高中數(shù)學(xué)簡潔教案模板范文
教案可以幫助教師根據(jù)學(xué)生的實際情況,面向大多數(shù)學(xué)生,并調(diào)動學(xué)生學(xué)習(xí)的積極性。這里提供優(yōu)秀的高中數(shù)學(xué)簡潔教案模板范文,方便大家寫高中數(shù)學(xué)簡潔教案模板范文參考。
高中數(shù)學(xué)簡潔教案模板范文篇1
各位同仁,各位專家:
我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊第1。2節(jié)
先對教材進(jìn)行分析
教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。
地位和作用:任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準(zhǔn)備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認(rèn)真探討教材,精心設(shè)計過程。
教學(xué)重點:任意角三角函數(shù)的定義
教學(xué)難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺?biāo)系下用坐標(biāo)比值定義的觀念的轉(zhuǎn)換以及坐標(biāo)定義的合理性的理解;
學(xué)情分析:
學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力
1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。
2。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強(qiáng)的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。
3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強(qiáng)必須在老師一定的指導(dǎo)下才能進(jìn)行
針對對教材內(nèi)容重難點的和學(xué)生實際情況的分析我們制定教學(xué)目標(biāo)如下
知識目標(biāo):
(1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,
能力目標(biāo):
(1)理解并掌握任意角的三角函數(shù)的定義;
(2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);
(3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。
德育目標(biāo):
(1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)治學(xué)、一絲不茍的科學(xué)精神;
針對學(xué)生實際情況為達(dá)到教學(xué)目標(biāo)須精心設(shè)計教學(xué)方法
教法學(xué)法:溫故知新,逐步拓展
(1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴(kuò)展內(nèi)容,發(fā)展新知識,形成新的概念;
(2)通過例題講解分析,逐步引出新知識,完善三角定義
運用多媒體工具
(1)提高直觀性增強(qiáng)趣味性。
教學(xué)過程分析
總體來說,由舊及新,由易及難,
逐步加強(qiáng),逐步推進(jìn)
先由初中的直角三角形中銳角三角函數(shù)的定義
過度到直角坐標(biāo)系中銳角三角函數(shù)的定義
再發(fā)展到直角坐標(biāo)系中任意角三角函數(shù)的定義
給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。
具體教學(xué)過程安排
引入:復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?
由學(xué)生回答
SinA=對邊/斜邊=BC/AB
cosA=對邊/斜邊=AC/AB
tanA=對邊/斜邊=BC/AC
逐步拓展:在高中我們已經(jīng)建立了直角坐標(biāo)系,把“定義媒介”從直角三角形改為平面直角坐標(biāo)系。
我們知道,隨著角的概念的推廣,研究角時多放在直角坐標(biāo)系里,那么三角函數(shù)的定義能否也放到坐標(biāo)系去研究呢?
引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標(biāo)和邊長的關(guān)系。進(jìn)一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標(biāo)來表示,從而銳角三角函數(shù)可以使用直角坐標(biāo)系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標(biāo)中進(jìn)行合理進(jìn)行定義了
從而得到
知識點一:任意一個角的三角函數(shù)的定義
提醒學(xué)生思考:由于相似比相等,對于確定的角A,這三個比值的大小和P點在角的終邊上的位置無關(guān)。
精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義
例1已知角A的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值
(此題由學(xué)生自己分析獨立動手完成)
例題變式1,已知角A的大小是30度,由定義求角A的三個三角函數(shù)值
結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),
提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?
從而引出函數(shù)極其定義域
由學(xué)生分析討論,得出結(jié)論
知識點二:三個三角函數(shù)的定義域
同時教師強(qiáng)調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)
例題變式2,已知角A的終邊經(jīng)過P(—2a,—3a)(a不為0),求角A的三個三角函數(shù)值
解答中需要對變量的正負(fù)即角所在象限進(jìn)行討論,讓學(xué)生意識到三角函數(shù)值的正負(fù)與角所在象限有關(guān),從而導(dǎo)出第三個知識點
知識點三:三角函數(shù)值的正負(fù)與角所在象限的關(guān)系
由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶
例題2:已知A在第二象限且sinA=0。2求cosA,tanA
求cosA,tanA
綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)
拓展,如果不限制A的象限呢,可以留作課外探討
小結(jié)回顧課堂內(nèi)容
課堂作業(yè)和課外作業(yè)以加強(qiáng)知識的記憶和理解
課堂作業(yè)P161,2,4
(學(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)
課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)
必作P231(2),5(2),6(2)(4)選作P233,4
板書設(shè)計(見PPT)
高中數(shù)學(xué)簡潔教案模板范文篇2
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.
(2)進(jìn)一步理解曲線的方程和方程的曲線.
(3)初步掌握求曲線方程的方法.
(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.
教學(xué)重點、難點:求曲線的方程.
教學(xué)用具:計算機(jī).
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.
教學(xué)過程:
【引入】
1.提問:什么是曲線的方程和方程的曲線.
學(xué)生思考并回答.教師強(qiáng)調(diào).
2.坐標(biāo)法和解析幾何的意義、基本問題.
對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程.
(2)通過方程,研究平面曲線的性質(zhì).
事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.
【問題】
如何根據(jù)已知條件,求出曲線的方程.
【實例分析】
例1:設(shè) 、 兩點的坐標(biāo)是 、(3,7),求線段 的垂直平分線 的方程.
