高中數(shù)學(xué)教案設(shè)計流程
教案可以幫助教師根據(jù)學(xué)生的實際情況,面向大多數(shù)學(xué)生,并調(diào)動學(xué)生學(xué)習(xí)的積極性。優(yōu)秀的高中數(shù)學(xué)教案設(shè)計流程要怎么寫?下面給大家整理高中數(shù)學(xué)教案設(shè)計流程,希望對大家能有幫助。
高中數(shù)學(xué)教案設(shè)計流程篇1
教學(xué)過程:
一、復(fù)習(xí)引入:
1.簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)。
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關(guān)概念:由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個集合。
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
(1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合,記作N,N={0,1,2,…}
(2)正整數(shù)集:非負整數(shù)集內(nèi)排除0的集,記作N__或N+,N__={1,2,3,…}
(3)整數(shù)集:全體整數(shù)的集合,記作Z,Z={0,±1,±2,…}
(4)有理數(shù)集:全體有理數(shù)的集合,記作Q,Q={整數(shù)與分數(shù)}
(5)實數(shù)集:全體實數(shù)的集合,記作R,R={數(shù)軸上所有點所對應(yīng)的數(shù)}
注:(1)自然數(shù)集與非負整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負整數(shù)集內(nèi)排除0的集,記作N__或N+
Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z__
3、元素對于集合的隸屬關(guān)系
(1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
(2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作aA
4、集合中元素的特性
(1)確定性:按照明確的判斷標準給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復(fù)
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……
元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈A顛倒過來寫。
高中數(shù)學(xué)教案設(shè)計流程篇2
考試要求重難點擊命題展望
1.理解復(fù)數(shù)的基本概念、復(fù)數(shù)相等的充要條件.
2.了解復(fù)數(shù)的代數(shù)表示法及其幾何意義.
3.會進行復(fù)數(shù)代數(shù)形式的四則運算.了解復(fù)數(shù)的代數(shù)形式的加、減運算及其運算的幾何意義.
4.了解從自然數(shù)系到復(fù)數(shù)系的關(guān)系及擴充的基本思想,體會理性思維在數(shù)系擴充中的作用.本章重點:1.復(fù)數(shù)的有關(guān)概念;2.復(fù)數(shù)代數(shù)形式的四則運算.
本章難點:運用復(fù)數(shù)的有關(guān)概念解題.近幾年高考對復(fù)數(shù)的考查無論是試題的難度,還是試題在試卷中所占比例都是呈下降趨勢,常以選擇題、填空題形式出現(xiàn),多為容易題.在復(fù)習(xí)過程中,應(yīng)將復(fù)數(shù)的概念及運算放在首位.
知識網(wǎng)絡(luò)
15.1復(fù)數(shù)的概念及其運算
典例精析
題型一復(fù)數(shù)的概念
【例1】(1)如果復(fù)數(shù)(m2+i)(1+mi)是實數(shù),則實數(shù)m=;
(2)在復(fù)平面內(nèi),復(fù)數(shù)1+ii對應(yīng)的點位于第象限;
(3)復(fù)數(shù)z=3i+1的共軛復(fù)數(shù)為z=.
【解析】(1)(m2+i)(1+mi)=m2-m+(1+m3)i是實數(shù)1+m3=0m=-1.
(2)因為1+ii=i(1+i)i2=1-i,所以在復(fù)平面內(nèi)對應(yīng)的點為(1,-1),位于第四象限.
(3)因為z=1+3i,所以z=1-3i.
【點撥】運算此類題目需注意復(fù)數(shù)的代數(shù)形式z=a+bi(a,bR),并注意復(fù)數(shù)分為實數(shù)、虛數(shù)、純虛數(shù),復(fù)數(shù)的幾何意義,共軛復(fù)數(shù)等概念.
【變式訓(xùn)練1】(1)如果z=1-ai1+ai為純虛數(shù),則實數(shù)a等于
A.0B.-1C.1D.-1或1
(2)在復(fù)平面內(nèi),復(fù)數(shù)z=1-ii(i是虛數(shù)單位)對應(yīng)的點位于()
A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限
【解析】(1)設(shè)z=xi,x0,則
xi=1-ai1+ai1+ax-(a+x)i=0或故選D.
(2)z=1-ii=(1-i)(-i)=-1-i,該復(fù)數(shù)對應(yīng)的點位于第三象限.故選C.
題型二復(fù)數(shù)的相等
【例2】(1)已知復(fù)數(shù)z0=3+2i,復(fù)數(shù)z滿足zz0=3z+z0,則復(fù)數(shù)z=;
(2)已知m1+i=1-ni,其中m,n是實數(shù),i是虛數(shù)單位,則m+ni=;
(3)已知關(guān)于x的方程x2+(k+2i)x+2+ki=0有實根,則這個實根為,實數(shù)k的值為.
【解析】(1)設(shè)z=x+yi(x,yR),又z0=3+2i,
代入zz0=3z+z0得(x+yi)(3+2i)=3(x+yi)+3+2i,
整理得(2y+3)+(2-2x)i=0,
則由復(fù)數(shù)相等的條件得
解得所以z=1-.
(2)由已知得m=(1-ni)(1+i)=(1+n)+(1-n)i.
則由復(fù)數(shù)相等的條件得
所以m+ni=2+i.
(3)設(shè)x=x0是方程的實根,代入方程并整理得
由復(fù)數(shù)相等的充要條件得
解得或
所以方程的實根為x=2或x=-2,
相應(yīng)的k值為k=-22或k=22.
【點撥】復(fù)數(shù)相等須先化為z=a+bi(a,bR)的形式,再由相等得實部與實部相等、虛部與虛部相等.
【變式訓(xùn)練2】(1)設(shè)i是虛數(shù)單位,若1+2i1+i=a+bi(a,bR),則a+b的值是()
A.-12B.-2C.2D.12
(2)若(a-2i)i=b+i,其中a,bR,i為虛數(shù)單位,則a+b=.
【解析】(1)C.1+2i1+i=(1+2i)(1-i)(1+i)(1-i)=3+i2,于是a+b=32+12=2.
(2)3.2+ai=b+ia=1,b=2.
題型三復(fù)數(shù)的運算
【例3】(1)若復(fù)數(shù)z=-12+32i,則1+z+z2+z3++z2008=;
(2)設(shè)復(fù)數(shù)z滿足z+z=2+i,那么z=.
【解析】(1)由已知得z2=-12-32i,z3=1,z4=-12+32i=z.
所以zn具有周期性,在一個周期內(nèi)的和為0,且周期為3.
所以1+z+z2+z3++z2008
=1+z+(z2+z3+z4)++(z2006+z2007+z2008)
=1+z=12+32i.
(2)設(shè)z=x+yi(x,yR),則x+yi+x2+y2=2+i,
所以解得所以z=+i.
【點撥】解(1)時要注意x3=1(x-1)(x2+x+1)=0的三個根為1,,-,
其中=-12+32i,-=-12-32i,則
1++2=0,1+-+-2=0,3=1,-3=1,-=1,2=-,-2=.
解(2)時要注意zR,所以須令z=x+yi.
【變式訓(xùn)練3】(1)復(fù)數(shù)11+i+i2等于()
A.1+i2B.1-i2C.-12D.12
(2)(20__江西鷹潭)已知復(fù)數(shù)z=23-i1+23i+(21-i)2010,則復(fù)數(shù)z等于()
A.0B.2C.-2iD.2i
【解析】(1)D.計算容易有11+i+i2=12.
(2)A.
總結(jié)提高
復(fù)數(shù)的代數(shù)運算是重點,是每年必考內(nèi)容之一,復(fù)數(shù)代數(shù)形式的運算:①加減法按合并同類項法則進行;②乘法展開、除法須分母實數(shù)化.因此,一些復(fù)數(shù)問題只需設(shè)z=a+bi(a,bR)代入原式后,就可以將復(fù)數(shù)問題化歸為實數(shù)問題來解決.
