教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思

時(shí)間: 新華 數(shù)學(xué)教案

教案的編寫應(yīng)注重簡(jiǎn)潔明了、重點(diǎn)突出、條理清晰、可操作性強(qiáng)等特點(diǎn),以便更好地指導(dǎo)教學(xué)工作。怎么寫好創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思?小編給大家分享一些創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思,方便大家學(xué)習(xí)。

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇1

教學(xué)目標(biāo):

掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡(jiǎn)單的求值、化簡(jiǎn)、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會(huì)化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識(shí).

教學(xué)重點(diǎn):

二倍角公式的推導(dǎo)及簡(jiǎn)單應(yīng)用.

教學(xué)難點(diǎn):

理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).

教學(xué)過(guò)程:

Ⅰ.課題導(dǎo)入

前一段時(shí)間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請(qǐng)同學(xué)們?cè)囃?

先回憶和角公式

sin(α+β)=sinαcosβ+cosαsinβ

當(dāng)α=β時(shí),sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

當(dāng)α=β時(shí)cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

當(dāng)α=β時(shí),tan2α=2tanα1-tan2α

Ⅱ.講授新課

同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

同學(xué)們是否也考慮到了呢?

另外運(yùn)用這些公式要注意如下幾點(diǎn):

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時(shí)才成立,否則不成立(因?yàn)楫?dāng)α=π2 +kπ,k∈Z時(shí),tanα的值不存在;當(dāng)α=π4 +kπ2 ,k∈Z時(shí)tan2α的值不存在).

當(dāng)α=π2 +kπ(k∈Z)時(shí),雖然tanα的值不存在,但tan2α的值是存在的,這時(shí)求tan2α的值可利用誘導(dǎo)公式:

即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情況下,sin2α≠2sinα

例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當(dāng)且僅當(dāng)α=kπ(k∈Z)時(shí),sin2α=2sinα=0成立].

同樣在一般情況下cos2α≠2cosαtan2α≠2tanα

(3)倍角公式不僅可運(yùn)用于將2α作為α的2倍的情況,還可以運(yùn)用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇2

教學(xué)目標(biāo)

(1)正確理解加法原理與乘法原理的意義,分清它們的條件和結(jié)論;

(2)能結(jié)合樹形圖來(lái)幫助理解加法原理與乘法原理;

(3)正確區(qū)分加法原理與乘法原理,哪一個(gè)原理與分類有關(guān),哪一個(gè)原理與分步有關(guān);

(4)能應(yīng)用加法原理與乘法原理解決一些簡(jiǎn)單的應(yīng)用問(wèn)題,提高學(xué)生理解和運(yùn)用兩個(gè)原理的能力;

(5)通過(guò)對(duì)加法原理與乘法原理的學(xué)習(xí),培養(yǎng)學(xué)生周密思考、細(xì)心分析的良好習(xí)慣。

教學(xué)建議

一、知識(shí)結(jié)構(gòu)

二、重點(diǎn)難點(diǎn)分析

本節(jié)的重點(diǎn)是加法原理與乘法原理,難點(diǎn)是準(zhǔn)確區(qū)分加法原理與乘法原理。

加法原理、乘法原理本身是容易理解的,甚至是不言自明的。這兩個(gè)原理是學(xué)習(xí)排列組合內(nèi)容的基礎(chǔ),貫穿整個(gè)內(nèi)容之中,一方面它是推導(dǎo)排列數(shù)與組合數(shù)的基礎(chǔ);另一方面它的結(jié)論與其思想在方法本身又在解題時(shí)有許多直接應(yīng)用。

兩個(gè)原理回答的,都是完成一件事的所有不同方法種數(shù)是多少的問(wèn)題,其區(qū)別在于:運(yùn)用加法原理的前提條件是, 做一件事有n類方案,選擇任何一類方案中的任何一種方法都可以完成此事,就是說(shuō),完成這件事的各種方法是相互獨(dú)立的;運(yùn)用乘法原理的前提條件是,做一件事有n個(gè)驟,只要在每個(gè)步驟中任取一種方法,并依次完成每一步驟就能完成此事,就是說(shuō),完成這件事的各個(gè)步驟是相互依存的。簡(jiǎn)單的說(shuō),如果完成一件事情的所有方法是屬于分類的問(wèn)題,每次得到的是最后結(jié)果,要用加法原理;如果完成一件事情的方法是屬于分步的問(wèn)題,每次得到的該步結(jié)果,就要用乘法原理。

三、教法建議

關(guān)于兩個(gè)計(jì)數(shù)原理的教學(xué)要分三個(gè)層次:

第一是對(duì)兩個(gè)計(jì)數(shù)原理的認(rèn)識(shí)與理解.這里要求學(xué)生理解兩個(gè)計(jì)數(shù)原理的意義,并弄清兩個(gè)計(jì)數(shù)原理的區(qū)別.知道什么情況下使用加法計(jì)數(shù)原理,什么情況下使用乘法計(jì)數(shù)原理.(建議利用一課時(shí)).

第二是對(duì)兩個(gè)計(jì)數(shù)原理的使用.可以讓學(xué)生做一下習(xí)題(建議利用兩課時(shí)):

①用0,1,2,……,9可以組成多少個(gè)8位號(hào)碼;

②用0,1,2,……,9可以組成多少個(gè)8位整數(shù);

③用0,1,2,……,9可以組成多少個(gè)無(wú)重復(fù)數(shù)字的4位整數(shù);

④用0,1,2,……,9可以組成多少個(gè)有重復(fù)數(shù)字的4位整數(shù);

⑤用0,1,2,……,9可以組成多少個(gè)無(wú)重復(fù)數(shù)字的4位奇數(shù);

⑥用0,1,2,……,9可以組成多少個(gè)有兩個(gè)重復(fù)數(shù)字的4位整數(shù)等等.

第三是使學(xué)生掌握兩個(gè)計(jì)數(shù)原理的綜合應(yīng)用,這個(gè)過(guò)程應(yīng)該貫徹整個(gè)教學(xué)中,每個(gè)排列數(shù)、組合數(shù)公式及性質(zhì)的推導(dǎo)都要用兩個(gè)計(jì)數(shù)原理,每一道排列、組合問(wèn)題都可以直接利用兩個(gè)原理求解,另外直接計(jì)算法、間接計(jì)算法都是兩個(gè)原理的一種體現(xiàn).教師要引導(dǎo)學(xué)生認(rèn)真地分析題意,恰當(dāng)?shù)姆诸悺⒎植剑煤谩⒂没顑蓚€(gè)基本計(jì)數(shù)原理.

教學(xué)設(shè)計(jì)示例

加法原理和乘法原理

教學(xué)目標(biāo)

正確理解和掌握加法原理和乘法原理,并能準(zhǔn)確地應(yīng)用它們分析和解決一些簡(jiǎn)單的問(wèn)題,從而發(fā)展學(xué)生的思維能力,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力.

教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):加法原理和乘法原理.

難點(diǎn):加法原理和乘法原理的準(zhǔn)確應(yīng)用.

教學(xué)用具

投影儀.

教學(xué)過(guò)程設(shè)計(jì)

(一)引入新課

從本節(jié)課開始,我們將要學(xué)習(xí)中學(xué)代數(shù)內(nèi)容中一個(gè)獨(dú)特的部分——排列、組合、二項(xiàng)式定理.它們研究對(duì)象獨(dú)特,研究問(wèn)題的方法不同一般.雖然份量不多,但是與舊知識(shí)的聯(lián)系很少,而且它還是我們今后學(xué)習(xí)概率論的基礎(chǔ),統(tǒng)計(jì)學(xué)、運(yùn)籌學(xué)以及生物的選種等都與它直接有關(guān).至于在日常的工作、生活上,只要涉及安排調(diào)配的問(wèn)題,就離不開它.

今天我們先學(xué)習(xí)兩個(gè)基本原理.

(二)講授新課

1.介紹兩個(gè)基本原理

先考慮下面的問(wèn)題:

問(wèn)題1:從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船.一天中,火車有4個(gè)班次,汽車有2個(gè)班次,輪船有3個(gè)班次.那么一天中乘坐這些交通工具從甲地到乙地,共有多少種不同的走法?

因?yàn)橐惶熘谐嘶疖囉?種走法,乘汽車有2種走法,乘輪船有3種走法,每種走法都可以完成由甲地到乙地這件事情.所以,一天中乘坐這些交通工具從甲地到乙地共有4+2+3=9種不同的走法.

這個(gè)問(wèn)題可以總結(jié)為下面的一個(gè)基本原理(打出片子——加法原理):

加法原理:做一件事,完成它可以有幾類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法.那么,完成這件事共有N=m1+m2+…+mn種不同的方法.

請(qǐng)大家再來(lái)考慮下面的問(wèn)題(打出片子——問(wèn)題2):

問(wèn)題2:由A村去B村的道路有3條,由B村去C村的道路有2條(見(jiàn)下圖),從A村經(jīng)B村去C村,共有多少種不同的走法?

這里,從A村到B村,有3種不同的走法,按這3種走法中的每一種走法到達(dá)B村后,再?gòu)腂村到C村又各有2種不同的走法,因此,從A村經(jīng)B村去C村共有3×2=6種不同的走法.

一般地,有如下基本原理(找出片子——乘法原理):

乘法原理:做一件事,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做第n步有mn種不同的方法.那么,完成這件事共有N=m1×m2×…×mn種不同的方法.

2.淺釋兩個(gè)基本原理

兩個(gè)基本原理的用途是計(jì)算做一件事完成它的所有不同的方法種數(shù).

比較兩個(gè)基本原理,想一想,它們有什么區(qū)別?

兩個(gè)基本原理的區(qū)別在于:一個(gè)與分類有關(guān),一個(gè)與分步有關(guān).

看下面的分析是否正確(打出片子——題1,題2):

題1:找1~10這10個(gè)數(shù)中的所有合數(shù).第一類辦法是找含因數(shù)2的合數(shù),共有4個(gè);第二類辦法是找含因數(shù)3的合數(shù),共有2個(gè);第三類辦法是找含因數(shù)5的合數(shù),共有1個(gè).

1~10中一共有N=4+2+1=7個(gè)合數(shù).

題2:在前面的問(wèn)題2中,步行從A村到B村的北路需要8時(shí),中路需要4時(shí),南路需要6時(shí),B村到C村的北路需要5時(shí),南路需要3時(shí),要求步行從A村到C村的總時(shí)數(shù)不超過(guò)12時(shí),共有多少種不同的走法?

第一步從A村到B村有3種走法,第二步從B村到C村有2種走法,共有N=3×2=6種不同走法.

題2中的合數(shù)是4,6,8,9,10這五個(gè),其中6既含有因數(shù)2,也含有因數(shù)3;10既含有因數(shù)2,也含有因數(shù)5.題中的分析是錯(cuò)誤的.

從A村到C村總時(shí)數(shù)不超過(guò)12時(shí)的走法共有5種.題2中從A村走北路到B村后再到C村,只有南路這一種走法.

