簡單高一簡單數學教案
教案是老師教什么,學生學什么,學生根據老師安排的教學內容進行學習、思考、模仿等過程。簡單高一簡單數學教案要怎么寫?接下來給大家帶來簡單高一簡單數學教案,方便大家學習。
簡單高一簡單數學教案篇1
【考點闡述】
兩角和與差的正弦、余弦、正切.二倍角的正弦、余弦、正切.
【考試要求】
(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.
(4)能正確運用三角公式,進行簡單三角函數式的化簡、求值和恒等式證明.
【考題分類】
(一)選擇題(共5題)
1.(海南寧夏卷理7)=()
A.B.C.2D.
解:,選C。
2.(山東卷理5文10)已知cos(α-)+sinα=
(A)-(B)(C)-(D)
解:,,
3.(四川卷理3文4)()
(A)(B)(C)(D)
【解】:∵
故選D;
【點評】:此題重點考察各三角函數的關系;
4.(浙江卷理8)若則=()
(A)(B)2(C)(D)
解析:本小題主要考查三角函數的求值問題。由可知,兩邊同時除以得平方得,解得或用觀察法.
5.(四川延考理5)已知,則()
(A)(B)(C)(D)
解:,選C
(二)填空題(共2題)
1.(浙江卷文12)若,則_________。
解析:本小題主要考查誘導公式及二倍角公式的應用。由可知,;而。答案:
2.(上海春卷6)化簡:.
(三)解答題(共1題)
1.(上海春卷17)已知,求的值.
[解]原式……2分
.……5分
又,,……9分
.……12分文章
簡單高一簡單數學教案篇2
【學習目標】
1、感受數學探索的成功感,提高學習數學的興趣;
2、經歷誘導公式的探索過程,感悟由未知到已知、復雜到簡單的數學轉化思想。
3、能借助單位圓的對稱性理解記憶誘導公式,能用誘導公式進行簡單應用。
【學習重點】三角函數的誘導公式的理解與應用
【學習難點】誘導公式的推導及靈活運用
【知識鏈接】(1)單位圓中任意角α的正弦、余弦的定義
(2)對稱性:已知點P(x,),那么,點P關于x軸、軸、原點對稱的點坐標
【學習過程】
一、預習自學
閱讀書第19頁——20頁內容,通過對-α、π-α、π+α、2π-α、α的終邊與單位圓的交點的對稱性規律的探究,結合單位圓中任意角的正弦、余弦的定義,從中自我發現歸納出三角函數的誘導公式,并寫出下列關系:
(1)-407[導學案]4.4單位圓的對稱性與誘導公式與407[導學案]4.4單位圓的對稱性與誘導公式的正弦函數、余弦函數關系
(2)角407[導學案]4.4單位圓的對稱性與誘導公式與角407[導學案]4.4單位圓的對稱性與誘導公式的正弦函數、余弦函數關系
(3)角407[導學案]4.4單位圓的對稱性與誘導公式與角407[導學案]4.4單位圓的對稱性與誘導公式的正弦函數、余弦函數關系
(4)角407[導學案]4.4單位圓的對稱性與誘導公式與角407[導學案]4.4單位圓的對稱性與誘導公式的正弦函數、余弦函數關系
二、合作探究
探究1、求下列函數值,思考你用到了哪些三角函數誘導公式?試總結一下求任意角的三角函數值的過程與方法。
(1)407[導學案]4.4單位圓的對稱性與誘導公式(2)407[導學案]4.4單位圓的對稱性與誘導公式(3)sin(-1650°);
探究2:化簡:407[導學案]4.4單位圓的對稱性與誘導公式407[導學案]4.4單位圓的對稱性與誘導公式(先逐個化簡)
探究3、利用單位圓求滿足407[導學案]4.4單位圓的對稱性與誘導公式的角的集合。
三、學習小結
(1)你能說說化任意角的正(余)弦函數為銳角正(余)弦函數的一般思路嗎?
(2)本節學習涉及到什么數學思想方法?