首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決.
解法一:易求線段 的中點坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?
(通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).
證明:(1)曲線上的點的坐標(biāo)都是這個方程的解.
設(shè) 是線段 的垂直平分線上任意一點,則
即
將上式兩邊平方,整理得
這說明點 的坐標(biāo) 是方程 的解.
(2)以這個方程的解為坐標(biāo)的點都是曲線上的點.
設(shè)點 的坐標(biāo) 是方程①的任意一解,則
到 、 的距離分別為
所以 ,即點 在直線 上.
綜合(1)、(2),①是所求直線的方程.
至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè) 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標(biāo),這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:
解法二:設(shè) 是線段 的垂直平分線上任意一點,也就是點 屬于集合
由兩點間的距離公式,點所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.
讓我們用這個方法試解如下問題:
例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.
分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.
求解過程略.
【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):
分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如 表示曲線上任意一點 的坐標(biāo);
(2)寫出適合條件 的點 的集合
;
(3)用坐標(biāo)表示條件 ,列出方程 ;
(4)化方程 為最簡形式;
(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點.
一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.
上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.
下面再看一個問題:
例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.
【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.
解:設(shè)點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合
由距離公式,點 適合的條件可表示為
①
將①式 移項后再兩邊平方,得
化簡得
由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.
【練習(xí)鞏固】
題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè) 、 的坐標(biāo)為 、 ,則 的坐標(biāo)為 , 的坐標(biāo)為 .
根據(jù)條件 ,代入坐標(biāo)可得
化簡得
①
由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進(jìn)一步求出 、 的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問題的方法是什么?
(2)如何求曲線的方程?
(3)請對求解曲線方程的五個步驟進(jìn)行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁練習(xí)1,2,3;
高中數(shù)學(xué)簡潔教案模板范文篇3
一、教材分析:
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二、目標(biāo)分析:
教學(xué)重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當(dāng)選擇.
教學(xué)目標(biāo)
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號;
(3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
2.過程與方法
(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識.
3.情感.態(tài)度與價值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.
三.教法分析
1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).
四.過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:
(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。
(2)問題:像“家庭”、“學(xué)校”、“班級”等,有什么共同特征?
引導(dǎo)學(xué)生互相交流.與此同時,教師對學(xué)生的活動給予評價.
2.活動:
(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
(二)研探新知,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1—20以內(nèi)的所有質(zhì)數(shù);
(2)我國古代的.四大發(fā)明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在2004年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學(xué)2004年9月入學(xué)的高一學(xué)生的全體.
2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?
3.每個小組選出——位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,C,D,?表示,元素常用小寫字母a,b,c,d?表示.
設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導(dǎo)學(xué)生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國的小河流.讓學(xué)生充分發(fā)表自己的建解.
3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動給予及時的評價.
4.教師提出問題,讓學(xué)生思考
b是(1)如果用A表示高—(3)班全體學(xué)生組成的集合,用a表示高一(3)班的一位同學(xué),
高一(4)班的一位同學(xué),那么a,b與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.
如果a是集合A的元素,就說a屬于集合A,記作a?A.
如果a不是集合A的元素,就說a不屬于集合A,記作a?A.
(2)如果用A表示“所有的安理會常任理事國”組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示.
(3)讓學(xué)生完成教材第6頁練習(xí)第1題.
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學(xué)生完成習(xí)題1.1A組第1題.
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自的特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?
使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學(xué)習(xí):
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合A?{x?N1?x?8}
(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題.