(此時(shí)給出題1和題2的目的是為了引導(dǎo)學(xué)生找出應(yīng)用兩個(gè)基本原理的注意事項(xiàng),這樣安排,不但可以使學(xué)生對(duì)兩個(gè)基本原理的理解更深刻,而且還可以培養(yǎng)學(xué)生的學(xué)習(xí)能力)

進(jìn)行分類時(shí),要求各類辦法彼此之間是相互排斥的,不論哪一類辦法中的哪一種方法,都能單獨(dú)完成這件事.只有滿足這個(gè)條件,才能直接用加法原理,否則不可以.

如果完成一件事需要分成幾個(gè)步驟,各步驟都不可缺少,需要依次完成所有步驟才能完成這件事,而各步要求相互獨(dú)立,即相對(duì)于前一步的每一種方法,下一步都有m種不同的方法,那么計(jì)算完成這件事的方法數(shù)時(shí),就可以直接應(yīng)用乘法原理.

也就是說(shuō):類類互斥,步步獨(dú)立.

(在學(xué)生對(duì)問(wèn)題的分析不是很清楚時(shí),教師及時(shí)地歸納小結(jié),能使學(xué)生在應(yīng)用兩個(gè)基本原理時(shí),思路進(jìn)一步清晰和明確,不再簡(jiǎn)單地認(rèn)為什么樣的分類都可以直接用加法,只要分步而不管是否相互聯(lián)系就用乘法.從而深入理解兩個(gè)基本原理中分類、分步的真正含義和實(shí)質(zhì))

(三)應(yīng)用舉例

現(xiàn)在我們已經(jīng)有了兩個(gè)基本原理,我們可以用它們來(lái)解決一些簡(jiǎn)單問(wèn)題了.

例1 書架上放有3本不同的數(shù)學(xué)書,5本不同的語(yǔ)文書,6本不同的英語(yǔ)書.

(1)若從這些書中任取一本,有多少種不同的取法?

(2)若從這些書中,取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各一本,有多少種不同的取法?

(3)若從這些書中取不同的科目的書兩本,有多少種不同的取法?

(讓學(xué)生思考,要求依據(jù)兩個(gè)基本原理寫出這3個(gè)問(wèn)題的答案及理由,教師巡視指導(dǎo),并適時(shí)口述解法)

(1)從書架上任取一本書,可以有3類辦法:第一類辦法是從3本不同數(shù)學(xué)書中任取1本,有3種方法;第二類辦法是從5本不同的語(yǔ)文書中任取1本,有5種方法;第三類辦法是從6本不同的英語(yǔ)書中任取一本,有6種方法.根據(jù)加法原理,得到的取法種數(shù)是

N=m1+m2+m3=3+5+6=14.故從書架上任取一本書的不同取法有14種.

(2)從書架上任取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各1本,需要分成三個(gè)步驟完成,第一步取1本數(shù)學(xué)書,有3種方法;第二步取1本語(yǔ)文書,有5種方法;第三步取1本英語(yǔ)書,有6種方法.根據(jù)乘法原理,得到不同的取法種數(shù)是N=m1×m2×m3=3×5×6=90.故,從書架上取數(shù)學(xué)書、語(yǔ)文書、英語(yǔ)書各1本,有90種不同的方法.

(3)從書架上任取不同科目的書兩本,可以有3類辦法:第一類辦法是數(shù)學(xué)書、語(yǔ)文書各取1本,需要分兩個(gè)步驟,有3×5種方法;第二類辦法是數(shù)學(xué)書、英語(yǔ)書各取1本,需要分兩個(gè)步驟,有3×6種方法;第三類辦法是語(yǔ)文書、英語(yǔ)書各取1本,有5×6種方法.一共得到不同的取法種數(shù)是N=3×5+3×6+5×6=63.即,從書架任取不同科目的書兩本的不同取法有63種.

例2 由數(shù)字0,1,2,3,4可以組成多少個(gè)三位整數(shù)(各位上的數(shù)字允許重復(fù))?

解:要組成一個(gè)三位數(shù),需要分成三個(gè)步驟:第一步確定百位上的數(shù)字,從1~4這4個(gè)數(shù)字中任選一個(gè)數(shù)字,有4種選法;第二步確定十位上的數(shù)字,由于數(shù)字允許重復(fù),共有5種選法;第三步確定個(gè)位上的數(shù)字,仍有5種選法.根據(jù)乘法原理,得到可以組成的三位整數(shù)的個(gè)數(shù)是N=4×5×5=100.

答:可以組成100個(gè)三位整數(shù).

教師的連續(xù)發(fā)問(wèn)、啟發(fā)、引導(dǎo),幫助學(xué)生找到正確的解題思路和計(jì)算方法,使學(xué)生的分析問(wèn)題能力有所提高.教師在第二個(gè)例題中給出板書示范,能幫助學(xué)生進(jìn)一步加深對(duì)兩個(gè)基本原理實(shí)質(zhì)的理解,周密的考慮,準(zhǔn)確的表達(dá)、規(guī)范的書寫,對(duì)于學(xué)生周密思考、準(zhǔn)確表達(dá)、規(guī)范書寫良好習(xí)慣的形成有著積極的促進(jìn)作用,也可以為學(xué)生后面應(yīng)用兩個(gè)基本原理解排列、組合綜合題打下基礎(chǔ).

(四)歸納小結(jié)

歸納什么時(shí)候用加法原理、什么時(shí)候用乘法原理:

分類時(shí)用加法原理,分步時(shí)用乘法原理.

應(yīng)用兩個(gè)基本原理時(shí)需要注意分類時(shí)要求各類辦法彼此之間相互排斥;分步時(shí)要求各步是相互獨(dú)立的.

(五)課堂練習(xí)

P222:練習(xí)1~4.

(對(duì)于題4,教師有必要對(duì)三個(gè)多項(xiàng)式乘積展開后各項(xiàng)的構(gòu)成給以提示)

(六)布置作業(yè)

P222:練習(xí)5,6,7.

補(bǔ)充題:

1.在所有的兩位數(shù)中,個(gè)位數(shù)字小于十位數(shù)字的共有多少個(gè)?

(提示:按十位上數(shù)字的大小可以分為9類,共有9+8+7+…+2+1=45個(gè)個(gè)位數(shù)字小于十位數(shù)字的兩位數(shù))

2.某學(xué)生填報(bào)高考志愿,有m個(gè)不同的志愿可供選擇,若只能按第一、二、三志愿依次填寫3個(gè)不同的志愿,求該生填寫志愿的方式的種數(shù).

(提示:需要按三個(gè)志愿分成三步,共有m(m-1)(m-2)種填寫方式)

3.在所有的三位數(shù)中,有且只有兩個(gè)數(shù)字相同的三位數(shù)共有多少個(gè)?

(提示:可以用下面方法來(lái)求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)類中每類都是9×9種,共有9×9+9×9+9×9=3×9×9=243個(gè)只有兩個(gè)數(shù)字相同的三位數(shù))

4.某小組有10人,每人至少會(huì)英語(yǔ)和日語(yǔ)中的一門,其中8人會(huì)英語(yǔ),5人會(huì)日語(yǔ),(1)從中任選一個(gè)會(huì)外語(yǔ)的人,有多少種選法?(2)從中選出會(huì)英語(yǔ)與會(huì)日語(yǔ)的各1人,有多少種不同的選法?

(提示:由于8+5=13>10,所以10人中必有3人既會(huì)英語(yǔ)又會(huì)日語(yǔ).

(1)N=5+2+3;(2)N=5×2+5×3+2×3)

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇3

一、指導(dǎo)思想

1、培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識(shí)分析問(wèn)題和解決問(wèn)題的能力.使學(xué)生逐步地學(xué)會(huì)觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過(guò)程的能力.

2、根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺(jué)心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神.

3、使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識(shí)數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會(huì)數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀.

二、目的要求

1.深入鉆研教材,以教材為核心,“以綱為綱,以本為本”深入研究教材中章節(jié)知識(shí)的內(nèi)外結(jié)構(gòu),熟練把握知識(shí)的邏輯體系和網(wǎng)絡(luò)結(jié)構(gòu),細(xì)致領(lǐng)會(huì)教材改革的精髓,把握通性通法,逐步明確教材對(duì)教學(xué)形式、內(nèi)容和教學(xué)目標(biāo)的影響.

2.因材施教,以學(xué)生為學(xué)習(xí)的主體,構(gòu)建新的認(rèn)知體系,營(yíng)造有利于學(xué)生學(xué)習(xí)的氛圍.

3.加強(qiáng)課堂教學(xué)研究,科學(xué)設(shè)計(jì)教學(xué)方法,扎實(shí)有效的提高課堂教學(xué)效果,全面提高數(shù)學(xué)教學(xué)質(zhì)量.

三、具體措施

1.不孤立記憶和認(rèn)識(shí)各個(gè)知識(shí)點(diǎn),而要將其放到相應(yīng)的體系結(jié)構(gòu)中,在比較、辨析的過(guò)程中尋求其內(nèi)在聯(lián)系,達(dá)到理解層次,注意知識(shí)塊的復(fù)習(xí),構(gòu)建知識(shí)網(wǎng)路.注重基礎(chǔ)知識(shí)和基本解題技能,注意基本概念、基本定理、公式的辨析比較,靈活運(yùn)用;力求有意識(shí)的分析理解能力;尤其是數(shù)學(xué)語(yǔ)言的表達(dá)形式,推力論證要思路清晰、整體完整.

2.學(xué)會(huì)分析,首先是閱讀理解,側(cè)重于解題前對(duì)信息的捕捉和思路的探索;其次是解題回顧,側(cè)重于經(jīng)驗(yàn)及教訓(xùn)的總結(jié),重視常見(jiàn)題型及通法通解.

3.以“錯(cuò)”糾錯(cuò),查缺補(bǔ)漏,反思錯(cuò)誤,嚴(yán)格訓(xùn)練,規(guī)范解題,養(yǎng)成:想明白,寫清楚,算準(zhǔn)確的習(xí)慣,注意思路的清晰性、思維的嚴(yán)謹(jǐn)性、敘述的條理性、結(jié)果的準(zhǔn)確性,注重書寫過(guò)程,舉一反三,及時(shí)歸納,觸類旁通,加強(qiáng)數(shù)學(xué)思想和數(shù)學(xué)方法的應(yīng)用.

4.協(xié)調(diào)好講、練、評(píng)、輔之間的關(guān)系,追求數(shù)學(xué)復(fù)習(xí)的效果,注重實(shí)效,努力提高復(fù)習(xí)教學(xué)的效率和效益;精心設(shè)計(jì)教學(xué),做到精講精練,不加重學(xué)生的負(fù)擔(dān),避免“題海戰(zhàn)” ,精心準(zhǔn)備,講評(píng)到為,做到講評(píng)試卷或例題時(shí):講清考察了那些知識(shí)點(diǎn),怎樣審題,怎樣打開解題思路,用到了那些方法技巧,關(guān)鍵步驟在那里,哪些是典型錯(cuò)誤,是知識(shí)和是邏輯,是方法、是心理上、策略上的錯(cuò)誤,針對(duì)學(xué)生的錯(cuò)誤調(diào)整復(fù)習(xí)策略,使復(fù)習(xí)更加有重點(diǎn)、針對(duì)性,加快教學(xué)節(jié)奏,提高教學(xué)效率.