(3)我的疑惑有
【達標檢測】
1、在單位圓中,角α的終邊與單位圓交于點P(-407[導學案]4.4單位圓的對稱性與誘導公式,407[導學案]4.4單位圓的對稱性與誘導公式),
則sin(-α)=;cs(α±π)=;cs(π-α)=
2.求下列函數值:
(1)sin(407[導學案]4.4單位圓的對稱性與誘導公式)=;(2)cs210&rd;=
3、若csα=-1/2,則α的集合S=
簡單高一簡單數學教案篇3
教學目標
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);
(2)理解任意角的三角函數不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式;
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
2、過程與方法
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
3、情態與價值
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
簡單高一簡單數學教案篇4
一、指導思想
以校本教研為基礎,以市第__屆學科帶頭人評選活動為契機,以學科基地為陣地,以網絡教研為形式,以提高課堂教學的有效性為突破口,以深入推進課程改革為重點,以促進學生全面發展和教師專業成長為目標,進一步全面深化教學改革,全面推進素質教育,全面提升學科品位,全面提高學科質量。
二、工作要點
1、扎實開展校本教研。通過“骨干引路”、“自我反思”、“同伴協助”、“聯片互動”、“專業扶持”等形式,在全體小學數學教師中廣泛、深入、持久、扎實、有效地開展新課程下的校本教研活動。通過研究,促進課改理念在課堂教學中的運用,促進課堂教學有效性的提升,促進全體教師的專業發展,尤其是促進農村小學教師的專業發展。
2、認真抓好教學視導。對全市小學的進行認真視導,通過聽課、評課、講座、問卷、教學常規檢查、組織教師和學生座談等形式,總結教學經驗,發現和解決教學問題,推動教學研究,提高教學質量。
3、建立學科教研基地。充分利用學科教研基地,廣泛、深入開展數學新課程領域的相關問題研究和探討,推動全市小學數學教學研究工作。本學年研究重點為:如何推進網上學習和網絡教研。
4、切實改革考試評價。要指導學校建立新的評價考試制度,大力改革考試內容和形式,使之符合新課程的新要求。要通過考試,發現學生的潛在能力與不足,判斷學生的發展方向,促進學生的知識與技能,過程與方法,情感態度價值觀和培養創新精神與實踐能力的全面和諧發展。
5、加強農村課改指導。本著求真務實的態度,研究在鄉村教師、教學設施條件較差的情況下,如何有效地促進課程教學改革,推進鄉村課程改革順利實施。
6、著力網研骨干培訓。在培訓對象上,要加強對各校網研骨干的培訓;在培訓內容上,要結合教學改革的需要組織培訓;在培訓的方式上,要多采用參與式、互動式等方式。要切實通過培訓,提高網研興趣和能力。
7、認真組織學科帶頭人評比活動。要嚴格按照市教育局和教科院要求,做好市第__屆小學數學學科帶頭人的評選工作。
8、抓好學科專業委員會建設。本學年,要召開學科專業委員會年會,并組織學科專業委員會開展主題研究論壇,深入研究教學改革的難點、熱點問題。
簡單高一簡單數學教案篇5
1、知識與技能
(1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);
(2)理解任意角的三角函數不同的定義方法;
(3)了解如何利用與單位圓有關的有向線段,將任意角α的正弦、余弦、正切函數值分別用正弦線、余弦線、正切線表示出來;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數.
2、過程與方法
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數.引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義.根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號.最后主要是借助有向線段進一步認識三角函數.講解例題,總結方法,鞏固練習.
3、情態與價值
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點.過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解.
本節利用單位圓上點的坐標定義任意角的正弦函數、余弦函數.這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系.
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解.
簡單高一簡單數學教案篇6
各位,下午好:
今天我說課的課題是古詩《迢迢牽牛星》。接下來,我對本課題進行分析:
一、說教材的地位和作用
《迢迢牽牛星》是編排在粵教版全日制普通高級中學教科書語文必修1第四單元第四個課題《漢魏晉詩三首》中的其中一首。“在心為志,發言為詩”,“情動于中而形于言”。詩歌是詩人真情實感的詠唱,是心靈對現實的應答。《古詩十九首》映了時代的動蕩,社會的亂離《迢迢牽牛星》借牛郎織女的故事,寄托織女的相思之苦,形象地抒發了現實生活中男女情人咫尺天涯的哀怨,表達了渴望夫妻團圓的強烈愿望。通過學習本文,將使學生進一步學會詩歌鑒賞的方法,培養人文素養。在此之前,學生們已經學習了《詩經》兩首、《離騷(節選)》、《孔雀東南飛》,這為過渡到本課題的學習起到了很好的鋪墊作用。因此,學好本課為學好以后的詩歌可以打下牢固的理論基礎,而且它在整個教材也起到了承上啟下的作用。本課包含的一些重要的知識點和思想,為以后學生在學習理解類似的詩歌并為簡單地鑒賞詩歌打下堅實的基礎。