高中數(shù)學(xué)教案設(shè)計流程篇3
橢圓的簡單幾何性質(zhì)的重點是性質(zhì),難點是應(yīng)用。橢圓的簡單幾何性質(zhì)的知識是解析幾何中一個重要內(nèi)容,是訓(xùn)練學(xué)生邏輯思維,發(fā)展空間想像能力,提高分析和解決問題能力等的又一重要素材。新課開始,先復(fù)習(xí)橢圓定義和方程,然后結(jié)合圖形觀察分析得出橢圓有性質(zhì)(范圍、對稱性、頂點、離心率、準線)。
當然,要真正掌握性質(zhì)并靈活應(yīng)用,適當?shù)挠?xùn)練是必不可少的。由于橢圓的簡單幾何性質(zhì)安排了六節(jié)數(shù)學(xué)課,還有足夠的時間來開展反饋環(huán)節(jié)。課本后面的練習(xí)及習(xí)題比較多,其中習(xí)題的第5題及9題難度較大。對于比較簡單的習(xí)題,基本上由學(xué)生獨立完成,當然學(xué)生解題的時間必須要保證。而對于比較難的第5及9題,采取創(chuàng)設(shè)問題情境,注重啟發(fā)藝術(shù),體現(xiàn)“低起點、小步子、及時反饋”的教學(xué)原則,讓盡可能多的學(xué)生思維和積極性得到最大的挑戰(zhàn)和提高。當然,教學(xué)永遠是一門遺憾的藝術(shù),教學(xué)境界是無止境的,“啟而不發(fā),引而不導(dǎo)”是一個不斷完善的操作過程。
對于習(xí)題的教學(xué),如何提升習(xí)題的潛在價值,如何讓學(xué)生得到最大的收獲,這是我們每天面對和思考的焦點。在教學(xué)過程中幾乎花了一節(jié)課的時間開展習(xí)題教學(xué),由于自己一直擔心時間的緊張,學(xué)生的主體性沒有得到有效體現(xiàn),進而數(shù)學(xué)思維及能力缺少了錘煉的機會。這部分的缺陷,將在今后的教學(xué)中找時間來給學(xué)生補上,不過這是在教學(xué)中應(yīng)注意的,將要要求自己在今后的教學(xué)中盡量做到最好。
高中數(shù)學(xué)教案設(shè)計流程篇4
高二數(shù)學(xué)《橢圓的幾何性質(zhì)1》教學(xué)反思
近期,我開設(shè)了一節(jié)公開課《橢圓的幾何性質(zhì)1》。在新課程背景下,如何有效利用課堂教學(xué)時間,如何盡可能地提高學(xué)生的學(xué)習(xí)興趣,提高學(xué)生在課堂上45分鐘的學(xué)習(xí)效率,是一個很重要的課題。要教好高中數(shù)學(xué),首先要對新課標和新教材有整體的把握和認識,這樣才能將知識系統(tǒng)化,注意知識前后的聯(lián)系,形成知識框架;其次要了解學(xué)生的現(xiàn)狀和認知結(jié)構(gòu),了解學(xué)生此階段的知識水平,以便因材施教;再次要處理好課堂教學(xué)中教師的教和學(xué)生的學(xué)的關(guān)系。課堂教學(xué)是實施高中新課程教學(xué)的主陣地,也是對學(xué)生進行思想品德教育和素質(zhì)教育的主渠道。課堂教學(xué)不但要加強雙基而且要提高智力,發(fā)展學(xué)生的智力,而且要發(fā)展學(xué)生的創(chuàng)造力;不但要讓學(xué)生學(xué)會,而且要讓學(xué)生會學(xué),特別是自學(xué)。尤其是在課堂上,不但要發(fā)展學(xué)生的智力因素,而且要提高學(xué)生在課堂45分鐘的學(xué)習(xí)效率,在有限的時間里,出色地完成教學(xué)任務(wù)。
一、要有明確的教學(xué)目標
教學(xué)目標分為三大領(lǐng)域,即認知領(lǐng)域、情感領(lǐng)域和動作技能領(lǐng)域。因此,在備課時要圍繞這些目標選擇教學(xué)的策略、方法和媒體,把內(nèi)容進行必要的重組。備課時要依據(jù)教材,但又不拘泥于教材,靈活運用教材。在數(shù)學(xué)教學(xué)中,要通過師生的共同努力,使學(xué)生在知識、能力、技能、心理、思想品德等方面達到預(yù)定的目標,以提高學(xué)生的綜合素質(zhì)。
二、要能突出重點、化解難點
每一堂課都要有教學(xué)重點,而整堂的教學(xué)都是圍繞著教學(xué)重點來逐步展開的。為了讓學(xué)生明確本堂課的重點、難點,教師在上課開始時,可以在黑板的一角將這些內(nèi)容簡短地寫出來,以便引起學(xué)生的重視。講授重點內(nèi)容,是整堂課的教學(xué)高潮。教師要通過聲音、手勢、板書等的變化或應(yīng)用模型、投影儀等直觀教具,刺激學(xué)生的大腦,使學(xué)生能夠興奮起來,對所學(xué)內(nèi)容在大腦中刻下強烈的印象,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生對新知識的接受能力。尤其是在選擇例題時,例題最好是呈階梯式展現(xiàn),我在準備例2時,就設(shè)置了三個小題,從易到難,便于學(xué)生理解接受。
三、要善于應(yīng)用現(xiàn)代化教學(xué)手段
在新課標和新教材的背景下,教師掌握現(xiàn)代化的多媒體教學(xué)手段顯得尤為重要和迫切。現(xiàn)代化教學(xué)手段的顯著特點:
一是能有效地增大每一堂課的課容量;
二是減輕教師板書的工作量,使教師能有精力講深講透所舉例子,提高講解效率;
三是直觀性強,容易激發(fā)起學(xué)生的學(xué)習(xí)興趣,有利于提高學(xué)生的學(xué)習(xí)主動性;
四是有利于對整堂課所學(xué)內(nèi)容進行回顧和小結(jié)。
在課堂教學(xué)結(jié)束時,教師引導(dǎo)學(xué)生總結(jié)本堂課的內(nèi)容,學(xué)習(xí)的重點和難點。同時通過投影儀,同步地將內(nèi)容在瞬間躍然“幕”上,使學(xué)生進一步理解和掌握本堂課的內(nèi)容。在課堂教學(xué)中,對于板演量大的內(nèi)容,如解析幾何中的一些幾何圖形、一些簡單但數(shù)量較多的小問答題、文字量較多應(yīng)用題,復(fù)習(xí)課中章節(jié)內(nèi)容的總結(jié)、選擇題的訓(xùn)練等等都可以借助于投影儀來完成。
四、根據(jù)具體內(nèi)容,選擇恰當?shù)慕虒W(xué)方法
每一堂課都有規(guī)定的教學(xué)任務(wù)和目標要求。所謂“教學(xué)有法,但無定法”,教師要能隨著教學(xué)內(nèi)容的變化,教學(xué)對象的變化,教學(xué)設(shè)備的變化,靈活應(yīng)用教學(xué)方法。這節(jié)課是高三的復(fù)習(xí)課,我采取了讓學(xué)生自己回憶講述橢圓的幾何性質(zhì),教師補充的方法,改變了傳統(tǒng)的教師講,學(xué)生聽的模式,調(diào)動了學(xué)生的積極性。在例題的解決過程中,我也盡量讓學(xué)生多動手,多動腦,激發(fā)學(xué)生的思維。此外,我們還可以結(jié)合課堂內(nèi)容,靈活采用談話、讀書指導(dǎo)、作業(yè)、練習(xí)等多種教學(xué)方法。在一堂課上,有時要同時使用多種教學(xué)方法。“教無定法,貴要得法”。只要能激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的學(xué)習(xí)積極性,有助于學(xué)生思維能力的培養(yǎng),有利于所學(xué)知識的.掌握和運用,都是好的教學(xué)方法。
五、關(guān)愛學(xué)生,及時鼓勵
高中新課程的宗旨是著眼于學(xué)生的發(fā)展。對學(xué)生在課堂上的表現(xiàn),要及時加以總結(jié),適當給予鼓勵,并處理好課堂的偶發(fā)事件,及時調(diào)整課堂教學(xué)。在教學(xué)過程中,教師要隨時了解學(xué)的對所講內(nèi)容的掌握情況。如在講完一個概念后,讓學(xué)生復(fù)述;講完一個例題后,將解答擦掉,請中等水平學(xué)生上臺板演。有時,對于基礎(chǔ)差的學(xué)生,可以對他們多提問,讓他們有較多的鍛煉機會,同時教師根據(jù)學(xué)生的表現(xiàn),及時進行鼓勵,培養(yǎng)他們的自信心,讓他們能熱愛數(shù)學(xué),學(xué)習(xí)數(shù)學(xué)。