5.周密計(jì)劃合理安排,現(xiàn)數(shù)學(xué)學(xué)科特點(diǎn),注重知識(shí)能力的提高,提升綜合解題能力,加強(qiáng)解題教學(xué),使學(xué)生在解題探究中提高能力.

6.多從“貼近教材、貼近學(xué)生、貼近實(shí)際”角度,選擇典型的數(shù)學(xué)聯(lián)系生活、生產(chǎn)、環(huán)境和科技方面的問(wèn)題,對(duì)學(xué)生進(jìn)行有計(jì)劃、針對(duì)性強(qiáng)的訓(xùn)練,多給學(xué)生鍛煉各種能力的機(jī)會(huì),從而達(dá)到提升學(xué)生數(shù)學(xué)綜合能力之目的.不脫離基礎(chǔ)知識(shí)來(lái)講學(xué)生的能力,基礎(chǔ)扎實(shí)的學(xué)生不一定能力 強(qiáng).教學(xué)中,不斷地將基礎(chǔ)知識(shí)運(yùn)用于數(shù)學(xué)問(wèn)題的解決中,努力提高學(xué)生的學(xué)科綜合能力.

新的學(xué)期是新的起點(diǎn),新的希望。通過(guò)這份高二數(shù)學(xué)上學(xué)期教學(xué)工作計(jì)劃,我相信自己在本學(xué)期一定能夠?qū)蓚€(gè)班的數(shù)學(xué)成績(jī)帶上去,我相信,我能行。

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇4

教學(xué)內(nèi)容:

簡(jiǎn)單的排列組合

教學(xué)目標(biāo):

1.使學(xué)生通過(guò)觀察、猜測(cè)、實(shí)驗(yàn)、驗(yàn)證等活動(dòng),找出簡(jiǎn)單事件的排列數(shù)或組合數(shù)。

2.培養(yǎng)學(xué)生有序地、全面地思考問(wèn)題的意識(shí)和習(xí)慣。

教學(xué)過(guò)程:

1.借助操作活動(dòng)或?qū)W生易于理解的事例來(lái)幫助學(xué)生找出組合數(shù)。師生共同分析練習(xí)二十五第1題。讓學(xué)生小組討論,充分發(fā)表自己的意見(jiàn)。

2.利用直觀圖示幫助學(xué)生有序地、不重不漏地找出早餐搭配的組合數(shù)。

3、出示練習(xí)二十五第3題。

學(xué)生看題后,四人小組討論出有多少種求組合數(shù)的方法。

4、學(xué)生匯報(bào)。

(1)圖示表示法(兩種)。引導(dǎo)學(xué)生用畫簡(jiǎn)圖的方式來(lái)表示抽象的數(shù)學(xué)知識(shí)。

(2)其他的方法,例如聰聰或明明分別可以和每一個(gè)小朋友合影(分步時(shí),可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學(xué)時(shí)充分發(fā)揮學(xué)生的創(chuàng)造性。至于學(xué)生用哪種方法求出來(lái),都沒(méi)關(guān)系。但要引導(dǎo)學(xué)生思考如何才能不重不漏,發(fā)展學(xué)生有序地思考問(wèn)題的意識(shí)和能力。

(3)學(xué)生自己用圖示表示時(shí),可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標(biāo)上序號(hào)。實(shí)際這是發(fā)展學(xué)生用數(shù)學(xué)化的符號(hào)表示具體事件的能力的一個(gè)體現(xiàn)。

(4)如果學(xué)生用簡(jiǎn)圖的方式來(lái)表示有困難,也可以讓學(xué)生回憶一下二年級(jí)上冊(cè)的例子或借助學(xué)具卡片擺一擺。

2.“做一做”

(1)練習(xí)二十五第7題。

通過(guò)活動(dòng)的方式讓學(xué)生不重不漏地把所有取錢的情況寫出來(lái)。

(2)練習(xí)二十五第9題。

用兩種圖示法表示兩兩組合的方式(比較簡(jiǎn)單的兩種方式)。在教學(xué)中也要允許有的學(xué)生把所有的情況逐一羅列出來(lái),只要他通過(guò)自己的方法探索出所有的組合數(shù),都是應(yīng)該鼓勵(lì)的。

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇5

教學(xué)目標(biāo):

1、在新學(xué)期能夠以積極的學(xué)習(xí)態(tài)度投入到學(xué)習(xí)中去,并用高昂的興趣參與學(xué)習(xí)。

2、熟悉新學(xué)期音樂(lè)課的要求,并能夠有意識(shí)的遵守,以良好的學(xué)習(xí)習(xí)慣規(guī)范自己在課堂中的表現(xiàn)。

教學(xué)重點(diǎn):

養(yǎng)成良好的學(xué)習(xí)習(xí)慣

教學(xué)過(guò)程:

一.師生互相問(wèn)好,拉近彼此的距離。

二.師生共同演繹節(jié)目,學(xué)生表演,老師表演,增進(jìn)彼此感情,與孩子打成一片。

三.講述新學(xué)期音樂(lè)課要求:

1、按時(shí)按順序進(jìn)入教室,不遲到,不早退。

2、進(jìn)入教室不得高聲喧嘩打鬧,保持安靜狀態(tài)。

3、認(rèn)真保持教室衛(wèi)生,不亂扔果皮紙屑,不隨地吐痰。

4、課堂上發(fā)言積極有序,有禮有節(jié),爭(zhēng)做文明小學(xué)生。

5、做到愛(ài)護(hù)公共物品,輕拿輕放,損壞照價(jià)賠償。

6、上課保持良好的狀態(tài),以積極的態(tài)度認(rèn)真學(xué)習(xí)。

四、習(xí)慣養(yǎng)成訓(xùn)練,聽(tīng)音樂(lè)做出相關(guān)要求:

1、起立、坐下

2、安靜

3、師生問(wèn)好

4、請(qǐng)坐好

5、同桌面對(duì)

五、分組選撥,并對(duì)小組長(zhǎng)提出要求

1、四人一小組

2、講述課堂要求,小組合作學(xué)習(xí),評(píng)價(jià)真實(shí)客觀,學(xué)會(huì)欣賞別人;正當(dāng)優(yōu)秀小組,小組團(tuán)結(jié)合作,富有創(chuàng)新;組長(zhǎng)根據(jù)組員的表現(xiàn),從紀(jì)律、學(xué)習(xí)習(xí)慣、上課表現(xiàn)上進(jìn)行評(píng)價(jià)計(jì)分,獲得3分就可獲得一張綠卡。

小結(jié):

希望第一節(jié)課能讓師生互相留下印象,更好的進(jìn)行今后的音樂(lè)教學(xué),把音樂(lè)課上的更加的有聲有色。

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇6

一、教材分析

1、從在教材中的地位與作用來(lái)看

《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過(guò)程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

2、從學(xué)生認(rèn)知角度看

從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò)。

3、學(xué)情分析

教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問(wèn)題和解決問(wèn)題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。

4、重點(diǎn)、難點(diǎn)

教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。

教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用。

公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn)。

二、目標(biāo)分析

知識(shí)與技能目標(biāo):

理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題。

過(guò)程與方法目標(biāo):

通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)

化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

情感與態(tài)度價(jià)值觀:

通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn)。

三、過(guò)程分析

學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過(guò)程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過(guò)程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過(guò)程:

1、創(chuàng)設(shè)情境,提出問(wèn)題

在古印度,有個(gè)名叫西薩的人,發(fā)明了國(guó)際象棋,當(dāng)時(shí)的印度國(guó)王大為贊賞,對(duì)他說(shuō):我可以滿足你的任何要求。西薩說(shuō):請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國(guó)王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來(lái)后,國(guó)王大吃一驚。為什么呢?

設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn)。

此時(shí)我問(wèn):同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù)。帶著這樣的問(wèn)題,學(xué)生會(huì)動(dòng)手算了起來(lái),他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和。這時(shí)我對(duì)他們的這種思路給予肯定。

設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無(wú)用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的`認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過(guò)彎來(lái),因而在教學(xué)中應(yīng)舍得花時(shí)間營(yíng)造知識(shí)形成過(guò)程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問(wèn)題的新方法,為后面的教學(xué)埋下伏筆、

2、師生互動(dòng),探究問(wèn)題

在肯定他們的思路后,我接著問(wèn):1,2,22,.....,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問(wèn)題呢?

探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)

探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來(lái)這是“天經(jīng)地義”的,但在學(xué)生看來(lái)卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī)。

經(jīng)過(guò)比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:。老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過(guò)程,反思:為什么(1)式兩邊要同乘以2呢?

設(shè)計(jì)意圖:經(jīng)過(guò)繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡(jiǎn)潔了!讓學(xué)生在探索過(guò)程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。

3、類比聯(lián)想,解決問(wèn)題

這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,

這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo)。

設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感。

對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ)。)

再次追問(wèn):結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn—1,如何把sn用a1、an、q表示出來(lái)?(引導(dǎo)學(xué)生得出公式的另一形式)

設(shè)計(jì)意圖:通過(guò)反問(wèn)精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡(jiǎn)單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用。

4、討論交流,延伸拓展

在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項(xiàng)和公式,還有其它方法嗎?我們知道,

那么我們能否利用這個(gè)關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?

設(shè)計(jì)意圖:以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營(yíng)造一個(gè)讓學(xué)生主動(dòng)觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實(shí)就是關(guān)于的一個(gè)遞推式,遞推數(shù)列有非常重要的研究?jī)r(jià)值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對(duì)學(xué)生的思維發(fā)展有促進(jìn)作用、

5、變式訓(xùn)練,深化認(rèn)識(shí)

首先,學(xué)生獨(dú)立思考,自主解題,再請(qǐng)學(xué)生上臺(tái)來(lái)幻燈演示他們的解答,其它同學(xué)進(jìn)行評(píng)價(jià),然后師生共同進(jìn)行總結(jié)。

設(shè)計(jì)意圖:采用變式教學(xué)設(shè)計(jì)題組,深化學(xué)生對(duì)公式的認(rèn)識(shí)和理解,通過(guò)直接套用公式、變式運(yùn)用公式、研究公式特點(diǎn)這三個(gè)層次的問(wèn)題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成。通過(guò)以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識(shí)和競(jìng)爭(zhēng)意識(shí)。

6、例題講解,形成技能

設(shè)計(jì)意圖:解題時(shí),以學(xué)生分析為主,教師適時(shí)給予點(diǎn)撥,該題有意培養(yǎng)學(xué)生對(duì)含有參數(shù)的問(wèn)題進(jìn)行分類討論的數(shù)學(xué)思想。

7、總結(jié)歸納,加深理解

以問(wèn)題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵(lì)學(xué)生積極回答,然后老師再?gòu)闹R(shí)點(diǎn)及數(shù)學(xué)思想方法兩方面總結(jié)。

設(shè)計(jì)意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。

8、故事結(jié)束,首尾呼應(yīng)

最后我們回到故事中的問(wèn)題,我們可以計(jì)算出國(guó)王獎(jiǎng)賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽(yáng)鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國(guó)王兌現(xiàn)不了他的承諾。

設(shè)計(jì)意圖:把引入課題時(shí)的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。

9、課后作業(yè),分層練習(xí)

必做:P129練習(xí)1、2、3、4

選作:

(2)“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈?”這首中國(guó)古詩(shī)的答案是多少?