二、說教學目標
根據本教材的結構和內容分析,結合著高一年級學生他們的認知結構及其心理特征,我制定了以下的教學目標:
1.知識目標:了解《古詩十九首》相關知識,有節奏地朗讀詩歌并背誦全詩。
2.技能目標:會分析詩歌的情感,能簡單分析詩歌疊音詞作用和表達效果。
3.情感與價值觀目標:品味《迢迢牽牛星》詩中的愛情美,理解詩歌所表達出的渴望普天下夫妻團聚的愿望。
三、說教學的重難點
本著對高中語文新課程標準的理解,在吃透教材基礎上,我確定了以下教學重點和難點。
1.教學重點:分析詩歌中疊音詞作用和表達效果,掌握鑒賞此類詩歌的技巧。
2.教學難點:據學生的認知特點,牽牛織女星等天文知識、光年的定義的理解是教學的難點。
3.確立重點和難點的依據是:天文知識、光年較抽象,學生欠缺這方面的基礎知識。
為了講清教材的重難點,使學生能夠達到本課題設定的教學目標,我再從教法我學法上談談。
四、說教法
我們都知道語文是一門提高人文素養,培養人的鑒賞能力的重要學科。因此,在教學過程中,不僅要使學生“知其然”,還要使學生“知其所以然”。我們在以師生既為主體又為客體的原則下,展現獲取理論知識、解決實際問題的思維過程。
考慮到高一級學生的現狀,我主要采取朗讀法、講授法、讀寫結合法,心理學理論告訴我們:學生的學習情緒直接影響學習效果。因此我還采用多媒體為教學手段的情景教學方法,創設情境幫助學生理解詩歌,利用疊音詞串聯詩歌,充分調動學生積極主動地參與到教學活動中來,使他們在活動中得到認識和體驗。當然老師自身也是非常重要的教學資源。教師本人應該通過課堂教學感染和激勵學生,調動起學生參與活動的積極性,激發學生對解決實際問題的渴望,并且要培養學生以理論聯系實際的能力,從而達到的教學效果。基于本課題的特點,我主要采用了以下的教學方法:
1.朗讀法:“三分詩七分讀”。從教學過程來說,教學中將朗讀教學貫徹到課堂始終,教師示范朗讀,引導學生按要求聽讀,幫助學生深入體會課文的情感意蘊,學生通過反復的朗讀,加深對課文的理解,培養學生的語感。
2.講授法:教師通過口頭語言向學生傳授知識、培養能力、進行思想教育。按照徹啟發式教學原則,講授的內容突出本課的的重點、難點和關鍵,使學生隨著教師的講解或講述開動腦筋思考問題,講中有導,講中有練。使學生主體作用凸顯出來,把課堂進行得生動活潑,而不是注入式。
3.讀寫結合法:注重讀寫結合,在熟讀的基礎上,讓學生對教材后面的疊詞練習進行快速地思考,組織答案,我來總結這類題目的答題技巧和規律。這不僅有助于學生對詩歌疊音詞的理解,而且提高了學生的詩歌鑒賞能力。
五、說學法
根據本文篇幅簡短,又是淺顯的文言文的特點,要求學生課前必須進行預習,并利用課下注釋和工具書來疏通文意。讓學生從機械的“學答”向“學問”轉變,從“學會”向“會學”轉變,成為學習的真正的主人。在課堂上,通過朗讀和提問法去推動學生思考,進一步理解文章的內容,調動學生學習的積極性,讀出初步真實感受。這節課在指導學生的學習方法和培養學生的學習能力方面主要采取以下方法:思考評價法、分析歸納法、總結反思法。
最后我具體來談談這一堂課的教學過程。
六、說教學過程
在這節課的教學過程中,我注重突出重點,條理清晰,緊湊合理,各項活動的安排也注重互動、交流,限度的調動學生參與課堂的積極性、主動性。
1.導入新課:
提問學生是否知道中國古代四大愛情故事,從學生的回答情況中引出本節課的主題牛郎織女的故事。在此之后,請一位男生和一位女生起來講述他們所了解到的牛郎織女的愛情故事,總結學生的回答情況,并由我來詳細地向學生交代故事的起源、發展,最重要的是突出這樣一個常識讓傳說與課文有了緊密的切合點,牛郎和織女是因為王母娘娘的一根發簪化成的銀河而相隔兩地,不得相見,后來真情感動天地,遂允許二人七月七日相見。
2.示范朗讀:
教師朗讀全文,學生按要求在書中畫出容易讀錯的多音字詞。教師用語言鼓勵學生,請學生給老師挑刺(教師故意讀錯某個詞),歡迎學生與教師競爭。這樣既能使學生的注意力集中到聽讀上,同時又能激氣學生當堂背下詩歌的興趣和信心。
3.學生朗讀:
朗讀是詩歌教學中必不可少的手段,應反復進行。要引導學生采用輪讀、個讀、聽讀、小組讀等多形式朗讀,以讀帶動對課文的理解,使學生以讀為樂。
4.學生背誦
在經過反復的聽讀和朗讀之后,學生已經基本能粗略知道詩歌大意,在此基礎上,要求學生根據自己的情況即時背誦,教師根據學生的不同情況引導以詩歌的思想內容。
5.板書設計:
我比較注重直觀地、系統的板書設計,并及時地體現教材中的知識點,以便于學生能夠理解掌握。我的板書設計是:
6.布置作業。
我布置的課堂作業是:《一號》P110頁第三題
七、我為什么要這樣上課
1.對教材內容的處理。
根據新課程標準的要求、知識的跨度、學生的認知水平,我對教材內容的增有減。
2.教學策略的選用
(1)重點字詞如多音字讀音讓學生動手去查閱,自己作初步的記憶,教師扮演輔導者的角色。這樣有利于學生能力的提高,有利于學生對詩歌學習興趣的培養。通過對《古詩十九首》及《迢迢牽牛星》的文學常識和背景知識的介紹,激發學生了解古詩的興趣,有利于提高學生學習的積極性。
(2)讓學生鞏固重點知識并形成新的知識。通過布置作業,讓學生背誦課文,使他們進一步的理解文章,梳理思路,提高詩歌鑒賞閱讀的語感和鑒賞的思路。完成《一號》的習題,有利于學生對詩歌的深刻理解,對以后的古詩學習打下堅實的基礎。
八、結束語
各位領導、老師們,本節課我根據高一年級學生的心理特征及其認知規律,采用直觀教學和討論法的教學方法,以‘教師為主導,學生為主體’,教師的“導”立足于學生的“學”,以學法為重心,放手讓學生自主探索的學習,主動地參與到知識形成的整個思維過程,力求使學生在積極、愉快的課堂氣氛中提高自己的認識水平,從而達到預期的教學效果。我的說課完畢,謝謝!
