顏色;(4)至少有一面涂有顏色.

【矯正反饋】

1、(A)一個三位數的密碼鎖,每位上的數字都可在0到10這十個數字中任選,某人忘記了密碼最后一個號碼,開鎖時在對好前兩位號碼后,隨意撥動最后一個數字恰好能開鎖的概率是.

2、(A)第1、2、5、7路公共汽車都要??康囊粋€車站,有一位乘客等候著1路或5路汽車,假定各路汽車首先到站的可能性相等,那么首先到站的正好是這位乘客所要乘的的車的概率是.

3、(A)某射擊運動員在打靶中,連續射擊3次,事件至少有兩次中靶的對立事件是.

4、(B)某產品分甲、乙、丙三級,其中乙、丙兩級均屬次品,在正常生產情況下出現乙級品和丙級品的概率分別為3%和1%,求抽驗一只是正品(甲級)的概率.

5、(B)袋中裝有4只白球和2只黑球,從中先后摸出2只求(不放回).求:(1)第一次摸出黑球的概率;(2)第二次摸出黑球的概率;(3)第一次及第二次都摸出黑球的概率.

【遷移應用】

1、(A)將一粒骰子連續拋擲三次,它落地時向上的點數依次成等差數列的概率是.

2、(A)從魚塘中打一網魚,共M條,做上標記后放回池塘中,過了幾天,又打上來一網魚,共N條,其中K條有標記,估計池塘中魚的條數為.

3、(A)從分別寫有A,B,C,D,E的5張卡片中,任取2張,這兩張上的字母恰好按字母順序相鄰的概率是.

4、(B)電子鐘一天顯示的時間是從00:00到23:59的每一時刻都由四個數字組成,則一天中任一時刻的四個數字之和為23的概率是.

5、(B)將甲、乙兩粒骰子先后各拋一次,a,b分別表示拋擲甲、乙兩粒骰子所出現的點數.

(1)若點P(a,b)落在不等式組表示的平面區域記為A,求事件A的概率;

(2)求P(a,b)落在直線x+y=m(m為常數)上,且使此事件的概率最大,求m的值.

高中數學教案免費模板篇15

教學目標

掌握等差數列與等比數列的概念,通項公式與前n項和公式,等差中項與等比中項的概念,并能運用這些知識解決一些基本問題。

教學過程

等比數列性質請同學們類比得出。

【方法規律】

1、通項公式與前n項和公式聯系著五個基本量,“知三求二”是一類最基本的運算題。方程觀點是解決這類問題的基本數學思想和方法。

2、判斷一個數列是等差數列或等比數列,常用的方法使用定義。特別地,在判斷三個實數

a,b,c成等差(比)數列時,常用(注:若為等比數列,則a,b,c均不為0)

3、在求等差數列前n項和的(小)值時,常用函數的思想和方法加以解決。

【示范舉例】

例1:(1)設等差數列的前n項和為30,前2n項和為100,則前3n項和為。

(2)一個等比數列的前三項之和為26,前六項之和為728,則a1=,q=。

例2:四數中前三個數成等比數列,后三個數成等差數列,首末兩項之和為21,中間兩項之和為18,求此四個數。

例3:項數為奇數的等差數列,奇數項之和為44,偶數項之和為33,求該數列的中間項。

高中數學教案免費模板篇16

人教版高中數學必修5教案

(一)課標要求

本章的中心內容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應用上。通過本章學習,學生應當達到以下學習目標:

(1)通過對任意三角形邊長和角度關系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。

(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的生活實際問題。

(二)編寫意圖與特色

1.數學思想方法的重要性

數學思想方法的教學是中學數學教學中的重要組成部分,有利于學生加深數學知識的理解和掌握。

本章重視與內容密切相關的數學思想方法的教學,并且在提出問題、思考解決問題的策略等方面對學生進行具體示范、引導。本章的兩個主要數學結論是正弦定理和余弦定理,它們都是關于三角形的邊角關系的結論。在初中,學生已經學習了相關邊角關系的定性的知識,就是“在任意三角形中有大邊對大角,小邊對小角”,“如果已知兩個三角形的兩條對應邊及其所夾的角相等,那么這兩個三角形全”等。

教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題:“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的問題?!痹O置這些問題,都是為了加強數學思想方法的教學。