設(shè)計(jì)意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。

四、教法分析

對(duì)公式的教學(xué),要使學(xué)生掌握與理解公式的來(lái)龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用“問(wèn)題――探究”的教學(xué)模式,把整個(gè)課堂分為呈現(xiàn)問(wèn)題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個(gè)階段。

利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開,從而優(yōu)化了教學(xué)過(guò)程,大大提高了課堂教學(xué)效率。

五、評(píng)價(jià)分析

本節(jié)課通過(guò)三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項(xiàng)和公式。錯(cuò)位相減:變加為減,等價(jià)轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實(shí)。學(xué)生從中深刻地領(lǐng)會(huì)到推導(dǎo)過(guò)程中所蘊(yùn)含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時(shí)通過(guò)精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識(shí),又形成了技能。在此基礎(chǔ)上,通過(guò)民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇7

(一)教學(xué)具準(zhǔn)備

直尺,投影儀.

(二)教學(xué)目標(biāo)

1、掌握,的定義域、值域、最值、單調(diào)區(qū)間.

2、會(huì)求含有、的三角式的定義域.

(三)教學(xué)過(guò)程

1、設(shè)置情境

研究函數(shù)就是要討論一些性質(zhì),是函數(shù),我們當(dāng)然也要探討它的一些屬性.本節(jié)課,我們就來(lái)研究正弦函數(shù)、余弦函數(shù)的最基本的兩條性質(zhì).

2、探索研究

師:同學(xué)們回想一下,研究一個(gè)函數(shù)常要研究它的哪些性質(zhì)?

生:定義域、值域,單調(diào)性、奇偶性、等等.

師:很好,今天我們就來(lái)探索,兩條最基本的性質(zhì)定義域、值域.(板書課題正、余弦函數(shù)的定義域、值域.)

師:請(qǐng)同學(xué)看投影,大家仔細(xì)觀察一下正弦、余弦曲線的圖像.

師:請(qǐng)同學(xué)思考以下幾個(gè)問(wèn)題:

(1)正弦、余弦函數(shù)的定義域是什么?

(2)正弦、余弦函數(shù)的值域是什么?

(3)他們最值情況如何?

(4)他們的正負(fù)值區(qū)間如何分?

(5)的解集如何?

師生一起歸納得出:

(1)正弦函數(shù)、余弦函數(shù)的定義域都是.

(2)正弦函數(shù)、余弦函數(shù)的值域都是即,稱為正弦函數(shù)、余弦函數(shù)的有界性.

(3)取最大值、最小值情況:

正弦函數(shù),當(dāng)時(shí),()函數(shù)值取最大值1,當(dāng)時(shí),()函數(shù)值取最小值-1.

余弦函數(shù),當(dāng),()時(shí),函數(shù)值取最大值1,當(dāng),()時(shí),函數(shù)值取最小值-1.

(4)正負(fù)值區(qū)間:

()

(5)零點(diǎn):()

()

3、例題分析

【例1】求下列函數(shù)的定義域、值域:

(1);(2);(3).

解:(1),

(2)由()

又∵,∴

∴定義域?yàn)椋ǎ涤驗(yàn)椋?/p>

(3)由(),又由

∴定義域?yàn)椋ǎ涤驗(yàn)椋?/p>

指出:求值域應(yīng)注意用到或有界性的&39;條件.

【例2】求下列函數(shù)的最大值,并求出最大值時(shí)的集合:

(1),;(2),;

(3)(4).

解:(1)當(dāng),即()時(shí),取得最大值

∴函數(shù)的最大值為2,取最大值時(shí)的集合為.

(2)當(dāng)時(shí),即()時(shí),取得最大值.

∴函數(shù)的最大值為1,取最大值時(shí)的集合為.

(3)若,此時(shí)函數(shù)為常數(shù)函數(shù).

若時(shí),∴時(shí),即()時(shí),函數(shù)取最大值,

∴時(shí)函數(shù)的最大值為,取最大值時(shí)的集合為.

(4)若,則當(dāng)時(shí),函數(shù)取得最大值.

若,則,此時(shí)函數(shù)為常數(shù)函數(shù).

若,當(dāng)時(shí),函數(shù)取得最大值.

∴當(dāng)時(shí),函數(shù)取得最大值,取得最大值時(shí)的集合為;當(dāng)時(shí),函數(shù)取得最大值,取得最大值時(shí)的集合為,當(dāng)時(shí),函數(shù)無(wú)最大值.

指出:對(duì)于含參數(shù)的最大值或最小值問(wèn)題,要對(duì)或的系數(shù)進(jìn)行討論.

思考:此例若改為求最小值,結(jié)果如何?

【例3】要使下列各式有意義應(yīng)滿足什么條件?

(1);(2).

解:(1)由,

∴當(dāng)時(shí),式子有意義.

(2)由,即

∴當(dāng)時(shí),式子有意義.

4.演練反饋(投影)

(1)函數(shù),的簡(jiǎn)圖是()

(2)函數(shù)的最大值和最小值分別為()

A.2,-2B.4,0C.2,0D.4,-4

(3)函數(shù)的最小值是()

A.B.-2C.D.

(4)如果與同時(shí)有意義,則的取值范圍應(yīng)為()

A.B.C.D.或

(5)與都是增函數(shù)的區(qū)間是()

A.,B.,

C.,D.,

(6)函數(shù)的定義域________,值域________,時(shí)的集合為_________.

參考答案:1.B2.B3.A4.C5.D

6.;;

5.總結(jié)提煉

(1),的定義域均為.

(2)、的值域都是

(3)有界性:

(4)最大值或最小值都存在,且取得極值的集合為無(wú)限集.

(5)正負(fù)敬意及零點(diǎn),從圖上一目了然.

(6)單調(diào)區(qū)間也可以從圖上看出.

(四)板書設(shè)計(jì)

1.定義域

2.值域

3.最值

4.正負(fù)區(qū)間

5.零點(diǎn)

例1

例2

例3

課堂練習(xí)

課后思考題:求函數(shù)的最大值和最小值及取最值時(shí)的集合

提示:

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇8

教學(xué)目標(biāo):

1·進(jìn)一步理解對(duì)數(shù)函數(shù)的性質(zhì),能運(yùn)用對(duì)數(shù)函數(shù)的相關(guān)性質(zhì)解決對(duì)數(shù)型函數(shù)的常見(jiàn)問(wèn)題·

2·培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,以及分析推理的能力·

教學(xué)重點(diǎn):

對(duì)數(shù)函數(shù)性質(zhì)的應(yīng)用·

教學(xué)難點(diǎn):

對(duì)數(shù)函數(shù)的性質(zhì)向?qū)?shù)型函數(shù)的演變延伸·

教學(xué)過(guò)程:

一、問(wèn)題情境

1·復(fù)習(xí)對(duì)數(shù)函數(shù)的性質(zhì)·

2·回答下列問(wèn)題·

(1)函數(shù)y=log2x的值域是;

(2)函數(shù)y=log2x(x≥1)的值域是;

(3)函數(shù)y=log2x(0

3·情境問(wèn)題·

函數(shù)y=log2(x2+2x+2)的定義域和值域分別如何求呢?

二、學(xué)生活動(dòng)

探究完成情境問(wèn)題·

三、數(shù)學(xué)運(yùn)用

例1求函數(shù)y=log2(x2+2x+2)的定義域和值域·

練習(xí):

(1)已知函數(shù)y=log2x的值域是[—2,3],則x的范圍是________________·

(2)函數(shù),x(0,8]的值域是·

(3)函數(shù)y=log(x2—6x+17)的值域·

(4)函數(shù)的.值域是_______________·

例2判斷下列函數(shù)的奇偶性:

(1)f(x)=lg(2)f(x)=ln(—x)

例3已知loga0·75>1,試求實(shí)數(shù)a取值范圍·

例4已知函數(shù)y=loga(1—ax)(a>0,a≠1)·

(1)求函數(shù)的定義域與值域;

(2)求函數(shù)的單調(diào)區(qū)間·

練習(xí):

1·下列函數(shù)(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域?yàn)镽的有(請(qǐng)寫出所有正確結(jié)論的序號(hào))·

2·函數(shù)y=lg(—1)的圖象關(guān)于對(duì)稱·

3·已知函數(shù)(a>0,a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱,那么實(shí)數(shù)m=·

4·求函數(shù),其中x[,9]的值域·

四、要點(diǎn)歸納與方法小結(jié)

(1)借助于對(duì)數(shù)函數(shù)的性質(zhì)研究對(duì)數(shù)型函數(shù)的定義域與值域;

(2)換元法;

(3)能畫出較復(fù)雜函數(shù)的圖象,根據(jù)圖象研究函數(shù)的性質(zhì)(數(shù)形結(jié)合)·

五、作業(yè)

課本P70~71—4,5,10,11·

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇9

●知識(shí)梳理

函數(shù)的綜合應(yīng)用主要體現(xiàn)在以下幾方面:

1.函數(shù)內(nèi)容本身的相互綜合,如函數(shù)概念、性質(zhì)、圖象等方面知識(shí)的綜合.

2.函數(shù)與其他數(shù)學(xué)知識(shí)點(diǎn)的綜合,如方程、不等式、數(shù)列、解析幾何等方面的內(nèi)容與函數(shù)的綜合.這是高考主要考查的內(nèi)容.

3.函數(shù)與實(shí)際應(yīng)用問(wèn)題的綜合.

●點(diǎn)擊雙基

1.已知函數(shù)f(x)=lg(2x-b)(b為常數(shù)),若x[1,+)時(shí),f(x)0恒成立,則

A.b1B.b1C.b1D.b=1

解析:當(dāng)x[1,+)時(shí),f(x)0,從而2x-b1,即b2x-1.而x[1,+)時(shí),2x-1單調(diào)增加,

b2-1=1.

答案:A

2.若f(x)是R上的減函數(shù),且f(x)的圖象經(jīng)過(guò)點(diǎn)A(0,3)和B(3,-1),則不等式f(x+1)-12的解集是___________________.

解析:由f(x+1)-12得-2

又f(x)是R上的減函數(shù),且f(x)的圖象過(guò)點(diǎn)A(0,3),B(3,-1),

f(3)

答案:(-1,2)

●典例剖析

【例1】取第一象限內(nèi)的點(diǎn)P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差數(shù)列,1,y1,y2,2依次成等比數(shù)列,則點(diǎn)P1、P2與射線l:y=x(x0)的關(guān)系為

A.點(diǎn)P1、P2都在l的上方B.點(diǎn)P1、P2都在l上

C.點(diǎn)P1在l的下方,P2在l的上方D.點(diǎn)P1、P2都在l的下方

剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1

P1、P2都在l的下方.

答案:D

【例2】已知f(x)是R上的偶函數(shù),且f(2)=0,g(x)是R上的奇函數(shù),且對(duì)于xR,都有g(shù)(x)=f(x-1),求f(20__)的值.

解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),xR.

f(x)為周期函數(shù),其周期T=4.

f(20__)=f(4500+2)=f(2)=0.

評(píng)述:應(yīng)靈活掌握和運(yùn)用函數(shù)的奇偶性、周期性等性質(zhì).

【例3】函數(shù)f(x)=(m0),x1、x2R,當(dāng)x1+x2=1時(shí),f(x1)+f(x2)=.