簡單高一簡單數學教案篇7
一、教材分析
本節課選自《普通高中課程標準數學教科書-必修1》(人教A版)《1.2.1函數的概念》共3課時,本節課是第1課時。
生活中的許多現象如物體運動,氣溫升降,投資理財等都可以用函數的模型來刻畫,是我們更好地了解自己、認識世界和預測未來的重要工具。
函數是數學的重要的基礎概念之一,是高等數學重多學科的基礎概念和重要的研究對象。同時函數也是物理學等其他學科的重要基礎知識和研究工具,教學內容中蘊涵著極其豐富的辯證思想。
二、學生學習情況分析
函數是中學數學的主體內容,學生在中學階段對函數的認識分三個階段:
(一)初中從運動變化的角度來刻畫函數,初步認識正比例、反比例、一次和二次函數;
(二)高中用集合與對應的觀點來刻畫函數,研究函數的性質,學習典型的對、指、冪和三解函數;
(三)高中用導數工具研究函數的單調性和最值。
1.有利條件
現代教育心理學的研究認為,有效的概念教學是建立在學生已有知識結構的基礎上的,因此教師在設計教學的過程中必須注意在學生已有知識結構中尋找新概念的固著點,引導學生通過同化或順應,掌握新概念,進而完善知識結構。
初中用運動變化的觀點對函數進行定義的,它反映了歷人們對它的一種認識,而且這個定義較為直觀,易于接受,因此按照由淺入深、力求符合學生認知規律的內容編排原則,函數概念在初中介紹到這個程度是合適的。也為我們用集合與對應的觀點研究函數打下了一定的基礎。
2.不利條件
用集合與對應的觀點來定義函數,形式和內容上都是比較抽象的,這對學生的理解能力是一個挑戰,是本節課教學的一個不利條件。
三、教學目標分析
課標要求:通過豐富實例,進一步體會函數是描述變量之間的依賴關系的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用;了解構成函數的要素,會求一些簡單函數的定義域和值域.
1.知識與能力目標:
⑴能從集合與對應的角度理解函數的概念,更要理解函數的本質屬性;
⑵理解函數的三要素的含義及其相互關系;
⑶會求簡單函數的定義域和值域
2.過程與方法目標:
⑴通過豐富實例,使學生建立起函數概念的背景,體會函數是描述變量之間依賴關系的數學模型;
⑵在函數實例中,通過對關鍵詞的強調和引導使學發現它們的共同特征,在此基礎上再用集合與對應的語言來刻畫函數,體會對應關系在刻畫函數概念中的作用.
3.情感、態度與價值觀目標:
感受生活中的數學,感悟事物之間聯系與變化的辯證唯物主義觀點。
四、教學重點、難點分析
1.教學重點:對函數概念的理解,用集合與對應的語言來刻畫函數;
重點依據:初中是從變量的角度來定義函數,高中是用集合與對應的語言來刻畫函數。二者反映的本質是一致的,即“函數是一種對應關系”。但是,初中定義并未完全揭示出函數概念的本質,對y?1這樣的函數用運動變化的觀點也很難解釋。在以函數為重要內容的高中階段,課本應將函數定義為兩個數集之間的一種對應關系,按照這種觀點,使我們對函數概念有了更深一層的認識,也很容易說明y?1這函數表達式。因此,分析兩種函數概念的關系,讓學生融會貫通地理解函數的概念應為本節課的重點。
突出重點:重點的突出依賴于對函數概念本質屬性的把握,使學生通過表面的語言描述抓住概念的精髓。
2.教學難點:
第一:從實際問題中提煉出抽象的概念;
第二:符號“y=f(x)”的含義的理解.
難點依據:數學語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負遷移。
突破難點:難點的突破要依托豐富的實例,從集合與對應的角度恰當地引導,而對抽象符號的理解則要結合函數的三要素和小例子進行說明。
五、教法與學法分析
1.教法分析
本節課我主要采用教師導學法、知識遷移法和知識對比法,從學生熟悉的豐富實例出發,關注學生的原有的知識基礎,注重概念的形成過程,從初中的函數概念自然過度到函數的近代定我。
2.學法分析
在教學過程中我注意在教學中引導學生用模型法分析函數問題、通過自主學習法總結“區間”的知識。
簡單高一簡單數學教案篇8
教學準備
教學目標
知識目標
等差數列定義等差數列通項公式
能力目標
掌握等差
數列定義等差數列通項公式
情感目標
培養學生的觀察、推理、歸納能力
教學重難點
教學重點
等差數列的概念的理解與掌握
等差數列通項公式推導及應用教學難點等差數列“等差”的理解、把握和應用
教學過程
由__《紅高粱》主題曲“酒神曲”引入等差數列定義
問題:多媒體演示,觀察——發現
一、等差數列定義:
一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列。這個常數叫做等差數列的公差,通常用字母d表示。
例1:觀察下面數列是否是等差數列:…。
二、等差數列通項公式:
已知等差數列{an}的首項是a1,公差是d。
則由定義可得:
a2—a1=d
a3—a2=d
a4—a3=d
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差數列的首項a1是3,公差d是2,求它的通項公式。
分析:知道a1,d,求an。代入通項公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差數列10,8,6,4…的第20項。
分析:根據a1=10,d=—2,先求出通項公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差數列{an}中,已知a6=12,a18=36,求通項an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項公式an=a1+(n—1)d中,可得兩個方程,都含a1與d兩個未知數組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
練習
1。判斷下列數列是否為等差數列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