設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)
小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:
1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?2.你認(rèn)為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題.
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種
呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.
五.板書分析
略
高中數(shù)學(xué)簡潔教案模板范文篇4
一、教材分析
1、教材的地位和作用:
《等差數(shù)列》是人教版新課標(biāo)教材《數(shù)學(xué)》必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進(jìn)一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
2、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)
a知識與技能:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建模”的思想方法并能運用。培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
b.過程與方法:在教學(xué)過程中我采用討論式、啟發(fā)式的方法使學(xué)生深刻的理解不完全歸納法。
c.情感態(tài)度與價值觀:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點和難點
重點:
①等差數(shù)列的概念。
②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
難點:
①等差數(shù)列的通項公式的推導(dǎo)
②用數(shù)學(xué)思想解決實際問題
二、學(xué)情教法分析:
對于高一學(xué)生,知識經(jīng)驗已較為豐富,具備了一定的抽象思維能力和演繹推理能力,所以我本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。學(xué)生在初中時只是簡單的接觸過等差數(shù)列,具體的公式還不會用,因些在公式應(yīng)用上加強(qiáng)學(xué)生的理解
三、學(xué)法分析:
在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)過程
1.創(chuàng)設(shè)情景提出問題
首先要學(xué)生回憶數(shù)列的有關(guān)概念,數(shù)列的兩種方法——通項公式和遞推公式
高中數(shù)學(xué)簡潔教案模板范文篇5
教學(xué)目標(biāo):
1、理解流程圖的選擇結(jié)構(gòu)這種基本邏輯結(jié)構(gòu)。
2、能識別和理解簡單的框圖的功能。
3、能運用三種基本邏輯結(jié)構(gòu)設(shè)計流程圖以解決簡單的問題。
教學(xué)方法:
1、通過模仿、操作、探索,經(jīng)歷設(shè)計流程圖表達(dá)求解問題的過程,加深對流程圖的感知。
2、在具體問題的解決過程中,掌握基本的流程圖的畫法和流程圖的三種基本邏輯結(jié)構(gòu)。
教學(xué)過程:
一、問題情境
情境:
某鐵路客運部門規(guī)定甲、乙兩地之間旅客托運行李的費用為
其中(單位:)為行李的重量。
試給出計算費用(單位:元)的一個算法,并畫出流程圖。
二、學(xué)生活動
學(xué)生討論,教師引導(dǎo)學(xué)生進(jìn)行表達(dá)。
解算法為:
輸入行李的重量;
如果,那么,
否則;
輸出行李的重量和運費。
上述算法可以用流程圖表示為:
教師邊講解邊畫出第10頁圖1-2-6。
在上述計費過程中,第二步進(jìn)行了判斷。
三、建構(gòu)數(shù)學(xué)
1、選擇結(jié)構(gòu)的概念:
先根據(jù)條件作出判斷,再決定執(zhí)行哪一種操作的結(jié)構(gòu)稱為選擇結(jié)構(gòu)。
如圖:虛線框內(nèi)是一個選擇結(jié)構(gòu),它包含一個判斷框,當(dāng)條件成立(或稱條件為“真”)時執(zhí)行,否則執(zhí)行。
2、說明:
(1)有些問題需要按給定的條件進(jìn)行分析、比較和判斷,并按判斷的不同情況進(jìn)行不同的操作,這類問題的實現(xiàn)就要用到選擇結(jié)構(gòu)的設(shè)計;
(2)選擇結(jié)構(gòu)也稱為分支結(jié)構(gòu)或選取結(jié)構(gòu),它要先根據(jù)指定的條件進(jìn)行判斷,再由判斷的結(jié)果決定執(zhí)行兩條分支路徑中的某一條;
(3)在上圖的選擇結(jié)構(gòu)中,只能執(zhí)行和之一,不可能既執(zhí)行,又執(zhí)行,但或兩個框中可以有一個是空的,即不執(zhí)行任何操作;
(4)流程圖圖框的形狀要規(guī)范,判斷框必須畫成菱形,它有一個進(jìn)入點和兩個退出點。
3、思考:教材第7頁圖所示的算法中,哪一步進(jìn)行了判斷?
高中數(shù)學(xué)簡潔教案模板范文篇6
一、教學(xué)內(nèi)容分析
本節(jié)內(nèi)容是學(xué)生在學(xué)習(xí)了乘法原理、排列、排列數(shù)公式和加法原理以后的知識,學(xué)生已經(jīng)掌握了排列問題,并且對順序與排列的關(guān)系已經(jīng)有了一個比較清晰的認(rèn)識.因此關(guān)鍵是排列與組合的區(qū)別在于問題是否與順序有關(guān).與順序有關(guān)的是排列問題,與順序無關(guān)是組合問題,順序?qū)ε帕小⒔M合問題的求解特別重要.排列與組合的區(qū)別,從定義上來說是簡單的,但在具體求解過程中學(xué)生往往感到困惑,分不清到底與順序有無關(guān)系,指導(dǎo)學(xué)生根據(jù)生活經(jīng)驗和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學(xué)的真諦在于悟,只有學(xué)生真正理解了,才能舉一反三、融會貫通.
二、教學(xué)目標(biāo)設(shè)計
1.理解組合的意義,掌握組合數(shù)的計算公式;
2.能正確認(rèn)識組合與排列的聯(lián)系與區(qū)別
3.通過練習(xí)與訓(xùn)練體驗并初步掌握組合數(shù)的計算公式
三、教學(xué)重點及難點
組合概念的理解和組合數(shù)公式;組合與排列的區(qū)別.
四、教學(xué)用具準(zhǔn)備
多媒體設(shè)備
五、教學(xué)流程設(shè)計
六、教學(xué)過程設(shè)計
一、 復(fù)習(xí)引入
1.復(fù)習(xí)
我們在前幾節(jié)中學(xué)習(xí)了排列、排列數(shù)以及排列數(shù)公式
定 義
特 點
相同排列
公 式
排 列
以上由學(xué)生口答.
2.引入
那么請問:平面上有7個點,問以這7點中任何兩個為端點,構(gòu)成有向線段有幾條?
這是一個排列問題
若改為:構(gòu)成的線段有幾條?則為 ,
其實亦可用另一種方法解決,這就是組合.
二、學(xué)習(xí)新課
探究性質(zhì)
1. 組合定義: P16
一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合.
【說明】:⑴不同元素; ⑵“只取不排”——無序性;
⑶相同組合:元素相同.
2.組合數(shù)定義:
從個不同元素中取出個元素的所有組合的個數(shù),叫做從個不同元素中取出個元素的組合數(shù).用符號表示.
如:引入中的例子可表示為
== 這是為什么呢?
因為 構(gòu)成有向線段的問題可分成2步來完成:
第一步,先從7個點中選2個點出來,共有種選法;
第二步,將選出的2個點做一個排列,有種次序;
根據(jù)乘法原理,共有·= 所以
·判斷何為排列、組合問題: 利用書本P16~P17例題請學(xué)生判斷
·這個公式叫組合數(shù)公式
3.組合數(shù)公式:
如= =
用計算器求 、 、 、
可發(fā)現(xiàn)= =
由此猜想:
用實際例子說明:比如要從50人中挑選4個出來參加迎春長跑的選擇方案有,就相當(dāng)于挑46個人不參加長跑的選擇方案一樣.“取法”與“剩法”是“一 一對應(yīng)”的.