2.注意加強前后知識的聯系

加強與前后各章教學內容的聯系,注意復習和應用已學內容,并為后續章節教學內容做好準備,能使整套教科書成為一個有機整體,提高教學效益,并有利于學生對于數學知識的學習和鞏固。

本章內容處理三角形中的邊角關系,與初中學習的三角形的邊與角的基本關系,已知三角形的邊和角相等判定三角形全等的知識有著密切聯系。教科書在引入正弦定理內容時,讓學生從已有的幾何知識出發,提出探究性問題“在任意三角形中有大邊對大角,小邊對小角的邊角關系.我們是否能得到這個邊、角的關系準確量化的表示呢?”,在引入余弦定理內容時,提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據三角形全等的判定方法,這個三角形是大小、形狀完全確定的三角形.我們仍然從量化的角度來研究這個問題,也就是研究如何從已知的兩邊和它們的夾角計算出三角形的另一邊和兩個角的`問題?!边@樣,從聯系的觀點,從新的角度看過去的問題,使學生對于過去的知識有了新的認識,同時使新知識建立在已有知識的堅實基礎上,形成良好的知識結構。

《課程標準》和教科書把“解三角形”這部分內容安排在數學五的第一部分內容,

位置相對靠后,在此內容之前學生已經學習了三角函數、平面向量、直線和圓的方程等與本章知識聯系密切的內容,這使這部分內容的處理有了比較多的工具,某些內容可以處理得更加簡潔。比如對于余弦定理的證明,常用的方法是借助于三角的方法,需要對于三角形進行討論,方法不夠簡潔,教科書則用了向量的方法,發揮了向量方法在解決問題中的威力。

在證明了余弦定理及其推論以后,教科書從余弦定理與勾股定理的比較中,提出了一個思考問題“勾股定理指出了直角三角形中三邊平方之間的關系,余弦定理則指出了一般三角形中三邊平方之間的關系,如何看這兩個定理之間的關系?”,并進而指出,“從余弦定理以及余弦函數的性質可知,如果一個三角形兩邊的平方和等于第三邊的平方,那么第三邊所對的角是直角;如果小于第三邊的平方,那么第三邊所對的角是鈍角;如果大于第三邊的平方,那么第三邊所對的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

3.重視加強意識和數學實踐能力

學數學的最終目的是應用數學,而如今比較突出的兩個問題是,學生應用數學的意識不強,創造能力較弱。學生往往不能把實際問題抽象成數學問題,不能把所學的數學知識應用到實際問題中去,對所學數學知識的實際背景了解不多,雖然學生機械地模仿一些常見數學問題解法的能力較強,但當面臨一種新的問題時卻辦法不多,對于諸如觀察、分析、歸納、類比、抽象、概括、猜想等發現問題、解決問題的科學思維方法了解不夠。針對這些實際情況,本章重視從實際問題出發,引入數學課題,最后把數學知識應用于實際問題。

高中數學教案免費模板篇17

教學目標

(1)使學生正確理解組合的意義,正確區分排列、組合問題;

(2)使學生掌握組合數的計算公式;

(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;

教學重點難點

重點是組合的定義、組合數及組合數的公式;

難點是解組合的應用題.

教學過程設計

(-)導入新課

(教師活動)提出下列思考問題,打出字幕.

[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?

(學生活動)討論并回答.

答案提示:(1)排列;(2)組合.

[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數,屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關系,要求出不同的組數,屬于組合問題.這節課著重研究組合問題.

設計意圖:組合與排列所研究的問題幾乎是平行的.上面設計的問題目的是從排列知識中發現并提出新的問題.

(二)新課講授

[提出問題 創設情境]

(教師活動)指導學生帶著問題閱讀課文.

[字幕]1.排列的定義是什么?

2.舉例說明一個組合是什么?

3.一個組合與一個排列有何區別?

(學生活動)閱讀回答.

(教師活動)對照課文,逐一評析.

設計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環境.

【歸納概括 建立新知】

(教師活動)承接上述問題的回答,展示下面知識.

[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.

組合數:從 個不同元素中取出 個元素的所有組合的個數,稱之,用符號 表示,如從6個元素中取出2個元素的組合數為 .

[評述]區分一個排列與一個組合的關鍵是:該問題是否與順序有關,當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.

(學生活動)傾聽、思索、記錄.

(教師活動)提出思考問題.

[投影] 與 的關系如何?