六、切實重視基礎(chǔ)知識、基本技能和基本方法
眾所周知,近年來數(shù)學(xué)試題的新穎性、靈活性越來越強,不少師生把主要精力放在難度較大的綜合題上,認為只有通過解決難題才能培養(yǎng)能力,因而相對地忽視了基礎(chǔ)知識、基本技能、基本方法的教學(xué)。教學(xué)中急急忙忙把公式、定理推證拿出來,或草草講一道例題就通過大量的題目來訓(xùn)練學(xué)生。
其實定理、公式推證的過程就蘊含著重要的解題方法和規(guī)律,教師沒有充分暴露思維過程,沒有發(fā)掘其內(nèi)在的規(guī)律,就讓學(xué)生去做題,試圖通過讓學(xué)生大量地做題去“悟”出某些道理。結(jié)果是多數(shù)學(xué)生“悟”不出方法、規(guī)律,理解浮淺,記憶不牢,只會機械地模仿,思維水平較低,有時甚至生搬硬套;照葫蘆畫瓢,將簡單問題復(fù)雜化。如果教師在教學(xué)中過于粗疏或?qū)W生在學(xué)習(xí)中對基本知識不求甚解,都會導(dǎo)致在考試中判斷錯誤。
不少學(xué)生說:現(xiàn)在的試題量過大,他們往往無法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低。可見,在切實重視基礎(chǔ)知識的落實中同時應(yīng)重視基本技能和基本方法的培養(yǎng)。
七、滲透教學(xué)思想方法,培養(yǎng)綜合運用能力
常用的數(shù)學(xué)思想方法有:轉(zhuǎn)化的思想,類比歸納與類比聯(lián)想的思想,分類討論的思想,數(shù)形結(jié)合的思想以及配方法、換元法、待定系數(shù)法、反證法等。這些基本思想和方法分散地滲透在中學(xué)數(shù)學(xué)教材的條章節(jié)之中。在平時的教學(xué)中,教師要在傳授基礎(chǔ)知識的同時,有意識地、恰當在講解與滲透基本數(shù)學(xué)思想和方法,幫助學(xué)生掌握科學(xué)的方法,從而達到傳授知識,培養(yǎng)能力的目的,只有這樣。學(xué)生才能靈活運用和綜合運用所學(xué)的知識。
總之,在新課程背景下的數(shù)學(xué)課堂教學(xué)中,要提高學(xué)生在課堂45分鐘的學(xué)習(xí)效率,要提高教學(xué)質(zhì)量,我們就應(yīng)該多思考、多準備,充分做到用教材、備學(xué)生、備教法,提高自身的教學(xué)機智,發(fā)揮自身的主導(dǎo)作用。
高中數(shù)學(xué)教案設(shè)計流程篇5
【教學(xué)目標】
1、知識與技能:
(1)掌握圓的標準方程。
(2)會由圓的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程。
(3)會判斷點與圓的位置關(guān)系。
2、過程與方法:
(1)進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力。
(2)加深對數(shù)形結(jié)合思想的理解和加強待定系數(shù)法的運用。
3、情感、態(tài)度與價值觀:
(1)培養(yǎng)學(xué)生主動探究知識、合作交流的意識。
(2)讓學(xué)生感受數(shù)學(xué),體驗數(shù)學(xué);從走入數(shù)學(xué)到走出數(shù)學(xué),生活處處有數(shù)學(xué),數(shù)學(xué)就在我身邊,體會到數(shù)學(xué)知識、思想方法和精神來源于生活,還要服務(wù)于生活;寓思想教育于教學(xué)。讓學(xué)生體會到數(shù)學(xué)的美以及數(shù)學(xué)的價值與魅力。
【學(xué)情分析】
對圓的方程有個初步的認識以及在上章學(xué)習(xí)了直線與方程的基礎(chǔ)上,學(xué)習(xí)圓的方程,學(xué)生還是可以接受。在教學(xué)過程中,主要采用啟發(fā)性原則,并且與已經(jīng)學(xué)過的直線方程進行類比,發(fā)揮學(xué)生的思維能力、想象能力,由易到難,逐步加深。
【重點難點】
重點:圓的標準方程和圓的標準方程特點的明確。
難點:會根據(jù)不同的條件寫出圓的標準方程。
【教學(xué)過程】
第一學(xué)時評論(0)教學(xué)目標
教學(xué)活動活動1【導(dǎo)入】新聞聯(lián)播片段
請結(jié)合數(shù)學(xué)中圓知識,談?wù)勀銓@句話的理解?
活動2【講授】問題1.
在直角坐標系中,以A(a,b)為圓心,r為半徑的圓上的動點M(x,y)滿足怎樣的關(guān)系式?
活動3【活動】想一想!
圓心在坐標原點,半徑長為r的圓的方程是什么?
活動4【導(dǎo)入】試試你的眼力!判斷下列方程是否為圓的標準方程:
(x-2)2+y=8;
(x-2)2-y2=8;
(2x-2)2+y2=8;
(x-2)2+y2=0;
(x-2)2+y2=a;
(2x-2)2+(2y-4)2=8。
答案:都不是,第6個可以化為圓的標準方程。
活動5【活動】再試一下!
圓(x1)2+(ay2)2=1a的圓心坐標和半徑分別是什么?
答案:圓心坐標為(1,—2),半徑是√2
活動6【活動】問題2.
要寫出圓的標準方程,只需知道圓的哪些量?
怎樣判斷一點是否在一個圓上?
學(xué)生回答,教師點評.
活動7【活動】例1
寫出圓心為A(2,-3),半徑長為5的圓的方程,并判斷點M1(5,7),M2((√5,1)是否在這個圓上。
學(xué)生回答,教師點評后,學(xué)生閱讀教科書上本題解法.
活動8【活動】探究
你能判斷點M2在圓內(nèi)還是在圓外嗎?
學(xué)生回答,教師點評。
點與圓心距離比半徑大等價于點在圓外。
點與圓心距離比半徑小等價于點在圓內(nèi)。
點與圓心距離等于半徑等價于點在圓外等價于點的坐標滿足方程。
活動9【講授】解題收獲
1.從確定圓的兩個要素即圓心和半徑入手,直接寫出圓的標準方程——直接法。
2.類似于點與直線方程的關(guān)系:點在圓上等價于點坐標滿足圓方程活動10【活動】試一試!
例2△ABC的三個頂點的坐標分別是A(5,1),B(7,-3),C(2,-8),求它的外接圓的方程.
師:△ABC的外接圓的圓心簡稱什么?
學(xué)生回答
師:△ABC的外心是什么的交點?
學(xué)生回答
師:求圓的標準方程,只需知道圓心坐標和圓的半徑。這三點都在圓上,其坐標一定是滿足所求圓的方程。這樣就可以設(shè)出圓的標準方程。
學(xué)生閱讀教材例2解法。
師:提示:方程組中
(1)(2)得到什么?
(1)(3)得到什么?
然后,怎樣就可以求出圓心坐標和半徑。
活動11【講授】解題收獲
先設(shè)出圓的標準方程,再根據(jù)已知條件建立方程組,從而求出圓心坐標和半徑的方法——待定系數(shù)法。
活動12【活動】動手折一折
請同學(xué)們準備一個銳角三角形紙片,能否用手工的方法找到此三角形外接圓的圓心?
學(xué)生回答過程.
把三角形的任意兩個頂點重合進行對折,就可以得到邊的垂直平分線,垂直平分線的交點即是三角形的外心。
師:把圓的弦對折,折線一定經(jīng)過圓心。即圓心一定在弦的垂直平分線上。
活動13【活動】Let’stry
例3已知圓心為C的圓經(jīng)過點A(1,1)和B(2,-2),且圓心C在直線m:x-y+1=0上,求圓心為C的圓的標準方程。
由學(xué)生閱讀例3,學(xué)生總結(jié)解題步驟。
活動14【講授】解題收獲
由圓的幾何性質(zhì)直接求出圓心坐標和半徑,然后寫出標準方程——幾何性質(zhì)法。
活動15【活動】小結(jié)
一個方程
三種方法
一種思想
活動16【講授】作業(yè)布置
作業(yè):教材P124習(xí)題A組第2題和第3題.