證明:∵
又 ,∴
當(dāng)m=n時,
此性質(zhì)作用:當(dāng)時,計算可變?yōu)橛嬎?,能夠使運算簡化.
4. 組合數(shù)性質(zhì):
1、
2、=
可解釋為:從這n 1個不同元素中取出m個元素的組合數(shù)是,這些組合可以分為兩類:一類含有元素,一類不含有.含有的組合是從這n個元素中取出m (1個元素與組成的,共有個;不含有的組合是從這n個元素中取出m個元素組成的,共有個.根據(jù)加法原理,可以得到組合數(shù)的另一個性質(zhì).在這里,主要體現(xiàn)從特殊到一般的歸納思想,“含與不含其元素”的分類思想.
證明:
得證.
【說明】1( 公式特征:下標(biāo)相同而上標(biāo)差1的兩個組合數(shù)之和,等于下標(biāo)比原下標(biāo)多1而上標(biāo)與高的相同的一個組合數(shù).
2( 此性質(zhì)的作用:恒等變形,簡化運算.在今后學(xué)習(xí)“二項式定理”時,我們會看到它的主要應(yīng)用.
2.例題分析
例1、(1),求x
(2)
(3)
略解:(1)
(2)
(3)
例2、應(yīng)用題:
有15本不同的書,其中6本是數(shù)學(xué)書,問:
分給甲4本,且都不是數(shù)學(xué)書;
略解:(1)
3.問題拓展
例3.題設(shè)同例2:
(2)平均分給3人;
(3)若平均分為3份;
(4)甲分2本,乙分7本,丙分6本;
(5)1人2本,1人7本,1人6本.
略解:(2) (3)
(4) (5)
三、課堂小結(jié)
指導(dǎo)學(xué)生根據(jù)生活經(jīng)驗和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學(xué)的真諦在于悟,只有學(xué)生真正理解了,才能舉一反三、融會貫通.
能列舉出某種方法時,讓學(xué)生通過交換元素位置的辦法加以鑒別.
學(xué)生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時,可引導(dǎo)學(xué)生找出兩定義的關(guān)系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對元素進(jìn)行排隊,即第一步僅從組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題.
排列、組合問題大都來源于同學(xué)們生活和學(xué)習(xí)中所熟悉的情景,解題思路通常是依據(jù)具體做事的過程,用數(shù)學(xué)的原理和語言加以表述.也可以說解排列、組合題就是從生活經(jīng)驗、知識經(jīng)驗、具體情景的出發(fā),正確領(lǐng)會問題的實質(zhì),抽象出“按部就班”的處理問題的過程.據(jù)觀察,有些同學(xué)之所以學(xué)習(xí)中感到抽象,不知如何思考,并不是因為數(shù)學(xué)知識跟不上,而是因為平時做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規(guī)的做法).要解決這個問題,需要師生一道在分析問題時要根據(jù)實際情況,怎么做事就怎么分析,若能借助適當(dāng)?shù)墓ぞ撸M做事的過程,則更能說明問題.久而久之,學(xué)生的邏輯思維能力將會大大提高.
四、作業(yè)布置
(略)
七、教學(xué)設(shè)計說明
在學(xué)習(xí)過程中,從排列問題引入,隨即自然地過渡到組合問題.由此讓學(xué)生對于排列與組合兩者的異同有深刻理解,并能自如地進(jìn)行判斷.
本節(jié)課在教學(xué)技術(shù)上通過多媒體課件大大縮短了教師板書抄題的時間,讓學(xué)生能夠更加連貫的思考以及探索問題.
在例題的設(shè)計上從最基本的組合數(shù)公式的利用,到簡單的應(yīng)用題,再到組合中較難的分組分配以及平均不平均分配問題的訓(xùn)練,由淺入深,層層遞進(jìn),以積極發(fā)揮課堂教學(xué)的基礎(chǔ)型和研究型功能,培養(yǎng)學(xué)生的基礎(chǔ)性學(xué)力和發(fā)展性學(xué)力.
在課堂教學(xué)中教師遵循“以學(xué)生為主體”的思想,鼓勵學(xué)生善于觀察和發(fā)現(xiàn);鼓勵學(xué)生積極思考和探究;鼓勵學(xué)生大膽猜想,努力營造一個民主和諧、平等交流的課堂氛圍,采取對話式教學(xué),調(diào)動學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生學(xué)習(xí)的熱情,使學(xué)生開闊思維空間,讓學(xué)生積極參與教學(xué)活動,提高學(xué)生的數(shù)學(xué)思維能力.
高中數(shù)學(xué)簡潔教案模板范文篇7
教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。
教學(xué)過程:
一、閱讀下列語句:
1)全體自然數(shù)0,1,2,3,4,5,
2)代數(shù)式
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學(xué)生
5)本校實驗室的所有天平
6)本班級全體高個子同學(xué)
7)著名的科學(xué)家
上述每組語句所描述的對象是否是確定的?
二、
1)集合:
2)集合的元素:
3)集合按元素的個數(shù)分,可分為1)__________2)_________
三、集合中元素的三個性質(zhì):
1)___________2)___________3)_____________
四、元素與集合的關(guān)系:1)____________2)____________
五、特殊數(shù)集專用記號:
1)非負(fù)整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______4)有理數(shù)集______5)實數(shù)集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?