等差數列{an}的前三項依次為a—6,—3a—5,—10a—1,則a等于()
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在數列{an}中a1=1,an=an+1+4,則a10=。
提示:d=an+1—an=—4
教師繼續提出問題
已知數列{an}前n項和為……
簡單高一簡單數學教案篇9
教學目的:
(1)使學生初步理解集合的概念,知道常用數集的概念及記法
(2)使學生初步了解“屬于”關系的意義
(3)使學生初步了解有限集、無限集、空集的意義
教學重點:集合的基本概念及表示方法
教學難點:運用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教具:多媒體、實物投影儀
內容分析:
1.集合是中學數學的一個重要的基本概念在小學數學中,就滲透了集合的初步概念,到了初中,更進一步應用集合的語言表述一些問題例如,在代數中用到的有數集、解集等;在幾何中用到的有點集至于邏輯,可以說,從開始學習數學就離不開對邏輯知識的掌握和運用,基本的邏輯知識在日常生活、學習、工作中,也是認識問題、研究問題不可缺少的工具這些可以幫助學生認識學習本章的意義,也是本章學習的基礎
把集合的初步知識與簡易邏輯知識安排在高中數學的最開始,是因為在高中數學中,這些知識與其他內容有著密切聯系,它們是學習、掌握和使用數學語言的基礎例如,下一章講函數的概念與性質,就離不開集合與邏輯
本節首先從初中代數與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結合實例對集合的概念作了說明然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子
這節課主要學習全章的引言和集合的基本概念學習引言是引發學生的學習興趣,使學生認識學習本章的意義本節課的教學重點是集合的基本概念
集合是集合論中的原始的、不定義的概念在開始接觸集合的概念時,主要還是通過實例,對概念有一個初步認識教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集”這句話,只是對集合概念的描述性說明
教學過程:
一、復習引入:
1.簡介數集的發展,復習公約數和最小公倍數,質數與和數;
2.教材中的章頭引言;
3.集合論的創始人——康托爾(德國數學家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關概念:
由一些數、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數集及記法
(1)非負整數集(自然數集):全體非負整數的集合記作N,
(2)正整數集:非負整數集內排除0的集記作N_或N+
(3)整數集:全體整數的集合記作Z,
(4)有理數集:全體有理數的集合記作Q,
(5)實數集:全體實數的集合記作R
注:(1)自然數集與非負整數集是相同的,也就是說,自然數集包括數0
(2)非負整數集內排除0的集記作N_或N+Q、Z、R等其它
數集內排除0的集,也是這樣表示,例如,整數集內排除0的集,表示成Z_
3、元素對于集合的隸屬關系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,
或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序寫出)
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫
三、練習題:
1、教材P5練習1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數(不確定)
(2)好心的人(不確定)
(3)1,2,2,3,4,5.(有重復)
3、設a,b是非零實數,那么可能取的值組成集合的元素是_-2,0,2__
4、由實數x,-x,|x|,所組成的集合,最多含(A)
(A)2個元素(B)3個元素(C)4個元素(D)5個元素
5、設集合G中的元素是所有形如a+b(a∈Z,b∈Z)的數,求證:
(1)當x∈N時,x∈G;
(2)若x∈G,y∈G,則x+y∈G,而不一定屬于集合G
證明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,
則x=x+0_=a+b∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)
∴x+y=(a+b)+(c+d)=(a+c)+(b+d)
∵a∈Z,b∈Z,c∈Z,d∈Z
∴(a+c)∈Z,(b+d)∈Z
∴x+y=(a+c)+(b+d)∈G,
又∵=
且不一定都是整數,
∴=不一定屬于集合G
四、小結:本節課學習了以下內容:
1.集合的有關概念:(集合、元素、屬于、不屬于)
2.集合元素的性質:確定性,互異性,無序性
3.常用數集的定義及記法
五、課后作業:
六、板書設計(略)
七、課后記:
簡單高一簡單數學教案篇10
教學類型:探究研究型
設計思路:通過一系列的猜想得出德.摩根律,但是這個結論僅僅是猜想,數學是一門科學,所以需要論證它的正確性,因此本節通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應用,因此我們制作了本微課.
教學過程:
一、片頭
內容:現在讓我們一起來學習《集合的運算——自己探索也能發現的&39;數學規律(第二講)》。
二、正文講解
1.引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發現。”
上節課老師和大家學習了集合的運算,得出了一個有趣的規律。課后,你舉例驗證了這個規律嗎?
那么,這個規律是偶然的,還是一個恒等式呢?