(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數 ,可分為以下兩步:

第1步,先求出從這 個不同元素中取出 個元素的組合數為 ;

第2步,求每一個組合中 個元素的全排列數為 .根據分步計數原理,得到

[字幕]公式1:

公式2:

(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.

設計意圖:本著以認識概念為起點,以問題為主線,以培養能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.

【例題示范 探求方法】

(教師活動)打出字幕,給出示范,指導訓練.

[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.

例2 計算:(1) ;(2) .

(學生活動)板演、示范.

(教師活動)講評并指出用兩種方法計算例2的第2小題.

[字幕]例3 已知 ,求 的所有值.

(學生活動)思考分析.

解 首先,根據組合的定義,有

其次,由原不等式轉化為

解得 ②

綜合①、②,得 ,即

[點評]這是組合數公式的應用,關鍵是公式的選擇.

設計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應用,從而培養學生的綜合分析能力.

【反饋練習 學會應用】

(教師活動)給出練習,學生解答,教師點評.

[課堂練習]課本P99練習第2,5,6題.

[補充練習]

[字幕]1.計算:

2.已知 ,求 .

(學生活動)板演、解答.

設計意圖:課堂教學體現以學生為本,讓全體學生參與訓練,深刻揭示排列數公式的結構、特征及應用.

(三)小結

(師生活動)共同小結.

本節主要內容有

1.組合概念.

2.組合數計算的兩個公式.

(四)布置作業

1.課本作業:習題10 3第1(1)、(4),3題.

2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?

3.研究性題:

在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?

(五)課后點評

在學習了排列知識的基礎上,本節課引進了組合概念,并推導出組合數公式,同時調控進行訓練,從而培養學生分析問題、解決問題的能力.

高中數學教案免費模板篇18

一、說教材:

1.地位及作用:

“橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書的重點內容之一,也是歷年高考、會考的必考內容,是在學完求曲線方程的基礎上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今后的學習打好基礎,因此本節內容具有承前啟后的作用。

2.教學目標:

根據《教學大綱》,《考試說明》的要求,并根據教材的具體內容和學生的實際情況,確定本節課的教學目標:

(1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。

(2)能力目標:

(a)培養學生靈活應用知識的能力。

(b)培養學生全面分析問題和解決問題的能力。

(c)培養學生快速準確的運算能力。

(3)德育目標:培養學生數形結合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。

3.重點、難點和關鍵點:

因為橢圓的定義和標準方程是解決與橢圓有關問題的重要依據,也是研究雙曲線和拋物線的基礎,因此,它是本節教材的重點;由于學生推理歸納能力較低,在推導橢圓的標準方程時涉及到根式的兩次平方,并且運算也較繁,因此它是本節課的難點;坐標系建立的好壞直接影響標準方程的推導和化簡,因此建立一個適當的直角坐標系是本節的關鍵。

二、說教材處理

為了完成本節課的教學目標,突出重點、分散難點、根據教材的內容和學生的實際情況,對教材做以下的處理:

1.學生狀況分析及對策:

2.教材內容的組織和安排:

本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:

(1)復習提問(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)布置作業

三、說教法和學法

1.為了充分調動學生學習的積極性,是學生變被動學習為主動而愉快的學習,引導學生自己動手,讓學生的思維活動在教師的引導下層層展開。請學生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課采用“引導教學法”。

2.利用電腦所畫圖形的動態演示總結規律。同時利用電腦的動態演示激發學生的學習興趣。

四、教學過程

教學環節

3.設a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。

例1屬基礎,主要反饋學生掌握基本知識的程度。

例2可強化基本技能訓練和基本知識的靈活運用。

小結

為使學生對本節內容有一個完整深刻的認識,教師引導學生從以下幾個方面進行小結。

1.橢圓的定義和標準方程及其應用。

2.橢圓標準方程中a,b,c諸關系。

3.求橢圓方程常用方法和基本思路。

通過小結形成知識體系,加深對本節知識的理解培養學生的歸納總結能力,增強學生學好圓錐曲線的信心。

布置作業

(1)77頁——78頁1,2,3,79頁11

(2)預習下節內容

鞏固本節所學概念,強化基本技能訓練,培養學生良好的學習習慣和品質,發現和彌補教學中的遺漏和不足。

高中數學教案免費模板篇19

教學目標:

1.了解復數的幾何意義,會用復平面內的點和向量來表示復數;了解復數代數形式的加、減運算的幾何意義.