1)地球上的四大洋構(gòu)成的集合;
2)函數(shù)的全體值的集合;
3)函數(shù)的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數(shù)組成的集合;
8)所有正偶數(shù)組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設(shè),,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數(shù)
2.圖中陰影部分點(含邊界)的坐標(biāo)的集合
課堂練習(xí):
例6、設(shè)含有三個實數(shù)的集合既可以表示為,也可以表示為,則的值等于___________
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結(jié):
作業(yè)班級姓名學(xué)號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________。
4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________。
5.設(shè)集合a=,b=,
c=,d=,e=。
其中有限集的個數(shù)是____________。
6.設(shè),則集合中所有元素的和為
7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數(shù)a的值。
高中數(shù)學(xué)簡潔教案模板范文篇8
【教學(xué)目標(biāo)】
1. 知識與技能
(1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:
(2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:
(3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。
2.過程與方法
在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴(yán)密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認(rèn)知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。
3.情感、態(tài)度與價值觀
通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好習(xí)慣。
【教學(xué)重點】
①等差數(shù)列的概念;②等差數(shù)列的通項公式
【教學(xué)難點】
①理解等差數(shù)列“等差”的特點及通項公式的含義;②等差數(shù)列的通項公式的推導(dǎo)過程.
【學(xué)情分析】
我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強(qiáng)的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進(jìn)思維能力的進(jìn)一步發(fā)展.
【設(shè)計思路】
1.教法
①啟發(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進(jìn)行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.
②分組討論法:有利于學(xué)生進(jìn)行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.
③講練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.
2.學(xué)法
引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認(rèn)識多元的推導(dǎo)思維方法.
【教學(xué)過程】
一:創(chuàng)設(shè)情境,引入新課
1.從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?
2.水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進(jìn)行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?
3.我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?
教師:以上三個問題中的數(shù)蘊(yùn)涵著三列數(shù).
學(xué)生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.
二:觀察歸納,形成定義
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述數(shù)列有什么共同特點?
思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?
思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?
教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.
學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.
教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.
(設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓住:“從第二項起,每一項與它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達(dá).)
三:舉一反三,鞏固定義
1.判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教師出示題目,學(xué)生思考回答.教師訂正并強(qiáng)調(diào)求公差應(yīng)注意的問題.
注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負(fù)數(shù),也可以為0 .
(設(shè)計意圖:強(qiáng)化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).
2思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?
(設(shè)計意圖:強(qiáng)化等差數(shù)列的證明定義法)
四:利用定義,導(dǎo)出通項
1.已知等差數(shù)列:8,5,2,…,求第200項?
2.已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?
教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進(jìn)行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.
(設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚(yáng)學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)
五:應(yīng)用通項,解決問題
1判斷100是不是等差數(shù)列2, 9,16,…的項?如果是,是第幾項?
2在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差數(shù)列 3,7,11,…的第4項和第10項
教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.
學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補(bǔ)充:已知等差數(shù)列的首項和公差就可以求出其通項公式
(設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認(rèn)識“基本量法”求解等差數(shù)列問題.)
六:反饋練習(xí):教材13頁練習(xí)1
七:歸納總結(jié):
1.一個定義:
等差數(shù)列的定義及定義表達(dá)式
2.一個公式:
等差數(shù)列的通項公式
3.二個應(yīng)用:
定義和通項公式的應(yīng)用
教師:讓學(xué)生思考整理,找?guī)讉€代表發(fā)言,最后教師給出補(bǔ)充
(設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認(rèn)識和掌握基本概念,并靈活運用基本概念.)
【設(shè)計反思】
本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強(qiáng)化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補(bǔ)充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.
高中數(shù)學(xué)簡潔教案模板范文篇9
一、教學(xué)內(nèi)容分析
向量作為工具在數(shù)學(xué)、物理以及實際生活中都有著廣泛的應(yīng)用.
本小節(jié)的重點是結(jié)合向量知識證明數(shù)學(xué)中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.
二、教學(xué)目標(biāo)設(shè)計
1、通過利用向量知識解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會從不同角度去看待一些數(shù)學(xué)問題,使一些數(shù)學(xué)知識有機(jī)聯(lián)系,拓寬解決問題的思路.
2、了解構(gòu)造法在解題中的運用.
三、教學(xué)重點及難點
重點:平面向量知識在各個領(lǐng)域中應(yīng)用.
難點:向量的構(gòu)造.
四、教學(xué)流程設(shè)計
五、教學(xué)過程設(shè)計
一、復(fù)習(xí)與回顧
1、提問:下列哪些量是向量?
(1)力 (2)功 (3)位移 (4)力矩
2、上述四個量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[說明]復(fù)習(xí)數(shù)量積的有關(guān)知識.
二、學(xué)習(xí)新課
例1(書中例5)
向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時它在數(shù)學(xué)學(xué)科中也有許多妙用!請看
例2(書中例3)
證法(一)原不等式等價于,由基本不等式知(1)式成立,故原不等式成立.
證法(二)向量法
[說明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點,構(gòu)造向量,并發(fā)現(xiàn)(等號成立的充要條件是)
例3(書中例4)
[說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個公式得到證明.