2.規律的驗證:
試用集合A,B的交集、并集、補集分別表示維恩圖中1,2,3,4及彩色部分的集合,通過剖析維恩圖來驗證猜想的正確性使用
3.抽象概括:通過我們的觀察和驗證,我們發現這個規律是一個恒等式。
而這個規律就是180年前的英國數學家德摩根發現的。
為了紀念他,我們將它稱為德摩根律。
原來我們通過自己的探索也能發現這么偉大的數學規律。
4.例題應用:使用例題形式,將的德摩根定律的結論加以應用,讓學生更加熟悉集合的運算
三、結尾
通過這在道題的解答,我們發現德摩根律為解答集合運算問題提供了更為簡便的方法。
希望你在今后的學習中,勇于探索,發現更多有趣的規律。
簡單高一簡單數學教案篇11
一、指導思想與理論依據
數學是一門培養人的思維,發展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節課我以建構主義的“創設問題情境——提出數學問題——嘗試解決問題——驗證解決方法”為主,主要采用觀察、啟發、類比、引導、探索相結合的教學方法。在教學手段上,則采用多媒體輔助教學,將抽象問題形象化,使教學目標體現的更加完美。
二、教材分析
三角函數的誘導公式是普通高中課程標準實驗教科書(人教A版)數學必修四,第一章第三節的內容,其主要內容是三角函數誘導公式中的公式(二)至公式(六).本節是第一課時,教學內容為公式(二)、(三)、(四).教材要求通過學生在已經掌握的任意角的三角函數的定義和誘導公式(一)的基礎上,利用對稱思想發現任意角與、、終邊的對稱關系,發現他們與單位圓的交點坐標之間關系,進而發現他們的三角函數值的關系,即發現、掌握、應用三角函數的誘導公式公式(二)、(三)、(四).同時教材滲透了轉化與化歸等數學思想方法,為培養學生養成良好的學習習慣提出了要求.為此本節內容在三角函數中占有非常重要的地位.
三、學情分析
本節課的授課對象是本校高一(1)班全體同學,本班學生水平處于中等偏下,但本班學生具有善于動手的良好學習習慣,所以采用發現的教學方法應該能輕松的完成本節課的教學內容.
四、教學目標
(1).基礎知識目標:理解誘導公式的發現過程,掌握正弦、余弦、正切的誘導公式;
(2).能力訓練目標:能正確運用誘導公式求任意角的正弦、余弦、正切值,以及進行簡單的三角函數求值與化簡;
(3).創新素質目標:通過對公式的推導和運用,提高三角恒等變形的能力和滲透化歸、數形結合的數學思想,提高學生分析問題、解決問題的能力;
(4).個性品質目標:通過誘導公式的學習和應用,感受事物之間的普通聯系規律,運用化歸等數學思想方法,揭示事物的本質屬性,培養學生的唯物史觀.
五、教學重點和難點
1.教學重點
理解并掌握誘導公式.
2.教學難點
正確運用誘導公式,求三角函數值,化簡三角函數式.
六、教法學法以及預期效果分析
“授人以魚不如授之以魚”,作為一名老師,我們不僅要傳授給學生數學知識,更重要的是傳授給學生數學思想方法,如何實現這一目的,要求我們每一位教者苦心鉆研、認真探究.下面我從教法、學法、預期效果等三個方面做如下分析.
1.教法
數學教學是數學思維活動的教學,而不僅僅是數學活動的結果,數學學習的目的不僅僅是為了獲得數學知識,更主要作用是為了訓練人的思維技能,提高人的思維品質.
在本節課的教學過程中,本人以學生為主題,以發現為主線,盡力滲透類比、化歸、數形結合等數學思想方法,采用提出問題、啟發引導、共同探究、綜合應用等教學模式,還給學生“時間”、“空間”,由易到難,由特殊到一般,盡力營造輕松的學習環境,讓學生體味學習的快樂和成功的喜悅.
2.學法
“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,很多課堂教學常常以高起點、大容量、快推進的做法,以便教給學生更多的知識點,卻忽略了學生接受知識需要時間消化,進而泯滅了學生學習的興趣與熱情.如何能讓學生程度的消化知識,提高學習熱情是教者必須思考的問題.
在本節課的教學過程中,本人引導學生的學法為思考問題、共同探討、解決問題簡單應用、重現探索過程、練習鞏固。讓學生參與探索的全部過程,讓學生在獲取新知識及解決問題的方法后,合作交流、共同探索,使之由被動學習轉化為主動的自主學習.
3.預期效果
本節課預期讓學生能正確理解誘導公式的發現、證明過程,掌握誘導公式,并能熟練應用誘導公式了解一些簡單的化簡問題.
七、教學流程設計
(一)創設情景
1.復習銳角300,450,600的三角函數值;
2.復習任意角的三角函數定義;
3.問題:由,你能否知道sin2100的值嗎?引如新課.
設計意圖
自信的鼓勵是增強學生學習數學的自信,簡單易做的題加強了每個學生學習的熱情,具體數據問題的出現,讓學生既有好像會做的心理但又有迷惑的茫然,去發掘潛力期待尋找機會證明我能行,從而思考解決的辦法.
(二)新知探究
1.讓學生發現300角的終邊與2100角的終邊之間有什么關系;
2.讓學生發現300角的終邊和2100角的終邊與單位圓的交點的坐標有什么關系;
3.Sin2100與sin300之間有什么關系.
設計意圖
由特殊問題的引入,使學生容易了解,實現教學過程的平淡過度,為同學們探究發現任意角與的三角函數值的關系做好鋪墊.
(三)問題一般化
探究一
1.探究發現任意角的終邊與的終邊關于原點對稱;
2.探究發現任意角的終邊和角的終邊與單位圓的交點坐標關于原點對稱;
3.探究發現任意角與的三角函數值的關系.