(1)求m的值;

(2)數(shù)列{an},已知an=f(0)+f()+f()++f()+f(1),求an.

解:(1)由f(x1)+f(x2)=,得+=,

4+4+2m=[4+m(4+4)+m2].

∵x1+x2=1,(2-m)(4+4)=(m-2)2.

4+4=2-m或2-m=0.

∵4+42=2=4,

而m0時(shí)2-m2,4+42-m.

m=2.

(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).

2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.

an=.

深化拓展

用函數(shù)的思想處理方程、不等式、數(shù)列等問(wèn)題是一重要的思想方法.

【例4】函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意x、yR,有f(x+y)=f(x)+f(y),且當(dāng)x0時(shí),f(x)0,f(1)=-2.

(1)證明f(x)是奇函數(shù);

(2)證明f(x)在R上是減函數(shù);

(3)求f(x)在區(qū)間[-3,3]上的最大值和最小值.

(1)證明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.從而有f(x)+f(-x)=0.

f(-x)=-f(x).f(x)是奇函數(shù).

(2)證明:任取x1、x2R,且x10.f(x2-x1)0.

-f(x2-x1)0,即f(x1)f(x2),從而f(x)在R上是減函數(shù).

(3)解:由于f(x)在R上是減函數(shù),故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.從而最大值是6,最小值是-6.

深化拓展

對(duì)于任意實(shí)數(shù)x、y,定義運(yùn)算x__y=ax+by+cxy,其中a、b、c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算.現(xiàn)已知1__2=3,2__3=4,并且有一個(gè)非零實(shí)數(shù)m,使得對(duì)于任意實(shí)數(shù)x,都有x__m=x,試求m的值.

提示:由1__2=3,2__3=4,得

b=2+2c,a=-1-6c.

又由x__m=ax+bm+cmx=x對(duì)于任意實(shí)數(shù)x恒成立,

b=0=2+2c.

c=-1.(-1-6c)+cm=1.

-1+6-m=1.m=4.

答案:4.

●闖關(guān)訓(xùn)練

夯實(shí)基礎(chǔ)

1.已知y=f(x)在定義域[1,3]上為單調(diào)減函數(shù),值域?yàn)閇4,7],若它存在反函數(shù),則反函數(shù)在其定義域上

A.單調(diào)遞減且最大值為7B.單調(diào)遞增且最大值為7

C.單調(diào)遞減且最大值為3D.單調(diào)遞增且最大值為3

解析:互為反函數(shù)的兩個(gè)函數(shù)在各自定義區(qū)間上有相同的增減性,f-1(x)的值域是[1,3].

答案:C

2.關(guān)于x的方程x2-4x+3-a=0有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的值是___________________.

解析:作函數(shù)y=x2-4x+3的圖象,如下圖.

由圖象知直線y=1與y=x2-4x+3的圖象有三個(gè)交點(diǎn),即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三個(gè)不相等的實(shí)數(shù)根,因此a=1.

答案:1

3.若存在常數(shù)p0,使得函數(shù)f(x)滿足f(px)=f(px-)(xR),則f(x)的一個(gè)正周期為__________.

解析:由f(px)=f(px-),

令px=u,f(u)=f(u-)=f[(u+)-],T=或的整數(shù)倍.

答案:(或的整數(shù)倍)

4.已知關(guān)于x的方程sin2x-2sinx-a=0有實(shí)數(shù)解,求a的取值范圍.

解:a=sin2x-2sinx=(sinx-1)2-1.

∵-11,0(sinx-1)24.

a的范圍是[-1,3].

5.記函數(shù)f(x)=的定義域?yàn)锳,g(x)=lg[(x-a-1)(2a-x)](a1)的定義域?yàn)锽.

(1)求A;

(2)若BA,求實(shí)數(shù)a的取值范圍.

解:(1)由2-0,得0,

x-1或x1,即A=(-,-1)[1,+).

(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.

∵a1,a+12a.B=(2a,a+1).

∵BA,2a1或a+1-1,即a或a-2.

而a1,1或a-2.

故當(dāng)BA時(shí),實(shí)數(shù)a的取值范圍是(-,-2][,1).

培養(yǎng)能力

6.(理)已知二次函數(shù)f(x)=x2+bx+c(b0,cR).

若f(x)的定義域?yàn)閇-1,0]時(shí),值域也是[-1,0],符合上述條件的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.

解:設(shè)符合條件的f(x)存在,

∵函數(shù)圖象的對(duì)稱軸是x=-,

又b0,-0.

①當(dāng)-0,即01時(shí),

函數(shù)x=-有最小值-1,則

或(舍去).

②當(dāng)-1-,即12時(shí),則

(舍去)或(舍去).

③當(dāng)--1,即b2時(shí),函數(shù)在[-1,0]上單調(diào)遞增,則解得

綜上所述,符合條件的函數(shù)有兩個(gè),

f(x)=x2-1或f(x)=x2+2x.

(文)已知二次函數(shù)f(x)=x2+(b+1)x+c(b0,cR).

若f(x)的定義域?yàn)閇-1,0]時(shí),值域也是[-1,0],符合上述條件的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由.

解:∵函數(shù)圖象的對(duì)稱軸是

x=-,又b0,--.

設(shè)符合條件的f(x)存在,

①當(dāng)--1時(shí),即b1時(shí),函數(shù)f(x)在[-1,0]上單調(diào)遞增,則

②當(dāng)-1-,即01時(shí),則

(舍去).

綜上所述,符合條件的函數(shù)為f(x)=x2+2x.

7.已知函數(shù)f(x)=x+的定義域?yàn)?0,+),且f(2)=2+.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.

(1)求a的值.

(2)問(wèn):PMPN是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.

(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

解:(1)∵f(2)=2+=2+,a=.

(2)設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),則有y0=x0+,x00,由點(diǎn)到直線的距離公式可知,PM==,PN=x0,有PMPN=1,即PMPN為定值,這個(gè)值為1.

(3)由題意可設(shè)M(t,t),可知N(0,y0).

∵PM與直線y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).

又y0=x0+,t=x0+.

S△OPM=+,S△OPN=x02+.

S四邊形OMPN=S△OPM+S△OPN=(x02+)+1+.

當(dāng)且僅當(dāng)x0=1時(shí),等號(hào)成立.

此時(shí)四邊形OMPN的面積有最小值1+.

探究創(chuàng)新

8.有一塊邊長(zhǎng)為4的正方形鋼板,現(xiàn)對(duì)其進(jìn)行切割、焊接成一個(gè)長(zhǎng)方體形無(wú)蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作了如下設(shè)計(jì):如圖(a),在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長(zhǎng)方體,該長(zhǎng)方體的高為小正方形邊長(zhǎng),如圖(b).

(1)請(qǐng)你求出這種切割、焊接而成的長(zhǎng)方體的最大容積V1;

(2)由于上述設(shè)計(jì)存在缺陷(材料有所浪費(fèi)),請(qǐng)你重新設(shè)計(jì)切、焊方法,使材料浪費(fèi)減少,而且所得長(zhǎng)方體容器的容積V2V1.

解:(1)設(shè)切去正方形邊長(zhǎng)為x,則焊接成的長(zhǎng)方體的底面邊長(zhǎng)為4-2x,高為x,

V1=(4-2x)2x=4(x3-4x2+4x)(0

V1=4(3x2-8x+4).

令V1=0,得x1=,x2=2(舍去).

而V1=12(x-)(x-2),

又當(dāng)x時(shí),V10;當(dāng)

當(dāng)x=時(shí),V1取最大值.

(2)重新設(shè)計(jì)方案如下:

如圖①,在正方形的兩個(gè)角處各切下一個(gè)邊長(zhǎng)為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長(zhǎng)方體容器.

新焊長(zhǎng)方體容器底面是一長(zhǎng)方形,長(zhǎng)為3,寬為2,此長(zhǎng)方體容積V2=321=6,顯然V2V1.

故第二種方案符合要求.

●思悟小結(jié)

1.函數(shù)知識(shí)可深可淺,復(fù)習(xí)時(shí)應(yīng)掌握好分寸,如二次函數(shù)問(wèn)題應(yīng)高度重視,其他如分類討論、探索性問(wèn)題屬熱點(diǎn)內(nèi)容,應(yīng)適當(dāng)加強(qiáng).

2.數(shù)形結(jié)合思想貫穿于函數(shù)研究的各個(gè)領(lǐng)域的全部過(guò)程中,掌握了這一點(diǎn),將會(huì)體會(huì)到函數(shù)問(wèn)題既千姿百態(tài),又有章可循.

●教師下載中心

教學(xué)點(diǎn)睛

數(shù)形結(jié)合和數(shù)形轉(zhuǎn)化是解決本章問(wèn)題的重要思想方法,應(yīng)要求學(xué)生熟練掌握用函數(shù)的圖象及方程的曲線去處理函數(shù)、方程、不等式等問(wèn)題.

拓展題例

【例1】設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對(duì)任意a、b[-1,1],當(dāng)a+b0時(shí),都有0.

(1)若ab,比較f(a)與f(b)的大小;

(2)解不等式f(x-)

(3)記P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范圍.

解:設(shè)-1x1

0.

∵x1-x20,f(x1)+f(-x2)0.

f(x1)-f(-x2).

又f(x)是奇函數(shù),f(-x2)=-f(x2).

f(x1)

f(x)是增函數(shù).

(1)∵ab,f(a)f(b).

(2)由f(x-)

-.

不等式的解集為{x-}.

(3)由-11,得-1+c1+c,

P={x-1+c1+c}.

由-11,得-1+c21+c2,

Q={x-1+c21+c2}.

∵PQ=,

1+c-1+c2或-1+c1+c2,

解得c2或c-1.

【例2】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

(理)若g(x)=f(x)+,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

解:(1)設(shè)f(x)圖象上任一點(diǎn)坐標(biāo)為(x,y),點(diǎn)(x,y)關(guān)于點(diǎn)A(0,1)的對(duì)稱點(diǎn)(-x,2-y)在h(x)的圖象上.

2-y=-x++2.

y=x+,即f(x)=x+.

(2)(文)g(x)=(x+)x+ax,

即g(x)=x2+ax+1.

g(x)在(0,2]上遞減-2,

a-4.

(理)g(x)=x+.

∵g(x)=1-,g(x)在(0,2]上遞減,

1-0在x(0,2]時(shí)恒成立,

即ax2-1在x(0,2]時(shí)恒成立.

∵x(0,2]時(shí),(x2-1)max=3,

a3.

【例3】在4月份(共30天),有一新款服裝投放某專賣店銷售,日銷售量(單位:件)f(n)關(guān)于時(shí)間n(130,nN__)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n)圖象中的點(diǎn)位于斜率為5和-3的兩條直線上,兩直線的交點(diǎn)的橫坐標(biāo)為m,且第m天日銷售量最大.

(1)求f(n)的表達(dá)式,及前m天的銷售總數(shù);

(2)按規(guī)律,當(dāng)該專賣店銷售總數(shù)超過(guò)400件時(shí),社會(huì)上流行該服裝,而日銷售量連續(xù)下降并低于30件時(shí),該服裝的流行會(huì)消失.試問(wèn)該服裝在社會(huì)上流行的天數(shù)是否會(huì)超過(guò)10天?并說(shuō)明理由.