課下探究:
(1)平面內(nèi)到一定點的距離等于定長的點軌跡是圓。點的軌跡是圓的方法很多,請試著找出來,并和其他同學(xué)交流。
(2)直線方程有五種形式,圓除了標準方程,還有其它形式嗎?
活動17【導(dǎo)入】結(jié)束語
圓心半徑確定圓,
待定系數(shù)很普遍;
大家站在同一圓,
彰和諧平等友善;
半徑就像無形線,
把大家心聚一點;
垂直平分折中線,
就能折出同心愿;
中國騰飛之夢圓。
活動18【測試】課堂測試
1.圓C:(x2)2+(y+1)2=3的圓心坐標為()
A(2,1)B(2,—1)C(—2,1)D(—2,—1)
2.以原點為圓心,2為半徑的圓的標準方程是()
Ax2+y2=2Bx2+y2=4
C(x2)2+(y2)2=8Dx2+y2=√2
3圓心為(1,1)且與直線x+y=4相切的圓的方程是()
A(x1)2+(y1)2=2B(x1)2+(y1)2=4
C(x+1)2+(y+1)2=2D(x+1)2+(y+1)2=4
4圓A:(ax+2)2+y2=a+3,則此圓的半徑為______________。
5已知一個圓的圓心在點C(—3,—4),且經(jīng)過原點。
(1)求該圓的標準方程;
(2)判斷點M(—1,0),N(1,—1),P(3,—4)和圓的位置關(guān)系。
6.已知△AOB的頂點坐標分別是A(8,0),B(0,6),O(0,0),求△AOB外接圓的方程.
7求過點A(1,—1)B(—1,1)且圓心在直線x+y2=0上的圓方程
參考答案:1B2B3A42或√2
5(1)(x+3)2+(y+4)2=25
(2)M在圓內(nèi),N在圓上,P在圓外。
6(x4)2+(y3)2=25。
7(x1)2+(y1)2=4
高中數(shù)學(xué)教案設(shè)計流程篇6
一、教學(xué)目標:
1、知識與技能:
了解平面向量基本定理及其意義,理解平面里的任何一個向量都可以用兩個不共線的向量來表示;能夠在具體問題中適當?shù)剡x取基底,使其他向量都能夠用基底來表示。
2、過程與方法:
讓學(xué)生經(jīng)歷平面向量基本定理的探索與發(fā)現(xiàn)的形成過程,體會由特殊到一般和數(shù)形結(jié)合的數(shù)學(xué)思想,初步掌握應(yīng)用平面向量基本定理分解向量的方法,培養(yǎng)學(xué)生分析問題與解決問題的能力。
3、情感、態(tài)度和價值觀
通過對平面向量基本定理的學(xué)習(xí),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)習(xí)積極性,增強學(xué)生向量的應(yīng)用意識,并培養(yǎng)學(xué)生合作交流的意識及積極探索勇于發(fā)現(xiàn)的學(xué)習(xí)品質(zhì)、
二、教學(xué)重點:
平面向量基本定理、
三、教學(xué)難點:
平面向量基本定理的理解與應(yīng)用、
四、教學(xué)方法:
探究發(fā)現(xiàn)、講練結(jié)合
五、授課類型:
新授課
六、教具:
電子白板、黑板和課件
七、教學(xué)過程:
(一)情境引課,板書課題
由導(dǎo)彈的發(fā)射情境,引出物理中矢量的分解,進而探究我們數(shù)學(xué)中的向量是不是也可以沿兩個不同方向的向量進行分解呢?
(二)復(fù)習(xí)鋪路,漸進新課
在共線向量定理的復(fù)習(xí)中,自然地、漸進地融入到平面向量基本定理的師生互動合作的探究與發(fā)現(xiàn)中去,感受著從特殊到一般、分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想碰撞的火花,體驗著學(xué)習(xí)的快樂。
(三)歸納總結(jié),形成定理
讓學(xué)生在發(fā)現(xiàn)學(xué)習(xí)的過程中歸納總結(jié)出平面向量基本定理,并給出基底的定義。
(四)反思定理,解讀要點
反思平面向量基本定理的實質(zhì)即向量分解,思考基底的不共線、不惟一和非零性及實數(shù)對
的存在性和唯一性。
(五)跟蹤練習(xí),反饋測試
及時跟蹤練習(xí),反饋測試定理的理解程度。
(六)講練結(jié)合,鞏固理解
即講即練定理的應(yīng)用,講練結(jié)合,進一步鞏固理解平面向量基本定理。
(七)夾角概念,順勢得出
不共線向量的不同方向的位置關(guān)系怎么表示,夾角概念順勢得出。然后數(shù)形結(jié)合,講清本質(zhì):夾角共起點。再結(jié)合例題鞏固加深。
(八)課堂小結(jié),畫龍點睛
回顧本節(jié)的學(xué)習(xí)過程,小結(jié)學(xué)習(xí)要點及數(shù)學(xué)思想方法,老師的“教”與學(xué)生的“學(xué)”渾然一體,一氣呵成。
(九)作業(yè)布置,回味思考。
布置課后作業(yè),檢驗教學(xué)效果。回味思考,更加理解定理的實質(zhì)。
八、板書設(shè)計:
1、平面向量基本定理:如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)
2、基底:
(1)不共線向量
叫做表示這一平面內(nèi)所有向量的一組基底;
(2)基底:不共線,不唯一,非零
(3)基底給定,分解形式唯一,實數(shù)對
存在且唯一;
(4)基底不同,分解形式不唯一,實數(shù)對
可同可異。
例1例2
3、夾角:
(1)兩向量共起點;
(2)夾角范圍:
例3
4、小結(jié)
5、作業(yè)
高中數(shù)學(xué)教案設(shè)計流程篇7
教學(xué)準備
教學(xué)目標
1·掌握平面向量的數(shù)量積及其幾何意義;
2·掌握平面向量數(shù)量積的重要性質(zhì)及運算律;
3·了解用平面向量的數(shù)量積可以處理有關(guān)長度、角度和垂直的問題;
4·掌握向量垂直的條件·
教學(xué)重難點
教學(xué)重點:平面向量的數(shù)量積定義
教學(xué)難點:平面向量數(shù)量積的定義及運算律的理解和平面向量數(shù)量積的應(yīng)用
教學(xué)工具
投影儀
教學(xué)過程
一、復(fù)習(xí)引入:
1·向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數(shù)λ,使=λ
五,課堂小結(jié)
(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
六、課后作業(yè)
P107習(xí)題2·4A組2、7題
課后小結(jié)
(1)請學(xué)生回顧本節(jié)課所學(xué)過的知識內(nèi)容有哪些?所涉及到的.主要數(shù)學(xué)思想方法有那些?
(2)在本節(jié)課的學(xué)習(xí)過程中,還有那些不太明白的地方,請向老師提出。
(3)你在這節(jié)課中的表現(xiàn)怎樣?你的體會是什么?