二、鞏固練習(xí)
1、如圖,某人在靜水中游泳,速度為 km/h.
(1)如果他徑直游向河對岸,水的流速為4 km/h,他實際沿什么方向前進(jìn)?速度大小為多少?
答案:沿北偏東方向前進(jìn),實際速度大小是8 km/h.
(2) 他必須朝哪個方向游才能沿與水流垂直的方向前進(jìn)?實際前進(jìn)的速度大小為多少?
答案:朝北偏西方向前進(jìn),實際速度大小為km/h.
三、課堂小結(jié)
1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.
2、要學(xué)會從不同的角度去看一個數(shù)學(xué)問題,是數(shù)學(xué)知識有機(jī)聯(lián)系.
四、作業(yè)布置
1、書面作業(yè):課本P73, 練習(xí)8.4 4
高中數(shù)學(xué)簡潔教案模板范文篇10
一.教學(xué)目標(biāo):
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集
(2)理解在給定集合中一個子集的補(bǔ)集的含義,會求給定子集的補(bǔ)集
(3)能使用venn圖表達(dá)集合的運算,體會直觀圖示對理解抽象概念的作用
2.過程與方法
學(xué)生通過觀察和類比,借助venn圖理解集合的基本運算
3.情感.態(tài)度與價值觀
(1)進(jìn)一步樹立數(shù)形結(jié)合的思想
(2)進(jìn)一步體會類比的作用
(3)感受集合作為一種語言,在表示數(shù)學(xué)內(nèi)容時的簡潔和準(zhǔn)確
二.教學(xué)重點.難點
重點:交集與并集,全集與補(bǔ)集的概念
難點:理解交集與并集的概念,符號之間的區(qū)別與聯(lián)系
三.學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生借助venn圖,通過觀察、類比、思考、交流和討論等,理解集合的基本運算
2.教學(xué)用具:投影儀
四.教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
問題1:我們知道,實數(shù)有加法運算。類比實數(shù)的加法運算,集合是否也可以“相加”呢?
請同學(xué)們考察下列各個集合,你能說出集合c與集合a、b之間的關(guān)系嗎?
引導(dǎo)學(xué)生通過觀察,類比、思考和交流,得出結(jié)論。教師強(qiáng)調(diào)集合也有運算,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容。
(二)研探新知
l.并集
—般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,稱為集合a與b的并集
記作:a∪b
讀作:a并b
其含義用符號表示為:
用venn圖表示如下:
請同學(xué)們用并集運算符號表示問題1中a,b,c三者之間的關(guān)系
練習(xí)、檢查和反饋
(1)設(shè)a={4,5,6,8),b={3,5,7,8),求a∪b
(2)設(shè)集合
讓學(xué)生獨立完成后,教師通過檢查,進(jìn)行反饋,并強(qiáng)調(diào):
(1)在求兩個集合的并集時,它們的公共元素在并集中只能出現(xiàn)一次
(2)對于表示不等式解集的集合的運算,可借助數(shù)軸解題
2.交集
(1)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?
請同學(xué)們考察下面的問題,集合a、b與集合c之間有什么關(guān)系?
②b={是新華中學(xué)20--年9月入學(xué)的高一年級同學(xué)},c={是新華中學(xué)20--年9月入學(xué)的高一年級女同學(xué)}
教師組織學(xué)生思考、討論和交流,得出結(jié)論,從而得出交集的定義;
一般地,由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集
記作:a∩b
讀作:a交b
其含義用符號表示為:
接著教師要求學(xué)生用venn圖表示交集運算
(2)練習(xí)、檢查和反饋
①設(shè)平面內(nèi)直線上點的集合為,直線上點的集合為,試用集合的運算表示的位置關(guān)系
②學(xué)校里開運動會,設(shè)a={是參加一百米跑的同學(xué)},b={是參加二百米跑的同學(xué)},c={是參加四百米跑的同學(xué)},學(xué)校規(guī)定,在上述比賽中,每個同學(xué)最多只能參加兩項比賽,請你用集合的運算說明這項規(guī)定,并解釋集合運算a∩b與a∩c的含義
學(xué)生獨立練習(xí),教師檢查,作個別指導(dǎo),并對學(xué)生中存在的問題進(jìn)行反饋和糾正
(三)學(xué)生自主學(xué)習(xí),閱讀理解
1.教師引導(dǎo)學(xué)生閱讀教材第10~11頁中有關(guān)補(bǔ)集的內(nèi)容,并思考回答下例問題:
(1)什么叫全集?
(2)補(bǔ)集的含義是什么?用符號如何表示它的含義?用venn圖又表示?
(3)已知集合
(4)設(shè)s={是至少有一組對邊平行的四邊形},a={是平行四邊形},b={是菱形},c={是矩形},求。
在學(xué)生閱讀、思考的過程中,教師作個別指導(dǎo),待學(xué)生經(jīng)過閱讀和思考完后,請學(xué)生回答上述問題,并及時給予評價
(四)歸納整理,整體認(rèn)識
1.通過對集合的學(xué)習(xí),同學(xué)對集合這種語言有什么感受?
2.并集、交集和補(bǔ)集這三種集合運算有什么區(qū)別?
(五)作業(yè)
1.課外思考:對于集合的基本運算,你能得出哪些運算規(guī)律?