2.通過建立復平面上的點與復數的一一對應關系,自主探索復數加減法的幾何意義.

教學重點:

復數的幾何意義,復數加減法的幾何意義.

教學難點:

復數加減法的幾何意義.

教學過程:

一、問題情境

我們知道,實數與數軸上的點是一一對應的,實數可以用數軸上的點來表示.那么,復數是否也能用點來表示呢?

二、學生活動

問題1任何一個復數a+bi都可以由一個有序實數對(a,b)惟一確定,而有序實數對(a,b)與平面直角坐標系中的點是一一對應的,那么我們怎樣用平面上的點來表示復數呢?

問題2平面直角坐標系中的點A與以原點O為起點,A為終點的向量是一一對應的,那么復數能用平面向量表示嗎?

問題3任何一個實數都有絕對值,它表示數軸上與這個實數對應的點到原點的距離.任何一個向量都有模,它表示向量的長度,那么相應的,我們可以給出復數的模(絕對值)的概念嗎?它又有什么幾何意義呢?

問題4復數可以用復平面的向量來表示,那么,復數的加減法有什么幾何意義呢?它能像向量加減法一樣,用作圖的方法得到嗎?兩個復數差的模有什么幾何意義?

三、建構數學

1.復數的幾何意義:在平面直角坐標系中,以復數a+bi的實部a為橫坐標,虛部b為縱坐標就確定了點Z(a,b),我們可以用點Z(a,b)來表示復數a+bi,這就是復數的幾何意義.

2.復平面:建立了直角坐標系來表示復數的平面.其中x軸為實軸,y軸為虛軸.實軸上的點都表示實數,除原點外,虛軸上的點都表示純虛數.

3.因為復平面上的點Z(a,b)與以原點O為起點、Z為終點的向量一一對應,所以我們也可以用向量來表示復數z=a+bi,這也是復數的幾何意義.

4.復數加減法的幾何意義可由向量加減法的平行四邊形法則得到,兩個復數差的模就是復平面內與這兩個復數對應的兩點間的距離.同時,復數加減法的法則與平面向量加減法的坐標形式也是完全一致的。

高中數學教案免費模板篇20

教學目標

1.明確等差數列的定義.

2.掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題

3.培養學生觀察、歸納能力.

教學重點

1.等差數列的概念;

2.等差數列的通項公式

教學難點

等差數列“等差”特點的理解、把握和應用

教具準備

投影片1張

教學過程

(I)復習回顧

師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)

(Ⅱ)講授新課

師:看這些數列有什么共同的特點?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:積極思考,找上述數列共同特點。

對于數列①(1≤n≤6);(2≤n≤6)

對于數列②-2n(n≥1)(n≥2)

對于數列③(n≥1)(n≥2)

共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。

師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。

一、定義:

等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。

如:上述3個數列都是等差數列,它們的公差依次是1,-2,。

二、等差數列的通項公式

師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:

若將這n-1個等式相加,則可得:

即:即:即:……

由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。

如數列①(1≤n≤6)

數列②:(n≥1)

數列③:(n≥1)

由上述關系還可得:即:則:=如:三、例題講解

例1:(1)求等差數列8,5,2…的第20項

(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?

解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。

(Ⅲ)課堂練習

生:(口答)課本P118練習3

(書面練習)課本P117練習1

師:組織學生自評練習(同桌討論)

(Ⅳ)課時小結

師:本節主要內容為:①等差數列定義。

即(n≥2)

②等差數列通項公式(n≥1)

推導出公式:

(V)課后作業

一、課本P118習題3.21,2

二、1.預習內容:課本P116例2P117例4

2.預習提綱:

①如何應用等差數列的定義及通項公式解決一些相關問題?

②等差數列有哪些性質?

100655 主站蜘蛛池模板: 镇原县| 锡林郭勒盟| 鹤岗市| 都兰县| 江达县| 台前县| 高陵县| 蚌埠市| 宜良县| 河间市| 清新县| 黎城县| 延吉市| 阳东县| 沅陵县| 新源县| 芷江| 治多县| 巴中市| 江口县| 宁国市| 太仆寺旗| 洪泽县| 怀来县| 靖边县| 河南省| 顺义区| 富平县| 海林市| 囊谦县| 江西省| 鄂尔多斯市| 彰化市| 南陵县| 比如县| 大埔区| 唐海县| 泌阳县| 汕头市| 深水埗区| 太仆寺旗|