課后習(xí)題
作業(yè)
P107習(xí)題2·4A組2、7題
板書
高中數(shù)學(xué)教案設(shè)計流程篇8
一.課標要求:
1.分類加法計數(shù)原理、分步乘法計數(shù)原理
通過實例,總結(jié)出分類加法計數(shù)原理、分步乘法計數(shù)原理;能根據(jù)具體問題的特征,選擇分類加法計數(shù)原理或分步乘法計數(shù)原理解決一些簡單的實際問題;
2.排列與組合
通過實例,理解排列、組合的概念;能利用計數(shù)原理推導(dǎo)排列數(shù)公式、組合數(shù)公式,并能解決簡單的實際問題;
3.二項式定理
能用計數(shù)原理證明二項式定理;會用二項式定理解決與二項展開式有關(guān)的簡單問題。
二.命題走向
本部分內(nèi)容主要包括分類計數(shù)原理、分步計數(shù)原理、排列與組合、二項式定理三部分;考查內(nèi)容:(1)兩個原理;(2)排列、組合的概念,排列數(shù)和組合數(shù)公式,排列和組合的應(yīng)用;(3)二項式定理,二項展開式的通項公式,二項式系數(shù)及二項式系數(shù)和。
排列、組合不僅是高中數(shù)學(xué)的重點內(nèi)容,而且在實際中有廣泛的應(yīng)用,因此新高考會有題目涉及;二項式定理是高中數(shù)學(xué)的重點內(nèi)容,也是高考每年必考內(nèi)容,新高考會繼續(xù)考察。
考察形式:單獨的考題會以選擇題、填空題的形式出現(xiàn),屬于中低難度的題目,排列組合有時與概率結(jié)合出現(xiàn)在解答題中難度較小,屬于高考題中的中低檔題目。
三.要點精講
1.排列、組合、二項式知識相互關(guān)系表
2.兩個基本原理
(1)分類計數(shù)原理中的分類;
(2)分步計數(shù)原理中的分步;
正確地分類與分步是學(xué)好這一章的關(guān)鍵。
3.排列
(1)排列定義,排列數(shù)
(2)排列數(shù)公式:系==n·(n-1)…(n-m+1);
(3)全排列列:=n!;
(4)記住下列幾個階乘數(shù):1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;
4.組合
(1)組合的定義,排列與組合的區(qū)別;
(2)組合數(shù)公式:Cnm==;
(3)組合數(shù)的性質(zhì)
①Cnm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;
5.二項式定理
(1)二項式展開公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;
(2)通項公式:二項式展開式中第k+1項的通項公式是:Tk+1=Cnkan-kbk;
6.二項式的應(yīng)用
(1)求某些多項式系數(shù)的和;
(2)證明一些簡單的組合恒等式;
(3)證明整除性。
①求數(shù)的末位;
②數(shù)的整除性及求系數(shù)
;③簡單多項式的整除問題;
(4)近似計算。當x充分小時,我們常用下列公式估計近似值:
①(1+x)n≈1+nx
;②(1+x)n≈1+nx+x2;
(5)證明不等式。
四.典例解析
題型1:計數(shù)原理
例1.完成下列選擇題與填空題
(1)有三個不同的信箱,今有四封不同的信欲投其中,則不同的投法有種。
A.81B.64C.24D.4
(2)四名學(xué)生爭奪三項冠軍,獲得冠軍的可能的種數(shù)是()
A.81B.64C.24D.4
(3)有四位學(xué)生參加三項不同的競賽,
①每位學(xué)生必須參加一項競賽,則有不同的參賽方法有;
②每項競賽只許有一位學(xué)生參加,則有不同的參賽方法有;
③每位學(xué)生最多參加一項競賽,每項競賽只許有一位學(xué)生參加,則不同的參賽方法有。
例2.(06江蘇卷)今有2個紅球、3個黃球、4個白球,同色球不加以區(qū)分,將這9個球排成一列有種不同的方法(用數(shù)字作答)。
點評:分步計數(shù)原理與分類計數(shù)原理是排列組合中解決問題的重要手段,也是基礎(chǔ)方法,在高中數(shù)學(xué)中,只有這兩個原理,尤其是分類計數(shù)原理與分類討論有很多相通之處,當遇到比較復(fù)雜的問題時,用分類的方法可以有效的將之化簡,達到求解的目的。
題型2:排列問題
例3.(1)(20__四川理卷13)
展開式中的系數(shù)為?_______________。
【點評】:此題重點考察二項展開式中指定項的系數(shù),以及組合思想;
(2).20__湖南省長沙云帆實驗學(xué)校理科限時訓(xùn)練
若n展開式中含項的系數(shù)與含項的系數(shù)之比為-5,則n等于()
A.4B.6C.8D.10
點評:合理的應(yīng)用排列的公式處理實際問題,首先應(yīng)該進入排列問題的情景,想清楚我處理時應(yīng)該如何去做。
例4.(1)用數(shù)字0,1,2,3,4組成沒有重復(fù)數(shù)字的五位數(shù),則其中數(shù)字1,2相鄰的偶數(shù)有個(用數(shù)字作答);
(2)電視臺連續(xù)播放6個廣告,其中含4個不同的商業(yè)廣告和2個不同的公益廣告,要求首尾必須播放公益廣告,則共有種不同的播放方式(結(jié)果用數(shù)值表示).
點評:排列問題不可能解決所有問題,對于較復(fù)雜的問題都是以排列公式為輔助。
題型三:組合問題
例5.荊州市20__屆高中畢業(yè)班質(zhì)量檢測(Ⅱ)
(1)將4個相同的白球和5個相同的黑球全部放入3個不同的盒子中,每個盒子既要有白球,又要有黑球,且每個盒子中都不能同時只放入2個白球和2個黑球,則所有不同的放法種數(shù)為(C)A.3B.6C.12D.18
(2)將4個顏色互不相同的球全部放入編號為1和2的兩個盒子里,使得放入每個盒子里的球的個數(shù)不小于該盒子的編號,則不同的放球方法有()
A.10種B.20種C.36種D.52種
點評:計數(shù)原理是解決較為復(fù)雜的排列組合問題的基礎(chǔ),應(yīng)用計數(shù)原理結(jié)合
例6.(1)某校從8名教師中選派4名教師同時去4個邊遠地區(qū)支教(每地1人),其中甲和乙不同去,則不同的選派方案共有種;
(2)5名志愿者分到3所學(xué)校支教,每個學(xué)校至少去一名志愿者,則不同的分派方法共有()
(A)150種(B)180種(C)200種(D)280種
點評:排列組合的交叉使用可以處理一些復(fù)雜問題,諸如分組問題等;
題型4:排列、組合的綜合問題
例7.平面上給定10個點,任意三點不共線,由這10個點確定的`直線中,無三條直線交于同一點(除原10點外),無兩條直線互相平行。求:(1)這些直線所交成的點的個數(shù)(除原10點外)。(2)這些直線交成多少個三角形。
點評:用排列、組合解決有關(guān)幾何計算問題,除了應(yīng)用排列、組合的各種方法與對策之外,還要考慮實際幾何意義。
例8.已知直線ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)。
點評:本題是1999年全國高中數(shù)學(xué)聯(lián)賽中的一填空題,據(jù)抽樣分析正確率只有0.37。錯誤原因沒有對c=0與c≠0正確分類;沒有考慮c=0中出現(xiàn)重復(fù)的直線。
題型5:二項式定理
例9.(1)(20__湖北卷)
在的展開式中,的冪的指數(shù)是整數(shù)的項共有
A.3項B.4項C.5項D.6項
(2)的展開式中含x的正整數(shù)指數(shù)冪的項數(shù)是
(A)0(B)2(C)4(D)6
點評:多項式乘法的進位規(guī)則。在求系數(shù)過程中,盡量先化簡,降底數(shù)的運算級別,盡量化成加減運算,在運算過程可以適當注意令值法的運用,例如求常數(shù)項,可令.在二項式的展開式中,要注意項的系數(shù)和二項式系數(shù)的區(qū)別。
例10.(20__湖南文13)
記的展開式中第m項的系數(shù)為,若,則=____5______.
題型6:二項式定理的應(yīng)用
例11.(1)求4×6n+5n+1被20除后的余數(shù);
(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余數(shù)是多少?
(3)根據(jù)下列要求的精確度,求1.025的近似值。①精確到0.01;②精確到0.001。
點評:(1)用二項式定理來處理余數(shù)問題或整除問題時,通常把底數(shù)適當?shù)夭鸪蓛身椫突蛑钤侔炊検蕉ɡ碚归_推得所求結(jié)論;
(2)用二項式定理來求近似值,可以根據(jù)不同精確度來確定應(yīng)該取到展開式的第幾項。
五.思維總結(jié)
解排列組合應(yīng)用題的基本規(guī)律
1.分類計數(shù)原理與分步計數(shù)原理使用方法有兩種:①單獨使用;②聯(lián)合使用。
2.將具體問題抽象為排列問題或組合問題,是解排列組合應(yīng)用題的關(guān)鍵一步。
3.對于帶限制條件的排列問題,通常從以下三種途徑考慮:
(1)元素分析法:先考慮特殊元素要求,再考慮其他元素;
(2)位置分析法:先考慮特殊位置的要求,再考慮其他位置;
(3)整體排除法:先算出不帶限制條件的排列數(shù),再減去不滿足限制條件的排列數(shù)。
4.對解組合問題,應(yīng)注意以下三點:
(1)對“組合數(shù)”恰當?shù)姆诸愑嬎悖墙饨M合題的常用方法;
(2)是用“直接法”還是“間接法”解組合題,其原則是“正難則反”;
(3)設(shè)計“分組方案”是解組合題的關(guān)鍵所在。
高中數(shù)學(xué)教案設(shè)計流程篇9
【一】教學(xué)背景分析
1。教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。
2。學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標:
3。教學(xué)目標
(1)知識目標:①掌握圓的標準方程;
②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;
③利用圓的標準方程解決簡單的實際問題。
(2)能力目標:①進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;
②加深對數(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;
③增強學(xué)生用數(shù)學(xué)的意識。
(3)情感目標:①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;
②在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點和難點:
4。教學(xué)重點與難點
(1)重點:圓的標準方程的求法及其應(yīng)用。
(2)難點:①會根據(jù)不同的已知條件求圓的`標準方程;
②選擇恰當?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題。
為使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上進行分析:
好學(xué)教育:
【二】教法學(xué)法分析
1。教法分析為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當?shù)睦枚嗝襟w課件進行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。
2。學(xué)法分析通過推導(dǎo)圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標準方程,熟悉用待定系數(shù)法求的過程。下面我就對具體的教學(xué)過程和設(shè)計加以說明:
【三】教學(xué)過程與設(shè)計
整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):
創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高
反饋訓(xùn)練形成方法小結(jié)反思拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖。
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境——啟迪思維
問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?