解:(1)由圖形知,當(dāng)1m且nN__時(shí),f(n)=5n-3.

由f(m)=57,得m=12.

f(n)=

前12天的銷售總量為

5(1+2+3++12)-312=354件.

(2)第13天的銷售量為f(13)=-313+93=54件,而354+54400,

從第14天開始銷售總量超過(guò)400件,即開始流行.

設(shè)第n天的日銷售量開始低于30件(1221.

從第22天開始日銷售量低于30件,

即流行時(shí)間為14號(hào)至21號(hào).

該服裝流行時(shí)間不超過(guò)10天.

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇10

一、教學(xué)內(nèi)容

本節(jié)主要內(nèi)容為:經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過(guò)程,能夠進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。

二、教學(xué)目標(biāo)

1、經(jīng)歷探索30°、45°、60°角的三角函數(shù)值的過(guò)程,能夠進(jìn)行有關(guān)推理,進(jìn)一步體會(huì)三角函數(shù)的意義。

2、能夠進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算。

3、能夠根據(jù)30°、45°、60°角的三角函數(shù)值,說(shuō)出相應(yīng)的銳角的大小。

三、過(guò)程與方法

通過(guò)進(jìn)行有關(guān)推理,探索30°、45°、60°角的三角函數(shù)值。在具體教學(xué)過(guò)程中,教師可在教材的基礎(chǔ)上適當(dāng)拓展,使得內(nèi)容更為豐富.教師可以運(yùn)用和學(xué)生共同探究式的教學(xué)方法,學(xué)生可以采取自主探討式的學(xué)習(xí)方法.

四、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):進(jìn)行含有30°、45°、60°角的三角函數(shù)值的計(jì)算

難點(diǎn):記住30°、45°、60°角的三角函數(shù)值

五、教學(xué)準(zhǔn)備

教師準(zhǔn)備

預(yù)先準(zhǔn)備教材、教參以及多媒體課件

學(xué)生準(zhǔn)備

教材、同步練習(xí)冊(cè)、作業(yè)本、草稿紙、作圖工具等

六、教學(xué)步驟

教學(xué)流程設(shè)計(jì)

教師指導(dǎo)學(xué)生活動(dòng)

1.新章節(jié)開場(chǎng)白.1.進(jìn)入學(xué)習(xí)狀態(tài).

2.進(jìn)行教學(xué).2.配合學(xué)習(xí).

3.總結(jié)和指導(dǎo)學(xué)生練習(xí).3記錄相關(guān)內(nèi)容,完成練習(xí).

教學(xué)過(guò)程設(shè)計(jì)

1、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問(wèn)題

2、師生共同研究形成概念

3、隨堂練習(xí)

4、小結(jié)

5、作業(yè)

板書設(shè)計(jì)

1、敘述三角函數(shù)的意義

2、30°、45°、60°角的三角函數(shù)值

3、例題

七、課后反思

本節(jié)課基本上能夠突出重點(diǎn)、弱化難點(diǎn),在時(shí)間上也能掌控得比較合理,學(xué)生也比較積極投入學(xué)習(xí)中,但是學(xué)生好像并不是掌握得很好,在今后的教學(xué)中應(yīng)該再加強(qiáng)關(guān)于這方面的學(xué)習(xí)。

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇11

一、教材分析(說(shuō)教材):

1.教材所處的地位和作用:

本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《》是中數(shù)學(xué)教材第冊(cè)第章第節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了基礎(chǔ),這為過(guò)渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在中,占據(jù)的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。

2.教育教學(xué)目標(biāo):

根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):

(1)知識(shí)目標(biāo):

(2)能力目標(biāo):通過(guò)教學(xué)初步培養(yǎng)學(xué)生分析問(wèn)題,解決實(shí)際問(wèn)題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語(yǔ)言表達(dá)能力以及通過(guò)師生雙邊活動(dòng),初步培養(yǎng)學(xué)生運(yùn)用知識(shí)的能力,培養(yǎng)學(xué)生加強(qiáng)理論聯(lián)系實(shí)際的能力,(3)情感目標(biāo):通過(guò)的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實(shí)的生活經(jīng)歷與體驗(yàn)出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。

3.重點(diǎn),難點(diǎn)以及確定依據(jù):

下面,為了講清重難上點(diǎn),使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再?gòu)慕谭ê蛯W(xué)法上談?wù)劊?/p>

二、教學(xué)策略(說(shuō)教法)

1.教學(xué)手段:

如何突出重點(diǎn),突破難點(diǎn),從而實(shí)現(xiàn)教學(xué)目標(biāo)。在教學(xué)過(guò)程中擬計(jì)劃進(jìn)行如下操作:教學(xué)方法。基于本節(jié)課的特點(diǎn):應(yīng)著重采用的教學(xué)方法。

2.教學(xué)方法及其理論依據(jù):堅(jiān)持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運(yùn)用問(wèn)題解決式教法,師生交談法,圖像信號(hào)法,問(wèn)答式,課堂討論法。在采用問(wèn)答法時(shí),特別注重不同難度的問(wèn)題,提問(wèn)不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機(jī)會(huì),培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時(shí)通過(guò)課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識(shí)回到社會(huì)實(shí)踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識(shí),學(xué)習(xí)基礎(chǔ)性的知識(shí)和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動(dòng)機(jī),明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力。

3.學(xué)情分析:(說(shuō)學(xué)法)

(1)學(xué)生特點(diǎn)分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)生特點(diǎn),積極采用形象生動(dòng),形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動(dòng)參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個(gè)性發(fā)展。生理上表少年好動(dòng),注意力易分散

(2)知識(shí)障礙上:知識(shí)掌握上,學(xué)生原有的知識(shí),許多學(xué)生出現(xiàn)知識(shí)遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識(shí)障礙,知識(shí)學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡(jiǎn)單明白,深入淺出的分析。

(3)動(dòng)機(jī)和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,激發(fā)來(lái)自學(xué)生主體的最有力的動(dòng)力

最后我來(lái)具體談?wù)勥@一堂課的教學(xué)過(guò)程:

4.教學(xué)程序及設(shè)想:

(1)由引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問(wèn)題,讓學(xué)生產(chǎn)生強(qiáng)烈的問(wèn)題意識(shí),使學(xué)生的整個(gè)學(xué)習(xí)過(guò)程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過(guò)程。在實(shí)際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識(shí)與經(jīng)驗(yàn),同化和索引出當(dāng)肖學(xué)習(xí)的新知識(shí),這樣獲取知識(shí),不但易于保持,而且易于遷移到陌生的問(wèn)題情境中。

(2)由實(shí)例得出本課新的知識(shí)點(diǎn)

(3)講解例題。在講例題時(shí),不僅在于怎樣解,更在于為什么這樣解,而及時(shí)對(duì)解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。

(4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺(jué)運(yùn)用所學(xué)知識(shí)與解題思想方法。

(5)總結(jié)結(jié)論,強(qiáng)化認(rèn)識(shí)。知識(shí)性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識(shí)盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個(gè)性品質(zhì)目標(biāo)。

(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對(duì)題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對(duì)知識(shí)的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。

(7)板書

(8)布置作業(yè)。

針對(duì)學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,

教學(xué)程序:

(一)課堂結(jié)構(gòu):復(fù)習(xí)提問(wèn),導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分

高中數(shù)學(xué)集合教學(xué)反思

集合這章內(nèi)容,教學(xué)參考書上安排的課時(shí)為五課時(shí),我們的導(dǎo)學(xué)案也是安排五課時(shí),實(shí)際教學(xué)時(shí),由于對(duì)學(xué)生的實(shí)際情況估計(jì)不足,第一課時(shí)的導(dǎo)學(xué)案用了兩課時(shí)才完成。集合這一章的特點(diǎn)是概念不多,但這章所涉及到的內(nèi)容很廣,學(xué)生學(xué)習(xí)本章內(nèi)容時(shí),不僅要理解本章的概念,還要理解與本章內(nèi)容相關(guān)聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學(xué)習(xí)過(guò)的內(nèi)容、有生活中的方方面面的相關(guān)知識(shí),再加上高中學(xué)習(xí)方法與初中不同,邏輯思維能力要求較高,因此學(xué)生感覺(jué)學(xué)起來(lái)比較困難。針對(duì)這種情況,我在實(shí)際教學(xué)時(shí),首先要求學(xué)生準(zhǔn)確理解概念,如:集合的元素具有三個(gè)性質(zhì):確定性、互異性、無(wú)序性。集合的關(guān)系、運(yùn)算等都是從元素的角度定義的,所以解集合問(wèn)題時(shí),教會(huì)學(xué)生對(duì)元素的性質(zhì)進(jìn)行分析,反復(fù)訓(xùn)練,讓學(xué)生通過(guò)實(shí)例體會(huì)這三個(gè)性質(zhì)。

第二,掌握相關(guān)的符號(hào)語(yǔ)言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時(shí),集合中的元素是什么,這是一個(gè)教學(xué)難點(diǎn)。第二個(gè)難點(diǎn)是集合的運(yùn)算—交集和并集。突破難點(diǎn)充分運(yùn)用數(shù)形結(jié)合思想,集合間的關(guān)系和運(yùn)算,以數(shù)形結(jié)合思想為指導(dǎo),借助圖形思考,可以使各集合間的關(guān)系直觀明了,使抽象的集合運(yùn)算建立在直觀的基礎(chǔ)上,使解題思路清晰明朗,直觀簡(jiǎn)捷,有利于問(wèn)題的解決。

第三,指導(dǎo)學(xué)生理解并掌握自然語(yǔ)言、符號(hào)語(yǔ)言、圖形語(yǔ)言這三種語(yǔ)言,靈活準(zhǔn)確地進(jìn)行語(yǔ)言轉(zhuǎn)換,可以幫助學(xué)生提高分析問(wèn)題,解決問(wèn)題的能力。

第四,集合問(wèn)題涉及到的其他內(nèi)容,遇到了講透,不拓展。

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇12

【一】教學(xué)背景分析

1。教材結(jié)構(gòu)分析

《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作為常見(jiàn)的簡(jiǎn)單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無(wú)論在知識(shí)上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前啟后的作用。

2。學(xué)情分析

圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時(shí)間還不長(zhǎng)、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過(guò)程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問(wèn)題的能力,合作交流的意識(shí)等方面有待加強(qiáng)。

根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

3。教學(xué)目標(biāo)

(1)知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;

②會(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

③利用圓的標(biāo)準(zhǔn)方程解決簡(jiǎn)單的實(shí)際問(wèn)題。

(2)能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問(wèn)題的能力;

②加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;

③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。

(3)情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);

②在體驗(yàn)數(shù)學(xué)美的過(guò)程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

4。教學(xué)重點(diǎn)與難點(diǎn)

(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

(2)難點(diǎn):①會(huì)根據(jù)不同的已知條件求圓的`標(biāo)準(zhǔn)方程;

②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問(wèn)題。

為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再?gòu)慕谭ê蛯W(xué)法上進(jìn)行分析:

好學(xué)教育:

【二】教法學(xué)法分析

1。教法分析為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問(wèn)題教學(xué)法,用環(huán)環(huán)相扣的問(wèn)題將探究活動(dòng)層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問(wèn)題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過(guò)程。

2。學(xué)法分析通過(guò)推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方程的理解。通過(guò)求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。通過(guò)應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過(guò)程。下面我就對(duì)具體的教學(xué)過(guò)程和設(shè)計(jì)加以說(shuō)明:

【三】教學(xué)過(guò)程與設(shè)計(jì)

整個(gè)教學(xué)過(guò)程是由七個(gè)問(wèn)題組成的問(wèn)題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)節(jié):

創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高

反饋訓(xùn)練形成方法小結(jié)反思拓展引申

下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。

首先:縱向敘述教學(xué)過(guò)程

(一)創(chuàng)設(shè)情境——啟迪思維

問(wèn)題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?