設計意圖
首先應用單位圓,并以對稱為載體,用聯系的觀點,把單位圓的性質與三角函數聯系起來,數形結合,問題的設計提問從特殊到一般,從線對稱到點對稱到三角函數值之間的關系,逐步上升,一氣呵成誘導公式二.同時也為學生將要自主發現、探索公式三和四起到示范作用,下面練習設計為了熟悉公式一,讓學生感知到成功的喜悅,進而敢于挑戰,敢于前進
(四)練習
利用誘導公式(二),口答下列三角函數值.
(1).;(2).;(3)..
喜悅之后讓我們重新啟航,接受新的挑戰,引入新的問題.
(五)問題變形
由sin3000=-sin600出發,用三角的定義引導學生求出sin(-3000),Sin1500值,讓學生聯想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.學生自主探究
簡單高一簡單數學教案篇12
教學目標
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.
(1)能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象.
(2)能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題.
2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力.
3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性.
教學建議
教材分析
(1)對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.
(2)本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點.
(3)本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開.而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點.教法建議
(1)對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
(2)在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
簡單高一簡單數學教案篇13
一、教材分析
函數作為初等數學的核心內容,貫穿于整個初等數學體系之中。函數這一章在高中數學中,起著承上啟下的作用,它是對初中函數概念的承接與深化。在初中,只停留在具體的幾個簡單類型的函數上,把函數看成變量之間的依賴關系,而高中階段不僅把函數看成變量之間的依賴關系,更是從“變量說”到“對應說”,這是對函數本質特征的進一步認識,也是學生認識上的一次飛躍。這一章內容滲透了函數的思想,集合的思想以及數學建模的思想等內容,這些內容的學習,無疑對學生今后的學習起著深刻的影響。
本節《函數的概念》是函數這一章的起始課。概念是數學的基礎,只有對概念做到深刻理解,才能正確靈活地加以應用。本課從集合間的對應來描繪函數概念,起到了上承集合,下引函數的作用。也為進一步學習函數這一章的其它內容提供了方法和依據。
二、重難點分析
根據對上述對教材的分析及新課程標準的要求,確定函數的概念既是本節課的重點,也應該是本章的難點。
三、學情分析
1、有利因素:一方面學生在初中已經學習了變量觀點下的函數定義,并具體研究了幾類最簡單的函數,對函數已經有了一定的感性認識;另一方面在本書第一章學生已經學習了集合的概念,這為學習函數的現代定義打下了基礎。
2、不利因素:函數在初中雖已講過,不過較為膚淺,本課主要是從兩個集合間對應來描繪函數概念,是一個抽象過程,要求學生的抽象、分析、概括的能力比較高,學生學起來有一定的難度。
四、目標分析
1、理解函數的概念,會用函數的定義判斷函數,會求一些最基本的函數的定義域、值域。
2、通過對實際問題分析、抽象與概括,培養學生抽象、概括、歸納知識以及邏輯思維、建模等方面的能力。
3、通過對函數概念形成的探究過程,培養學生發現問題,探索問題,不斷超越的創新品質。
五、教法學法
本節課的教學以學生為主體、教師是數學課堂活動的組織者、引導者和參與者,我一方面精心設計問題情景,引導學生主動探索。另一方面,依據本節為概念學習的特點,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與,通過不斷探究、發現,在師生互動、生生互動中,讓學習過程成為學生心靈愉悅的主動認知過程。
學法方面,學生通過對新舊兩種函數定義的對比,在集合論的觀點下初步建構出函數的概念。在理解函數概念的基礎上,建構出函數的定義域、值域的概念,并初步掌握它們的求法。
簡單高一簡單數學教案篇14
邏輯聯結詞
一、教學目標
(1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;
(2)理解邏輯聯結詞“或”“且”“非”的含義;
(3)能用邏輯聯結詞和簡單命題構成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯結詞及其聯結的簡單命題;
(5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎上,培養學生簡單推理的技能.
二、教學重點難點:
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
三、教學過程
1.新課導入
在當今社會中,人們從事任何工作、學習,都離不開邏輯.具有一定邏輯知識是構成一個公民的文化素質的重要方面.數學的特點是邏輯性強,特別是進入高中以后,所學的教學比初中更強調邏輯性.如果不學習一定的邏輯知識,將會在我們學習的過程中不知不覺地經常犯邏輯性的錯誤.其實,同學們在初中已經開始接觸一些簡易邏輯的知識.
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學議論結果,答案是肯定的.)
教師提問:什么是命題?
(學生進行回憶、思考.)
概念總結:對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
由于判斷有正確與錯誤之分,所以命題有真假之分,命題(1)、(2)是真命題,而(3)是假命題.
(教師利用投影片,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
命題一定要對一件事情作出判斷,(3)、(4)沒有對一件事情作出判斷,所以它們不是命題.
初中所學的命題概念涉及邏輯知識,我們今天開始要在初中學習的基礎上,介紹簡易邏輯的知識.
2.講授新課
大家看課本(人教版,試驗修訂本,第一冊(上))從第25頁至26頁例1前,并歸納一下這段內容主要講了哪些問題?
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
判斷一個語句是不是命題,關鍵看這語句有沒有對一件事情作出了判斷,疑問句、祈使句都不是命題.有些語句中含有變量,如 中含有變量 ,在不給定變量的值之前,我們無法確定這語句的真假(這種含有變量的語句叫做“開語句”).