2.請你舉出現(xiàn)實生活中的一個實例,并說明其并集,交集和補(bǔ)集的現(xiàn)實含義
3.書面作業(yè):教材第12頁習(xí)題1.1a組第7題和b組第4題
高中數(shù)學(xué)簡潔教案模板范文篇11
1、教材分析:
集合是現(xiàn)代數(shù)學(xué)的基本語言,可以簡潔、準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容。本節(jié)是讓學(xué)生學(xué)會用集合的語言來描述對象,章末我們會用集合和對應(yīng)的語言來描述函數(shù)的概念,可見它是今后數(shù)學(xué)學(xué)習(xí)的基礎(chǔ),也是培養(yǎng)學(xué)生抽象概括能力的重要素材。
2、教材目標(biāo):
根據(jù)素質(zhì)教育的要求和新課改的精神,我確定教學(xué)目標(biāo)如下:
①知識與技能:
(1)了解集合的含義與集合中元素的特征
(2)熟記常用數(shù)集符號
(3)能用列舉、描述法表示具體集合
②過程與方法:讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.讓學(xué)生通過觀察、歸納、總結(jié)的過程,提高抽象概括能力。
③情感態(tài)度與價值觀:使學(xué)生感受到學(xué)習(xí)集合的必要性,增強(qiáng)學(xué)習(xí)的積極性.
3、教學(xué)重點、難點
教學(xué)重點:集合的基本概念與表示方法;
教學(xué)難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合;說教法
1.學(xué)情分析
《集合的含義及表示》這一課時是學(xué)生進(jìn)入高中階段學(xué)習(xí)、接觸到高中數(shù)學(xué)的第一堂課,它直接影響到了學(xué)生對高中階段數(shù)學(xué)學(xué)習(xí)的認(rèn)識;如果我們教學(xué)上過于草率,學(xué)生很容易對數(shù)學(xué)失去學(xué)習(xí)興趣。再者,這是高中數(shù)學(xué)課程的第一章的第一課時,是整個高中數(shù)學(xué)的奠基部分,所以我們不僅要正確地傳授知識,更要把握好教學(xué)的難度。如果傳授得過于簡單,那么學(xué)生容易麻痹大意,對今后的學(xué)習(xí)埋下隱患;如果講得太深,那么學(xué)生會有畏難心理,也會對今后的學(xué)習(xí)造成影響。
2.方法選擇
在教學(xué)中注意啟發(fā)引導(dǎo),通過預(yù)習(xí)學(xué)案的形式把知識問題化,通過實例引導(dǎo)學(xué)生觀察歸納,上課組織學(xué)生分組討論,讓他們經(jīng)歷觀察、猜測、推理、交流、反思的理性思維的基本過程,切實改變學(xué)生的學(xué)習(xí)方法。
說學(xué)法
讓學(xué)生通過課前結(jié)合學(xué)案,閱讀教材,自主預(yù)習(xí),課上交流、討論、概括,課后復(fù)習(xí)鞏固三個環(huán)節(jié),更好地完成本節(jié)課的教學(xué)目標(biāo)。值得提出的是:集合作為一種數(shù)學(xué)語言,最好的學(xué)習(xí)方法是使用,所以應(yīng)該多做轉(zhuǎn)換練習(xí),
說教學(xué)程序
(一)創(chuàng)設(shè)情境,揭示課題
軍訓(xùn)前學(xué)校通知:x月x日x點,高一年段在體育館集合進(jìn)行軍訓(xùn)動員;試問這個通知的對象是全體的高一學(xué)生還是個別學(xué)生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學(xué)習(xí)一個新的概念——集合(宣布課題),即是一些研究對象的總體。
通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主動參與的積極性。讓學(xué)生在課堂的一開始就感受到數(shù)學(xué)就在我們身邊,讓學(xué)生學(xué)會用數(shù)學(xué)的眼光去關(guān)注生活。
(二)研探新知,建構(gòu)概念
讓學(xué)生閱讀課本P2內(nèi)容,讓小組思考討論,代表發(fā)言,師生共同補(bǔ)充答案它們的共同特征:它們都是指定的一組對象。這時我借此引入集合的概念,把一些元素組成的總體叫做集合,簡稱集,通常用大寫字母A,B,C,?表示。把研究的對象稱為元素,通常用小寫拉丁字母a,b,c,?表示;
接下來,我引導(dǎo)學(xué)生把集合的涵義進(jìn)行拓展,期間結(jié)合一些師生互動:我們班上的女生能不能構(gòu)成一個集合,班上身高在1.75米以上的男生能不能構(gòu)成一個集合,班上高的男生能不能構(gòu)成一個集合??,通過身邊這些大量例子,讓學(xué)生了解集合的概念,并切實感受到學(xué)習(xí)集合語言的重要性。
對于集合元素的特征:確定性、互異性、無序性。我則在學(xué)生了解集合概念基礎(chǔ)上,通過設(shè)置三個問題(1)班里個子高的同學(xué)能否構(gòu)成一個集合?(2)在一個給定的集合中能否有相同的元素?(3)班里的全體同學(xué)組成一個集合,調(diào)整座位后這個集合有沒有變化?調(diào)整后的集合和原來的集合是什么關(guān)系?讓學(xué)生思考:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?
這樣設(shè)計將知識問題化,問題生活化,激發(fā)學(xué)生學(xué)習(xí)的主動性,引導(dǎo)學(xué)生歸納出集合中元素的三大特性,用簡練的語言概括為——確定性、互異性、無序性用兩集合相等的概念。
思考3:(1)設(shè)集合A表示“1~20以內(nèi)的所有質(zhì)數(shù)”,那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?