通過(guò)對(duì)這個(gè)實(shí)際問(wèn)題的探究,把學(xué)生的思維由用勾股定理求線段CD的長(zhǎng)度轉(zhuǎn)移為用曲線的方程來(lái)解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過(guò)的結(jié)論的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問(wèn)題創(chuàng)設(shè)問(wèn)題情境,讓學(xué)生感受到問(wèn)題來(lái)源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。

通過(guò)對(duì)問(wèn)題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來(lái),此時(shí)再把問(wèn)題深入,進(jìn)入第二環(huán)節(jié)。

(二)深入探究——獲得新知

問(wèn)題二1。根據(jù)問(wèn)題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

2。如果圓心在,半徑為時(shí)又如何呢?

好學(xué)教育:

這一環(huán)節(jié)我首先讓學(xué)生對(duì)問(wèn)題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入第三環(huán)節(jié)。

(三)應(yīng)用舉例——鞏固提高

I。直接應(yīng)用內(nèi)化新知

問(wèn)題三1。寫出下列各圓的標(biāo)準(zhǔn)方程:

(1)圓心在原點(diǎn),半徑為3;

(2)經(jīng)過(guò)點(diǎn),圓心在點(diǎn)。

2。寫出圓的圓心坐標(biāo)和半徑。

我設(shè)計(jì)了兩個(gè)小問(wèn)題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡(jiǎn)單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握?qǐng)A心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問(wèn)題作準(zhǔn)備。

II。靈活應(yīng)用提升能力

問(wèn)題四1。求以點(diǎn)為圓心,并且和直線相切的圓的方程。

2。求過(guò)點(diǎn),圓心在直線上且與軸相切的圓的方程。

3。已知圓的方程為,求過(guò)圓上一點(diǎn)的切線方程。

你能歸納出具有一般性的結(jié)論嗎?

已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是什么?

我設(shè)計(jì)了三個(gè)小問(wèn)題,第一個(gè)小題有了剛剛解決問(wèn)題三的基礎(chǔ),學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過(guò)圓上一點(diǎn)圓的切線方程的過(guò)程中,又一次模擬了真理發(fā)現(xiàn)的過(guò)程,使探究氣氛達(dá)到高潮。

III。實(shí)際應(yīng)用回歸自然

問(wèn)題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱的長(zhǎng)度(精確到0。01m)。

好學(xué)教育:

我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問(wèn)題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。

(四)反饋訓(xùn)練——形成方法

問(wèn)題六1。求過(guò)原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

2。求圓過(guò)點(diǎn)的切線方程。

3。求圓過(guò)點(diǎn)的切線方程。

接下來(lái)是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂(lè)趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過(guò)圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過(guò)圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

(五)小結(jié)反思——拓展引申

1。課堂小結(jié)

把圓的標(biāo)準(zhǔn)方程與過(guò)圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法①圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程為:

圓心在原點(diǎn)時(shí),半徑為r的圓的標(biāo)準(zhǔn)方程為:。

②已知圓的方程是,經(jīng)過(guò)圓上一點(diǎn)的切線的方程是:。

2。分層作業(yè)

(A)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過(guò)圓上一點(diǎn)的切線方程。

3。激發(fā)新疑

問(wèn)題七1。把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

2。方程表示什么圖形?

在本課的結(jié)尾設(shè)計(jì)這兩個(gè)問(wèn)題,作為對(duì)這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會(huì)知識(shí)的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問(wèn)題,舊的問(wèn)題解決了,新的問(wèn)題又產(chǎn)生了。在知識(shí)的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

以上是我縱向的教學(xué)過(guò)程及簡(jiǎn)單的設(shè)計(jì)意圖,接下來(lái),我從三個(gè)方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):橫向闡述教學(xué)設(shè)計(jì)

(一)突出重點(diǎn)抓住關(guān)鍵突破難點(diǎn)

好學(xué)教育:

求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個(gè)參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時(shí)突破了難點(diǎn)。

第二個(gè)教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問(wèn)題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問(wèn)題的題目冗長(zhǎng),學(xué)生很難根據(jù)問(wèn)題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問(wèn)題的信心,為此我首先用一道題目簡(jiǎn)潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時(shí)我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問(wèn)題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問(wèn)題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個(gè)應(yīng)用問(wèn)題——問(wèn)題五。這樣的設(shè)計(jì),使學(xué)生在解決問(wèn)題的同時(shí),形成了方法,難點(diǎn)自然突破。

(二)學(xué)生主體教師主導(dǎo)探究主線

本節(jié)課的設(shè)計(jì)用問(wèn)題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動(dòng)貫穿始終。從圓的標(biāo)準(zhǔn)方程的推導(dǎo)到應(yīng)用都是在問(wèn)題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問(wèn)題二和問(wèn)題四的第三問(wèn),要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過(guò)程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動(dòng)并走向成功,在一個(gè)個(gè)問(wèn)題的驅(qū)動(dòng)下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

(三)培養(yǎng)思維提升能力激勵(lì)創(chuàng)新

為了培養(yǎng)學(xué)生的理性思維,我分別在問(wèn)題一和問(wèn)題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問(wèn)題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,使能力與知識(shí)的形成相伴而行。

以上是我對(duì)這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過(guò)程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說(shuō)課,發(fā)揮我們的創(chuàng)造性,力爭(zhēng)“使教育過(guò)程成為一種藝術(shù)的事業(yè)”。

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇13

一、教材的地位和作用

本節(jié)課是 “空間幾何體的三視圖和直觀圖”的第一課時(shí),主要內(nèi)容是投影和三視圖,這部分知識(shí)是立體幾何的基礎(chǔ)之一,一方面它是對(duì)上一節(jié)空間幾何體結(jié)構(gòu)特征的再一次強(qiáng)化,畫出空間幾何體的三視圖并能將三視圖還原為直觀圖,是建立空間概念的基礎(chǔ)和訓(xùn)練學(xué)生幾何直觀能力的有效手段。另外,三視圖部分也是新課程高考的重要內(nèi)容之一,常常結(jié)合給出的三視圖求給定幾何體的表面積或體積設(shè)置在選擇或填空中。同時(shí),三視圖在工程建設(shè)、機(jī)械制造中有著廣泛應(yīng)用,同時(shí)也為學(xué)生進(jìn)入高一層學(xué)府學(xué)習(xí)有很大的幫助。所以在人們的日常生活中有著重要意義。

二、教學(xué)目標(biāo)

(1) 知識(shí)與技能:能畫出簡(jiǎn)單空間圖形(長(zhǎng)方體,球,圓柱,圓錐,棱柱等的簡(jiǎn)易組合)的三視圖,能識(shí)別上述三視圖表示的立體模型,從而進(jìn)一步熟悉簡(jiǎn)單幾何體的結(jié)構(gòu)特征。

(2)過(guò)程與方法:通過(guò)直觀感知,操作確認(rèn),提高學(xué)生的空間想象能力、幾何直觀能力,培養(yǎng)學(xué)生的應(yīng)用意識(shí)。

(3)情感、態(tài)度與價(jià)值觀:讓感受數(shù)學(xué)就在身邊,提高學(xué)生學(xué)習(xí)立體幾何的興趣,培養(yǎng)學(xué)生相互交流、相互合作的精神。

三、設(shè)計(jì)思路

本節(jié)課的主要任務(wù)是引導(dǎo)學(xué)生完成由立體圖形到三視圖,再由三視圖想象立體圖形的復(fù)雜過(guò)程。直觀感知操作確認(rèn)是新課程幾何課堂的一個(gè)突出特點(diǎn),也是這節(jié)課的設(shè)計(jì)思路。通過(guò)大量的多媒體直觀,實(shí)物直觀使學(xué)生獲得了對(duì)三視圖的感性認(rèn)識(shí),通過(guò)學(xué)生的觀察思考,動(dòng)手實(shí)踐,操作練習(xí),實(shí)現(xiàn)認(rèn)知從感性認(rèn)識(shí)上升為理性認(rèn)識(shí)。培養(yǎng)學(xué)生的空間想象能力,幾何直觀能力為學(xué)習(xí)立體幾何打下基礎(chǔ)。

教學(xué)的重點(diǎn)、難點(diǎn)

(一)重點(diǎn):畫出空間幾何體及簡(jiǎn)單組合體的三視圖,體會(huì)在作三視圖時(shí)應(yīng)遵循的“長(zhǎng)對(duì)正、高平齊、寬相等”的原則。

(二)難點(diǎn):識(shí)別三視圖所表示的空間幾何體,即:將三視圖還原為直觀圖。

四、學(xué)生現(xiàn)實(shí)分析

本節(jié)首先簡(jiǎn)單介紹了中心投影和平行投影,中心投影和平行投影是日常生活中最常見(jiàn)的兩種投影形式,學(xué)生具有這方面的直接經(jīng)驗(yàn)和基礎(chǔ)。投影和三視圖雖為高中新增內(nèi)容,但學(xué)

生在初中有一定基礎(chǔ),在七年級(jí)上冊(cè) “從不同方向看”的基礎(chǔ)上給出了三視圖的概念。到了九年級(jí)下冊(cè)則是在介紹了投影后,用投影的方法給出了三視圖的概念,這一概念已基本接近了高中的三視圖定義,只是在名字上略有差異。初中叫做主視圖、左視圖、俯視圖。進(jìn)入高中后特別是再次學(xué)習(xí)和認(rèn)識(shí)了柱、錐、臺(tái)等幾何體的概念后,學(xué)生在空間想象能力方面有了一定的提高,所以,給出了正視圖、側(cè)視圖、俯視圖的概念。這些概念的變化也說(shuō)明了學(xué)生年齡特點(diǎn)和思維差異

五、教學(xué)方法

(1)教學(xué)方法及教學(xué)手段

針對(duì)本節(jié)課知識(shí)是由抽象到具體再到抽象、空間思維難度較大的特點(diǎn),我采用的教法是直觀教學(xué)法、啟導(dǎo)發(fā)現(xiàn)法。

在教學(xué)中,通過(guò)創(chuàng)設(shè)問(wèn)題情境,充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,并引導(dǎo)啟發(fā)學(xué)生動(dòng)眼、動(dòng)腦、動(dòng)手.同時(shí)采用多媒體的教學(xué)手段,加強(qiáng)直觀性和啟發(fā)性,解決了教師“口說(shuō)無(wú)憑”的尷尬境地,增大了課堂容量,提高了課堂效率。

(2)學(xué)法指導(dǎo)

力爭(zhēng)在新課程要求的大背景下組織教學(xué),為學(xué)生創(chuàng)設(shè)良好的問(wèn)題情境,留給學(xué)生充分的思考空間,在學(xué)生的辯證和討論前提下,發(fā)揮教師的概括和引領(lǐng)的作用。

六、教學(xué)過(guò)程

(一)創(chuàng)設(shè)情境,引出課題

通過(guò)攝影作品及汽車設(shè)計(jì)圖紙引出問(wèn)題

1.照相、繪畫之所以有空間視覺(jué)效果,主要處決于線條、明暗和色彩,其中對(duì)線條畫法的基本原理是一個(gè)幾何問(wèn)題,我們需要學(xué)習(xí)這方面的知識(shí)。

2.在建筑、機(jī)械等工程中,需要用平面圖形反映空間幾何體的形狀和大小,在作圖技術(shù)上這也是一個(gè)幾何問(wèn)題,你想知道這方面的基礎(chǔ)知識(shí)嗎?