通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。
(二)深入探究——獲得新知
問題二1。根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2。如果圓心在,半徑為時又如何呢?
好學(xué)教育:
這一環(huán)節(jié)我首先讓學(xué)生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點的情況進行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié)。
(三)應(yīng)用舉例——鞏固提高
I。直接應(yīng)用內(nèi)化新知
問題三1。寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經(jīng)過點,圓心在點。
2。寫出圓的圓心坐標和半徑。
我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線問題作準備。
II。靈活應(yīng)用提升能力
問題四1。求以點為圓心,并且和直線相切的圓的方程。
2。求過點,圓心在直線上且與軸相切的圓的方程。
3。已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?
我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮。
III。實際應(yīng)用回歸自然
問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
好學(xué)教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。
(四)反饋訓(xùn)練——形成方法
問題六1。求過原點和點,且圓心在直線上的圓的標準方程。
2。求圓過點的切線方程。
3。求圓過點的切線方程。
接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴謹性具有良好的效果。
(五)小結(jié)反思——拓展引申
1。課堂小結(jié)
把圓的標準方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法①圓心為,半徑為r的圓的標準方程為:
圓心在原點時,半徑為r的圓的標準方程為:。
②已知圓的方程是,經(jīng)過圓上一點的切線的方程是:。
2。分層作業(yè)
(A)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。
3。激發(fā)新疑
問題七1。把圓的標準方程展開后是什么形式?
2。方程表示什么圖形?
在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準備。
以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學(xué)設(shè)計:橫向闡述教學(xué)設(shè)計
(一)突出重點抓住關(guān)鍵突破難點
好學(xué)教育:
求圓的標準方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。
第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應(yīng)用圓的標準方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破。
(二)學(xué)生主體教師主導(dǎo)探究主線
本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標準方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。
(三)培養(yǎng)思維提升能力激勵創(chuàng)新
為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。
以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當調(diào)整,向生成性課堂進行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。
高中數(shù)學(xué)教案設(shè)計流程篇10
橢圓的簡單幾何性質(zhì)中的考查點:
(一)、對性質(zhì)的考查:
1、范圍:要注意方程與函數(shù)的區(qū)別與聯(lián)系;與橢圓有關(guān)的求最值是變量的取值范圍;作橢圓的草圖。
2、對稱性:橢圓的中心及其對稱性;判斷曲線關(guān)于x軸、y軸及原點對稱的依據(jù);如果曲線具有關(guān)于x軸、y軸及原點對稱中的任意兩種,那么它也具有另一種對稱性;注意橢圓不因坐標軸改變的固有性質(zhì)。
3、頂點:橢圓的頂點坐標;一般二次曲線的頂點即是曲線與對稱軸的交點;橢圓中a、b、c的幾何意義(橢圓的特征三角形及離心率的三角函數(shù)表示)。
4、離心率:離心率的定義;橢圓離心率的取值范圍:(0,1);橢圓的離心率的變化對橢圓的影響:當e趨向于1時:c趨向于a,此時,橢圓越扁平;當e趨向于0時:c趨向于0,此時,橢圓越接近于圓;當且僅當a=b時,c=0,兩焦點重合,橢圓變成圓。
(二)、課本例題的變形考查:
1、近日點、遠日點的概念:橢圓上任意一點p(x,y)到橢圓一焦點距離的最大值:a+c與最小值:a-c及取最值時點p的坐標;
2、橢圓的第二定義及其應(yīng)用;橢圓的準線方程及兩準線間的距離、焦準距:焦半徑公式。
3、已知橢圓內(nèi)一點m,在橢圓上求一點p,使點p到點m與到橢圓準線的距離的和最小的求法。
4、橢圓的參數(shù)方程及橢圓的離心角:橢圓的參數(shù)方程的簡單應(yīng)用:
5、直線與橢圓的位置關(guān)系,直線與橢圓相交時的弦長及弦中點問題。
高中數(shù)學(xué)教案設(shè)計流程篇11
一.教學(xué)目標:
1.知識與技能
(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集
(2)理解在給定集合中一個子集的補集的含義,會求給定子集的補集
(3)能使用venn圖表達集合的運算,體會直觀圖示對理解抽象概念的作用
2.過程與方法
學(xué)生通過觀察和類比,借助venn圖理解集合的基本運算
3.情感.態(tài)度與價值觀
(1)進一步樹立數(shù)形結(jié)合的思想
(2)進一步體會類比的作用
(3)感受集合作為一種語言,在表示數(shù)學(xué)內(nèi)容時的簡潔和準確
二.教學(xué)重點.難點
重點:交集與并集,全集與補集的概念
難點:理解交集與并集的概念,符號之間的區(qū)別與聯(lián)系
三.學(xué)法與教學(xué)用具
1.學(xué)法:學(xué)生借助venn圖,通過觀察、類比、思考、交流和討論等,理解集合的基本運算
2.教學(xué)用具:投影儀
四.教學(xué)思路
(一)創(chuàng)設(shè)情景,揭示課題
問題1:我們知道,實數(shù)有加法運算。類比實數(shù)的加法運算,集合是否也可以“相加”呢?
請同學(xué)們考察下列各個集合,你能說出集合c與集合a、b之間的關(guān)系嗎?
引導(dǎo)學(xué)生通過觀察,類比、思考和交流,得出結(jié)論。教師強調(diào)集合也有運算,這就是我們本節(jié)課所要學(xué)習(xí)的內(nèi)容。
(二)研探新知
l.并集
—般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,稱為集合a與b的并集
記作:a∪b
讀作:a并b
其含義用符號表示為:
用venn圖表示如下:
請同學(xué)們用并集運算符號表示問題1中a,b,c三者之間的關(guān)系
練習(xí)、檢查和反饋
(1)設(shè)a={4,5,6,8),b={3,5,7,8),求a∪b
(2)設(shè)集合
讓學(xué)生獨立完成后,教師通過檢查,進行反饋,并強調(diào):
(1)在求兩個集合的并集時,它們的公共元素在并集中只能出現(xiàn)一次
(2)對于表示不等式解集的集合的運算,可借助數(shù)軸解題
2.交集
(1)思考:求集合的并集是集合間的一種運算,那么,集合間還有其他運算嗎?
請同學(xué)們考察下面的問題,集合a、b與集合c之間有什么關(guān)系?
②b={是新華中學(xué)20--年9月入學(xué)的高一年級同學(xué)},c={是新華中學(xué)20--年9月入學(xué)的高一年級女同學(xué)}
教師組織學(xué)生思考、討論和交流,得出結(jié)論,從而得出交集的定義;
一般地,由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集
記作:a∩b
讀作:a交b
其含義用符號表示為:
接著教師要求學(xué)生用venn圖表示交集運算
(2)練習(xí)、檢查和反饋
①設(shè)平面內(nèi)直線上點的集合為,直線上點的集合為,試用集合的運算表示的位置關(guān)系
②學(xué)校里開運動會,設(shè)a={是參加一百米跑的同學(xué)},b={是參加二百米跑的同學(xué)},c={是參加四百米跑的同學(xué)},學(xué)校規(guī)定,在上述比賽中,每個同學(xué)最多只能參加兩項比賽,請你用集合的運算說明這項規(guī)定,并解釋集合運算a∩b與a∩c的含義
學(xué)生獨立練習(xí),教師檢查,作個別指導(dǎo),并對學(xué)生中存在的問題進行反饋和糾正
(三)學(xué)生自主學(xué)習(xí),閱讀理解
1.教師引導(dǎo)學(xué)生閱讀教材第10~11頁中有關(guān)補集的內(nèi)容,并思考回答下例問題:
(1)什么叫全集?