(2)對于一個給定的集合A,那么某元素a與集合A有哪幾種可能關(guān)系?
(3)如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?
(4)如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?用符號∈或?填空:
[設(shè)計說明]這幾個問題比較簡單,直接提問同學(xué)回答,并師生一起完善答案。通過問題的層層深入,目的是引導(dǎo)學(xué)生歸納出元素與集合的關(guān)系及表示方法。
反饋練習(xí):
(1)設(shè)A為所有亞洲國家組成的集合,則
中國____A,美國____A,
印度____A,英國____A;
對于集合中常用的符號,我做了這樣處理:簡要介紹后,讓學(xué)生用兩三分鐘的時間結(jié)合符號特點記憶。目的在于給學(xué)生一個信號:課堂上能消化的東西要及時記住。
2.集合的表示法:列舉法和描述法
讓學(xué)生自習(xí)閱讀課本P3——P4的內(nèi)容5-7分鐘,接著讓同學(xué)試著解決如下三個問題
(1)由大于10小于20的所有整數(shù)組成的集合;
(2)表示不等式x-7《3的解集;
(3)由1——20以內(nèi)的所有素數(shù)組成的集合;
把集合的元素一一列舉出來,并用花括號“{}”括起來表示的方法叫做列舉法。用集合所含元素的共同特征表示集合的方法稱為描述法。具體方法是:在花括號內(nèi)先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
通過三個問題不僅檢驗了學(xué)生的自學(xué)效果,同時也讓學(xué)生明白列舉法和描述法兩種方法各自的優(yōu)缺點,更重要的是對集合的列舉法和描述法的規(guī)范表達(dá)做進(jìn)一步強(qiáng)調(diào),最后,我?guī)ьI(lǐng)學(xué)生分析了課本P4的例題,對集合的列舉法和描述法的規(guī)范表達(dá)做進(jìn)一
步的強(qiáng)調(diào),讓學(xué)生完成書上的習(xí)題,并請幾個學(xué)生上臺來演練,通過練習(xí)達(dá)到及時的反饋。
(四)歸納整理,整體認(rèn)識
1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?
2.你認(rèn)為學(xué)習(xí)集合有什么意義?
3.比較列舉法與描述法的優(yōu)缺點。
(五)布置作業(yè)
作業(yè):習(xí)題1.1A組:2、3、4.
作業(yè)的布置是要突出本節(jié)課的重點——集合概念的理解以及集合的表示法,讓學(xué)生對數(shù)學(xué)符號的適用在課外進(jìn)行延伸和鞏固。
說板書
在教學(xué)中我把黑板分為三部分,把知識要點寫在左側(cè),中間是課本例題演練,右側(cè)是實例應(yīng)用。在左側(cè)的知識要點主要列出了集合、元素的概念、元素的特性:確定性,互異性,無序性,和集合的表示法:列舉法和描述法。
以上是我對《集合的含義與表示》這節(jié)教材的認(rèn)識和對教學(xué)過程的設(shè)計。對這節(jié)課的設(shè)計,我始終在努力貫徹一教師為主導(dǎo),以學(xué)生為主題,以問題為基礎(chǔ),以能力、方法為主線,有計劃培養(yǎng)學(xué)生的自學(xué)能力、觀察和實踐能力、思維能力為指導(dǎo)思想,利用各種教學(xué)手段激發(fā)學(xué)生的學(xué)習(xí)興趣,體現(xiàn)了對學(xué)生創(chuàng)新意識的培養(yǎng)。
高中數(shù)學(xué)簡潔教案模板范文篇12
一、教材分析
《余弦定理》選自人教A版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。
余弦定理的學(xué)習(xí)有充分的基礎(chǔ),初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節(jié)課內(nèi)容學(xué)習(xí)的知識基礎(chǔ),同時又對本節(jié)課的學(xué)習(xí)提供了一定的方法指導(dǎo)。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經(jīng)常運用于空間幾何中,所以余弦定理是高中數(shù)學(xué)學(xué)習(xí)的一個十分重要的內(nèi)容。
二、教學(xué)目標(biāo)
知識與技能:
1、理解并掌握余弦定理和余弦定理的推論。
2、掌握余弦定理的推導(dǎo)、證明過程。
3、能運用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。過程與方法:
1、通過從實際問題中抽象出數(shù)學(xué)問題,培養(yǎng)學(xué)生知識的遷移能力。
2、通過直角三角形到一般三角形的過渡,培養(yǎng)學(xué)生歸納總結(jié)能力。
3、通過余弦定理推導(dǎo)證明的過程,培養(yǎng)學(xué)生運用所學(xué)知識解決實際問題的能力。
情感態(tài)度與價值觀:
1、在交流合作的過程中增強(qiáng)合作探究、團(tuán)結(jié)協(xié)作精神,體驗解決問題的成功喜悅。
2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。
三、教學(xué)重難點
重點:余弦定理及其推論和余弦定理的運用。
難點:余弦定理的發(fā)現(xiàn)和推導(dǎo)過程以及多解情況的判斷。
四、教學(xué)用具
普通教學(xué)工具、多媒體工具(以上均為命題教學(xué)的準(zhǔn)備)