設(shè)計(jì)意圖:通過(guò)攝影作品及汽車設(shè)計(jì)圖紙的展示引出問(wèn)題1,2,從貼近生活的實(shí)例入手,給學(xué)生以視覺(jué)沖擊,引領(lǐng)學(xué)生進(jìn)入本節(jié)課的內(nèi)容。

引出課題:投影與三視圖

知識(shí)探究(一):中心投影與平行投影

光是直線傳播的,一個(gè)不透明物體在光的照射下,在物體后面的屏幕上會(huì)留下這個(gè)物體的影子,這種現(xiàn)象叫做投影。其中的光線叫做投影線,留下物體影子的屏幕叫做投影面。

思考1:不同的光源發(fā)出的光線是有差異的,其中燈泡發(fā)出的光線與手電筒發(fā)出的光線有什么

不同?

思考2:我們把光由一點(diǎn)向外散射形成的投影叫做中心投影,把在一束平行光線照射下形成的投影叫做平行投影,那么用燈泡照射物體和用手電筒照射物體形成的投影分別是哪種投影?

思考3:用燈泡照射一個(gè)與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與燈泡的距離發(fā)生變化時(shí),影子的大小會(huì)有什么不同?

思考4:用手電筒照射一個(gè)與投影面平行的不透明物體,在投影面上形成的影子與原物體的形狀、大小有什么關(guān)系?當(dāng)物體與手電筒的距離發(fā)生變化時(shí),影子的大小會(huì)有變化嗎?

思考5:在平行投影中,投影線正對(duì)著投影面時(shí)叫做正投影,否則叫做斜投影.一個(gè)與投影面平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化?

思考6:一個(gè)與投影面不平行的平面圖形,在正投影和斜投影下的形狀、大小是否發(fā)生變化? 師生活動(dòng):學(xué)生思考,討論,教師歸納總結(jié)。

設(shè)計(jì)意圖:講解投影,投影線,投影面,讓學(xué)生了解投影式如何形成的。通過(guò)六個(gè)思考層層深入,學(xué)生在思考討論的過(guò)程中總結(jié)出投影的分類及每種投影的特點(diǎn)。

知識(shí)探究(二):柱、錐、臺(tái)、球的三視圖

把一個(gè)空間幾何體投影到一個(gè)平面上,可以獲得一個(gè)平面圖形。但只有一個(gè)平面圖形難以把握幾何體的全貌,因此我們需要從多個(gè)角度進(jìn)行投影,這樣就能較好地把握幾何體的形狀和大小,通常選擇三種正投影,即正面、側(cè)面和上面。

從不同的角度看建筑

問(wèn)題1:要很好地描繪這幢房子,需要從哪些方向去看?

問(wèn)題2:如果要建造房子,你是工程師,需要給施工員提供哪幾種圖紙?

設(shè)計(jì)意圖:通過(guò)觀察大樓的圖片,提出問(wèn)題1,2,這種設(shè)計(jì)更易于讓學(xué)生接受,說(shuō)明數(shù)學(xué)與生活密不可分。

給出三視圖的含義:

(1)光線從幾何體的前面向后面正投影得到的投影圖,叫做幾何體的正視圖;

(2)光線從幾何體的左面向右面正投影得到的投影圖,叫做幾何體的側(cè)視圖;

(3)光線從幾何體的上面向下面正投影得到的投影圖,叫做幾何體的俯視圖;

(4)幾何體的正視圖、側(cè)視圖、俯視圖統(tǒng)稱為幾何體的三視圖。

思考1 :正視圖、側(cè)視圖、俯視圖分別是從幾何體的哪三個(gè)角度觀察得到的幾何體的正投影圖?它們都是平面圖形還是空間圖形?

思考2 :如圖,設(shè)長(zhǎng)方體的長(zhǎng)、寬、高分別為a、b、c ,那么其三視圖分別是什么?

一個(gè)幾何體的正視圖和側(cè)視圖的高度一樣,俯視圖和正視圖的的長(zhǎng)度一樣,側(cè)視圖和俯視圖的寬度一樣。

思考3 :圓柱、圓錐、圓臺(tái)的三視圖分別是什么?

思考4 :一般地,一個(gè)幾何體的正視圖、側(cè)視圖和俯視圖的長(zhǎng)度、寬度和高度有什么關(guān)系? 師生活動(dòng):分小組討論,動(dòng)手操作來(lái)完成思考題。

設(shè)計(jì)意圖:通過(guò)多媒體的動(dòng)態(tài)演示,對(duì)學(xué)生的結(jié)論進(jìn)行驗(yàn)證,大概花15分鐘的時(shí)間來(lái)完成這部分的教學(xué)。學(xué)生自主歸納總結(jié)將本節(jié)課的重點(diǎn)化解。

長(zhǎng)對(duì)正,高平齊,寬相等

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇14

教學(xué)目標(biāo):

1、橢圓是圓錐曲線的一種,是高中數(shù)學(xué)教學(xué)中的重點(diǎn)和難點(diǎn),所以這部分內(nèi)容中的知識(shí)點(diǎn)學(xué)生必須達(dá)到理解、應(yīng)用的水平;

2、利用投影、計(jì)算機(jī)模擬動(dòng)點(diǎn)的運(yùn)動(dòng),增強(qiáng)直觀性,激勵(lì)學(xué)生的學(xué)習(xí)動(dòng)機(jī),培養(yǎng)學(xué)生的數(shù)學(xué)想象和抽象思維能力。

教學(xué)重點(diǎn):對(duì)橢圓定義的理解,其中a>c容易出錯(cuò)。

教學(xué)難點(diǎn):方程的推導(dǎo)過(guò)程。

教學(xué)過(guò)程(www.fwsir.com):

(1)復(fù)習(xí)

提問(wèn):動(dòng)點(diǎn)軌跡的一般求法?

(通過(guò)回憶性質(zhì)的提問(wèn),明示這節(jié)課所要學(xué)的內(nèi) 容與原來(lái)所學(xué)知識(shí)之間的內(nèi)在聯(lián)系。并為后面橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)作好準(zhǔn)備。)

(2)引入

舉例:橢圓是常見(jiàn)的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽(yáng)運(yùn)行的軌道等等;

計(jì)算機(jī):動(dòng)態(tài)演示行星運(yùn)行的軌道。

(進(jìn)一步使學(xué)生明確學(xué)習(xí)橢圓的重要性和必要性,借計(jì)算機(jī)形成生動(dòng)的直觀,使學(xué)生印象加深,以便更好地掌握橢圓的形狀。)

(3)教學(xué)實(shí)施

投影:橢圓的定義:

平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離的和等于常數(shù)(大于F1F2)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫做焦距(一般用2c表示)

常數(shù)一般用2表示。(講解定義時(shí)要注意條件:)

計(jì)算機(jī):動(dòng)態(tài)模擬動(dòng)點(diǎn)軌跡的形成過(guò)程。

提問(wèn):如何求軌跡的方程?

(引導(dǎo)學(xué)生推導(dǎo)橢圓的標(biāo)準(zhǔn)方程)

板書:橢圓的標(biāo)準(zhǔn)方程的推導(dǎo)過(guò)程。(略)

(推導(dǎo)中注意:1)結(jié)合已畫出的圖形建立坐標(biāo)系,容易為學(xué)生所接受;2)在推導(dǎo)過(guò)程中,要抓住“怎樣消去方程中的根式”這一關(guān)鍵問(wèn)題,演算雖較繁,也能迎刃而解;3)其中焦點(diǎn)為F1(,0)、F2(c,0),;4)如果焦點(diǎn)在軸上,焦點(diǎn)為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)

投影:橢圓的標(biāo)準(zhǔn)方程:

()

()    

投影:例1平面內(nèi)兩個(gè)定點(diǎn)的距離是8,寫出到這兩個(gè)定點(diǎn)的距離的和是10的點(diǎn)的軌跡方程

(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)

形成性練習(xí):課本P74:2,3

(4)小結(jié)    本節(jié)課學(xué)習(xí)了橢圓的定義及標(biāo)準(zhǔn)方程,應(yīng)注意以下幾點(diǎn):

①橢圓的定義中,

②橢圓的標(biāo)準(zhǔn)方程中,焦點(diǎn)的位置看,的分母大小來(lái)確定

③、、的幾何意義

(5)作業(yè)

P80:2,4(1)(3)

創(chuàng)意活動(dòng)高中數(shù)學(xué)教案反思篇15

[三維目標(biāo)]

一、知識(shí)與技能:

1、鞏固集合、子、交、并、補(bǔ)的概念、性質(zhì)和記號(hào)及它們之間的關(guān)系

2、了解集合的運(yùn)算包含了集合表示法之間的轉(zhuǎn)化及數(shù)學(xué)解題的一般思想

3、了解集合元素個(gè)數(shù)問(wèn)題的討論說(shuō)明

二、過(guò)程與方法

通過(guò)提問(wèn)匯總練習(xí)提煉的形式來(lái)發(fā)掘?qū)W生學(xué)習(xí)方法

三、情感態(tài)度與價(jià)值觀

培養(yǎng)學(xué)生系統(tǒng)化及創(chuàng)造性的思維

[教學(xué)重點(diǎn)、難點(diǎn)]:會(huì)正確應(yīng)用其概念和性質(zhì)做題[教具]:多媒體、實(shí)物投影儀

[教學(xué)方法]:講練結(jié)合法

[授課類型]:復(fù)習(xí)課

[課時(shí)安排]:1課時(shí)

[教學(xué)過(guò)程]:集合部分匯總

本單元主要介紹了以下三個(gè)問(wèn)題:

1、集合的含義與特征

2、集合的表示與轉(zhuǎn)化

3、集合的基本運(yùn)算

100578 主站蜘蛛池模板: 繁昌县| 双柏县| 炎陵县| 兴安县| 屏南县| 白银市| 北川| 石门县| 拜泉县| 元谋县| 伊通| 兴安盟| 扶沟县| 德格县| 佛学| 清水河县| 台山市| 湘潭县| 洛宁县| 定南县| 寻乌县| 翼城县| 屏东县| 色达县| 遂溪县| 鹰潭市| 寻乌县| 彭阳县| 易门县| 嫩江县| 都兰县| 邵阳市| 河北省| 宜城市| 阿克陶县| 永修县| 浏阳市| 碌曲县| 翁牛特旗| 娄底市| 康马县|