(2)補集的含義是什么?用符號如何表示它的含義?用venn圖又表示?
(3)已知集合
(4)設(shè)s={是至少有一組對邊平行的四邊形},a={是平行四邊形},b={是菱形},c={是矩形},求。
在學(xué)生閱讀、思考的過程中,教師作個別指導(dǎo),待學(xué)生經(jīng)過閱讀和思考完后,請學(xué)生回答上述問題,并及時給予評價
(四)歸納整理,整體認識
1.通過對集合的學(xué)習(xí),同學(xué)對集合這種語言有什么感受?
2.并集、交集和補集這三種集合運算有什么區(qū)別?
(五)作業(yè)
1.課外思考:對于集合的基本運算,你能得出哪些運算規(guī)律?
2.請你舉出現(xiàn)實生活中的一個實例,并說明其并集,交集和補集的現(xiàn)實含義
3.書面作業(yè):教材第12頁習(xí)題1.1a組第7題和b組第4題
高中數(shù)學(xué)教案設(shè)計流程篇12
授課時間:08年9月12日
授課年級、科目、課題:高一數(shù)學(xué)集合的概念
使用教材:必修1(人教版)
說課教師:劉華
各位老師同學(xué)們,大家好!今天我說課的課題是“集合的概念”,本節(jié)內(nèi)容選自高中數(shù)學(xué)必修1(人教版),下面我將主要從六個方面介紹我的教學(xué)方案。
一、教材分析:
教材的地位和作用:
集合是學(xué)習(xí)高中數(shù)學(xué)的重要工具之一,起著承前啟后的作用。本小節(jié)首先從初中代數(shù)與幾何涉及的集合實例人手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明.然后,介紹了集合的常用表示方法,包括列舉法、描述法等,還給出了畫圖表示集合的例子.從教材我歸納出本節(jié)內(nèi)容的教學(xué)重點和難點。
(一)教學(xué)重點:集合的基本概念和表示方法,集合元素的特征
(二)教學(xué)難點:運用集合的三種常用表示方法、列舉法與描述法,正確表示一些簡單的集合
二、教學(xué)目標:
(一)知識目標:
(1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及其記法;
(2)使學(xué)生初步了解“屬于”關(guān)系的意義;
(3)使學(xué)生初步了解有限集、無限集、空集的意義
(二)能力目標:
(1)重視基礎(chǔ)知識的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng);
(2)啟發(fā)學(xué)生能夠發(fā)現(xiàn)問題和提出問題,善于獨立思考,學(xué)會分析問題和創(chuàng)造地解決問題;
(3)通過教師指導(dǎo),發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力;
(三)德育目標:激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,陶冶學(xué)生的情
操,培養(yǎng)學(xué)生堅忍不拔的意志,實事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神。
三、學(xué)情分析:
針對現(xiàn)在的學(xué)生知識遷移能力差、計算能力差的特點,第一節(jié)課的內(nèi)容不要求學(xué)生太多的計算,通過大量的舉例讓學(xué)生充分掌握集合的基礎(chǔ)知識。
四、教法分析:
為了突出重點、突破難點,本節(jié)課主要采用觀察、分析、類比、歸納的方法讓學(xué)生參與學(xué)習(xí),將學(xué)生置于主體位置,發(fā)揮學(xué)生的主觀能動性,將知識的形成過程轉(zhuǎn)化為學(xué)生親自探索類比的過程,使學(xué)生獲得發(fā)現(xiàn)的成就感。在這個過程中力求把握好以下幾點:
(1)通過實例,讓學(xué)生去發(fā)現(xiàn)規(guī)律。讓學(xué)生在問題情景中,經(jīng)歷知識的形成和發(fā)展,力求使學(xué)生學(xué)會用類比的思想去看待問題。
(2)營造民主的教學(xué)氛圍,使學(xué)生參與教學(xué)全過程。
(3)力求反饋的全面性、及時性,通過精心設(shè)計的提問,讓學(xué)生的思維動起來,針對學(xué)生回答的問題,老師進行適當?shù)狞c評。
(4)給學(xué)生思考的時間和空間,不急于把結(jié)果拋給學(xué)生,讓學(xué)生自己去觀察,分析,類比得出結(jié)果,提高學(xué)生的推理能力。
五、教學(xué)過程
(一)復(fù)習(xí)導(dǎo)入
(1)簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
(2)教材中的章頭引言;
(3)教材中例子(P4)。
(二)講解新課
(1)集合的有關(guān)概念
(2)常用集合及表示方法
(3)元素對于集合的隸屬關(guān)系
(4)集合中元素的特性
(三)課堂練習(xí)
1下列各組對象能確定一個集合嗎?
(1)所有很大的實數(shù)的集合(不確定)
(2)好心的人的集合(不確定)
(3){1,2,2,3,4,5}(有重復(fù))
(4)所有直角三角形的集合(是的)
(5)高一(12)班全體同學(xué)的集合(是的)
(6)參加20--年奧運會的中國代表團成員的集合(是的)
2、教材P5練習(xí)1、2
六:總結(jié)
1.本節(jié)主要學(xué)習(xí)了集合的基本概念、表示符號;一些常用數(shù)集及其記法;集合的元素與集合之間的關(guān)系;以及集合元素具有的特征.
2.我們在進一步復(fù)習(xí)鞏固集合有關(guān)概念的基礎(chǔ)上,又學(xué)習(xí)了集合的表示方法和有限集、無限集、空集的概念,同學(xué)們要熟練掌握.
高中數(shù)學(xué)教案設(shè)計流程篇13
教學(xué)過程:
前言:
今天是新學(xué)期的第一堂語文課,王老師為大家?guī)砹艘皇仔≡姟?音樂中指名讀,齊讀。)
三年級的天空
今天,是20__年的一天
一張張可愛的笑臉
從20__年的家中匆匆趕來
來到美麗的暨陽學(xué)校,
繼續(xù)
踏入三年級明亮的天空
書寫新的傳奇。
是呀,三年級的天空一定會無比明媚。那么,今天先讓我們一起來回憶剛剛過去的美好的寒假。
一、口頭交流寒假趣事
1.新年過得如何?(用詞語來形容)
2.你覺得最有趣的是什么事?(根據(jù)你說的詞語來說說)
二、書面了解別人的寒假趣事
1.全班欣賞同學(xué)寫的優(yōu)秀作文。(說說自己的感受。)
2.再欣賞網(wǎng)上找的。(認真傾聽,分享快樂。)
三、王老師介紹自己的寒假趣事
1.你猜猜王老師怎么度過的?