(2)介紹邏輯聯結詞“或”、“且”、“非”.
“或”、“且”、“非”這些詞叫做邏輯聯結詞.邏輯聯結詞除這三種形式外,還有“若…則…”和“當且僅當”兩種形式.
對“或”的理解,可聯想到集合中“并集”的概念. 中的“或”,它是指“ ”、“ ”中至少一個是成立的,即 且 ;也可以 且 ;也可以 且 .這與生活中“或”的含義不同,例如“你去或我去”,理解上是排斥你我都去這種可能.
對“且”的理解,可聯想到集合中“交集”的概念. 中的“且”,是指“ ”、“ 這兩個條件都要滿足的意思.
對“非”的理解,可聯想到集合中的“補集”概念,若命題 對應于集合 ,則命題非 就對應著集合 在全集 中的補集 .
命題可分為簡單命題和復合命題.
不含邏輯聯結詞的命題叫做簡單命題.簡單命題是不含其他命題作為其組成部分(在結構上不能再分解成其他命題)的命題.
由簡單命題和邏輯聯結詞構成的命題叫做復合命題,如“6是自然數且是偶數”就是由簡單命題“6是自然數”和“6是偶數”由邏輯聯結詞“且”構成的復合命題.
(4)命題的表示:用 , , , ,……來表示.
(教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)
我們接觸的復合命題一般有“ 或 ”、“ 且 ”、“非 ”、“若 則 ”等形式.
給出一個含有“或”、“且”、“非”的復合命題,應能說出構成它的簡單命題和弄清它所用的邏輯聯結詞;應能根據所給出的兩個簡單命題,寫出含有邏輯聯結詞“或”、“且”、“非”的復合命題.
對于給出“若 則 ”形式的復合命題,應能找到條件 和結論 .
在判斷一個命題是簡單命題還是復合命題時,不能只從字面上來看有沒有“或”、“且”、“非”.例如命題“等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合”,此命題字面上無“且”;命題“5的倍數的末位數字不是0就是5”的字面上無“或”,但它們都是復合命題.
3.鞏固新課
例2 判斷下列命題,哪些是簡單命題,哪些是復合命題.如果是復合命題,指出它的構成形式以及構成它的簡單命題.
(1) ;
(2)0.5非整數;
(3)內錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若 ,則 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充.)
例3 寫出下表中各給定語的否定語(用課件打出來).
略
分析:“等于”的否定語是“不等于”;
“大于”的否定語是“小于或者等于”;
“是”的否定語是“不是”;
“都是”的否定語是“不都是”;
“至多有一個”的否定語是“至少有兩個”;
“至少有一個”的否定語是“一個都沒有”;
“至多有 個”的否定語是“至少有 個”.
(如果時間寬裕,可讓學生討論后得出結論.)
置疑:“或”、“且”的否定是什么?(視學生的情況、課堂時間作適當的辨析與展開.)
4.課堂練習:第26頁練習1,2.
5.課外作業:第29頁習題1.6 1,2.
簡單高一簡單數學教案篇15
一、目的要求
結合集合的圖形表示,理解交集與并集的概念。
二、內容分析
1.這小節繼續研究集合的運算,即集合的交、并及其性質。
2.本節課的重點是交集與并集的概念,難點是弄清交集與并集的概念,符號之間的區別與聯系。
三、教學過程
復習提問:
1.說出A的意義。
2.填空:如果全集U={x|0≤x<6,X∈Z},A={1,3,5},B={1,4},那么,
A=_________,B=__________。
(A={0,2,4},B={0,2,3,5})
新課講解:
1.觀察下面兩個圖的陰影部分,它們同集合A、集合B有什么關系?
2.定義:
(1)交集:A∩B={x∈A,且x∈B}。
(2)并集:A∪B={x∈A,且x∈B}。
3.講解教科書1.3節例1-例5。
組織討論:
觀察下面表示兩個集合A與B之間關系的5個圖,根據這些圖分別討論A∩B與A∪B。
(2)中A∩B=φ。
(3)中A∩B=B,A∪B=A。
(4)中A∩B=A,A∪B=B。
(5)中A∩B=A∪B=A=B。
課堂練習:
教科書1.3節第一個練習第1~5題。
拓廣引申:
在教科書的例3中,由A={3,5,6,8},B={4,5,7,8},得
A∪B={3,5,6,8}∪{4,5,7,8}
={3,4,5,6,7,8}
我們研究一下上面三個集合中的元素的個數問題。我們把有限集合A的元素個數記作card(A)=4,card(B)=4,card(A∪B)=6.
顯然,
card(A∪B)≠card(A)+card(B)
這是因為集合中的元素是沒有重復現象的,在兩個集合的公共元素只能出現一次。那么,怎樣求card(A∪B)呢?不難看出,要扣除兩個集合的公共元素的個數,即card(A∩B)。在上例中,card(A∩B)=2。
一般地,對任意兩個有限集合A,B,有
card(A∪B)=card(A)+card(B)-card(A∩B)。
四、布置作業
1.教科書習題1.3第1~5題。
2.選作:設集合A={x|-4≤x<2},B={-1<x≤3},c={}。< p="">
求A∩B∩C,A∪B∩C。
(A∩B∩C={-1<x≤0},a∪b∩c=r)< p="">