2.公布答案。(在帶寶寶的同時看書)
四、送禮物——聽故事
王老師知道我們班同學(xué)都非常喜歡聽故事,所以我在寒假的時候,特別挑選了一個故事,送給大家,作為新年禮物。
毛蟲和我
——送給新學(xué)期的孩子們
毛蟲知道,在它的身體里面,藏著一只蝴蝶。是的,它一直都知道,一刻也不曾忘記。當它慢吞吞地爬過菜葉的時候,它在想著這件事;當它貪婪地把葉子咬出一個個小洞時,它在想著這件事;當它舒展身體曬太陽的時候,它在想著這件事;當它親吻一朵美麗的小花兒時,它在想這件事……
我要挑最鮮嫩的葉子吃,它對自己說,這樣當我變成蝴蝶的時候,才會有艷麗的色彩。我要多多地吃,它對自己說,這樣當我變成蝴蝶的時候,翅膀才會有力氣。這金色的光線多么溫暖,它對自己說,最重要的是,它將變成金粉裝點我的翅膀。這朵小花多么可愛,它對自己說,將來我的翅膀上面,也會開出美麗的花兒來。
“哎呀,毛毛蟲!好丑好惡心喲!”一個小女孩指著它叫道。這樣的話毛毛蟲聽得多了,一點兒也不會破壞它的好心情。哦,我將長出一雙美麗的翅膀,它對自己說。這樣想著,毛毛蟲昂起了它小小的腦袋,慢慢爬走了。
我知道,在我的身體里面,藏著一個更好的自己。是的,我一直都知道,一刻也不曾忘記。
所以我從來都不挑食,我知道所有健康的食物都將變成我的一部分,成就一個更好的我自己。所以我努力地讀書,我知道所有那些有趣的書、嚴肅的書、美麗的書、智慧的書,最終都將變成我的一部分,成就一個更好的我自己。所以我喜歡認識新朋友,我知道所有那些善良的朋友、聰明的朋友、慷慨的朋友、睿智的朋友,他們的友情以及他們的美好天性,最終都將變成我的一部分,成就一個更好的我自己。所以我積極上好每一堂課,認真完成每一次作業(yè),我知道千里之行始于足下,我走過的每一步路,我做過的每一件事,最終都將變成我的一部分,成就一個更好的我自己。所以我喜歡親近大自然,我知道所有那些美麗的山水、陽光、花香和清新空氣,最終都將變成我的一部分,成就一個更好的我自己。
每天早晨,我都會在鏡子面前照一照自己;每天早晨,我都會在鏡子里看到一個普普通通的小女孩(小男孩)。
可我知道,在我的身體里面,藏著一個更好的我自己。就像毛毛蟲會變成蝴蝶,小種子會長成大樹,我也會變成一個更好的我自己。
故事聽完了,王老師要檢查下你們是不是認真在聽,有沒有收到我的禮物?
1.毛毛蟲的理想是什么?它為了成就更好的自己,怎么努力的?我的理想是什么?為了做最好的自己,我又是怎么做的?(大方向)
2.聽了故事,說說自己新學(xué)期的目標?為了做最好的自己,在學(xué)習(xí)中你又準備怎么做?(小方向)(多閱讀、多思考、多寫作)
我相信,只要我們像毛毛蟲那樣努力,我們也一定可以變成美麗的蝴蝶!
四、總結(jié)
讓我們每個人多閱讀、多思考、多寫作,向著美好的自己努力。最后讓我們在詩歌中結(jié)束我們的開學(xué)第一課。(再次誦讀詩歌)
高中數(shù)學(xué)教案設(shè)計流程篇14
教學(xué)目標
1.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握有關(guān)證明和判斷的基本方法.
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念.
(2)能從數(shù)和形兩個角度認識單調(diào)性和奇偶性.
(3)能借助圖象判斷一些函數(shù)的單調(diào)性,能利用定義證明某些函數(shù)的單調(diào)性;能用定義判斷某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程.
2.通過函數(shù)單調(diào)性的證明,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從特殊到一般的數(shù)學(xué)思想.
3.通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴謹?shù)难芯繎B(tài)度.
教學(xué)建議
一、知識結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點難點分析
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性, 奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.
三、教法建議
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標為選題的標準,以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
高中數(shù)學(xué)教案設(shè)計流程篇15
教學(xué)內(nèi)容:簡單的排列和組合
教學(xué)目標:
1.知識能力目標:
①通過觀察、猜測、比較、實驗等活動,找出最簡單的事物的排列數(shù)和組合數(shù)。
②初步培養(yǎng)有序地全面地思考問題的能力。
③培養(yǎng)初步的觀察、分析、及推理能力。
2.情感態(tài)度目標:
①感受數(shù)學(xué)與生活的密切聯(lián)系,激發(fā)學(xué)習(xí)數(shù)學(xué)、探索數(shù)學(xué)的濃厚興趣。
②初步培養(yǎng)有順序地、全面地思考問題的意識。
③使學(xué)生在數(shù)學(xué)活動中養(yǎng)成與人合作的良好習(xí)慣。
教學(xué)重點:
經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。
教學(xué)難點:
初步理解簡單事物排列與組合的不同。
教學(xué)準備:
多媒體課件、數(shù)字卡片、1角、2角、5角的人民幣。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引發(fā)探究
師:今天老師帶你們?nèi)ヒ粋€很有趣的地方,哪呢?我們今天要到“數(shù)學(xué)廣角”里去走一走、看一看。
二、操作探究,學(xué)習(xí)新知。
(一)組合問題
l、看一看,說一說
師:今天老師給大家?guī)砹藥准恋囊路銈儊硖暨x吧。(課件出示主題圖)
師引導(dǎo)思考:這么多漂亮的衣服,你們用一件上裝在搭配一件下裝可以怎么穿呢?(指名學(xué)生說一說)
2、想一想,擺一擺
(l)引導(dǎo)討論:有這么多種不同的穿法,那怎樣才能做到不遺漏、不重復(fù)呢?
①學(xué)生小組討論交流,老師參與小組討論。
②學(xué)生匯報
(2)引導(dǎo)操作:小組同學(xué)互相合作,把你們設(shè)計的穿法有序的貼在紙板上。(要求:小組長拿出學(xué)具衣服圖片、紙板。)
①學(xué)生小組合作操作擺,教師巡視參與小組活動。
②學(xué)生展示作品,介紹搭配方案。
③生生互相評價。
(3)師引導(dǎo)觀察:
第一種方案(按上裝搭配下裝)有幾種穿法?(4種)
第二種方案(按下裝搭配上裝)有幾種穿法?(4種)
師小結(jié):不管是用上裝搭配下裝,還是用下裝搭配上裝,只要做到有序搭配就能夠不重復(fù)、不遺漏的把所有的方法找出來。在今后的學(xué)習(xí)和生活中,我們還會遇到許多這樣的問題,我們都可以運用有序的思考方法來解決它們。、操作探究,學(xué)習(xí)新知。
(二)排列問題
1、初步感知排列
(1)師:我們穿上漂亮的衣服,來到了數(shù)學(xué)廣角,可是這有一扇密碼門,(出示課件:密碼門)我們只要說對密碼,就可以到數(shù)學(xué)廣角游玩了。看小精靈給了我們提示(點小精靈)你們猜密碼是什么?
(2)學(xué)生猜密碼(情景預(yù)設(shè):有的學(xué)生說是12,有的學(xué)生說是21。)
(3)試密碼,打開密碼門,進入數(shù)學(xué)廣角樂園。
2、合作探究排列
(1)師問:數(shù)學(xué)廣角樂園美不美呀?(學(xué)生回答)它雖然很美,可處處充滿著挑戰(zhàn),你們愿意接受嗎?(學(xué)生回答)那么我們先到數(shù)學(xué)樂園里去看一看吧!(點數(shù)學(xué)樂園)
(2)師:同學(xué)們,我們到了數(shù)學(xué)樂園里看到了什么呀?(回答)現(xiàn)在我們每個人都當一個小魔術(shù)師看誰的本領(lǐng)大?誰能把1、2、3這三個數(shù)字變成兩位數(shù),看誰變得最多?
(3)學(xué)生活動,師巡視指導(dǎo)
(4)學(xué)生匯報擺法,師板書。。
方法一:每次拿出兩張數(shù)字卡片能擺出不同的兩位數(shù);
方法二:固定十位上的數(shù)字,交換個位數(shù)字得到不同的.兩位數(shù);
方法三:固定個位上的數(shù)字,交換十位數(shù)字得到不同的兩位
(5)小結(jié)。
三、課堂實踐,鞏固新知
1、握手游戲:
師:同學(xué)們真棒!都能把數(shù)字1、2、3組成不同的兩位數(shù),而且不重復(fù)、不遺漏。下面老師帶大家到運動樂園去看一看。(出示課件)看小朋友們在干什么?(生回答)
師:看到他們握手,老師有一個問題需要大家?guī)椭鉀Q一下。
(1)出示問題
(2)小組活動:握手
(3)抽生上臺表演
(4)小結(jié)。
2、乒乓球比賽
三個人進行乒乓球比賽要舉行幾場?
(1)小組討論
(2)學(xué)生匯報
(3)小結(jié)
3、生活樂園
看來數(shù)學(xué)廣角處處充滿挑戰(zhàn)一點不假,你們愿不愿意接受新的挑戰(zhàn)?(生)那我們一起到生活樂園去看一看吧!出示《生活樂園》課件。
(1)看課件
(2)學(xué)生活動
(3)學(xué)生匯報,師相機演示課件。
四、全課總結(jié)
今天我們到數(shù)學(xué)樂園玩的開不開心?看到了什么?你有什么收獲?