教育巴巴 > 高中教案 > 數學教案 >

2025年高二數學教案

時間: 新華 數學教案

編寫教案的過程也是教師學習和成長的過程,有助于提高教師的專業水平。2025年高二數學教案規范是怎樣的?下面給大家整理了一些2025年高二數學教案,供大家參考。

2025年高二數學教案篇1

一、教學目標

1.了解分式、有理式的概念.

2.理解分式有意義的條件,能熟練地求出分式有意義的條件.

二、重點、難點

1.重點:理解分式有意義的條件.

2.難點:能熟練地求出分式有意義的條件.

三、課堂引入

1.讓學生填寫P127[思考],學生自己依次填出:,,,.

2.學生看問題:一艘輪船在靜水中的最大航速為30/h,它沿江以最大航速順流航行90所用時間,與以最大航速逆流航行60所用時間相等,江水的流速為多少?

請同學們跟著教師一起設未知數,列方程.

設江水的流速為v/h.

輪船順流航行90所用的時間為小時,逆流航行60所用時間小時,所以=.

3.以上的式子,,,,有什么共同點?它們與分數有什么相同點和不同點?

四、例題講解

P128例1.當下列分式中的字母為何值時,分式有意義.

[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解

出字母的取值范圍.

[補充提問]如果題目為:當字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.

(補充)例2.當為何值時,分式的值為0?

(1)(2)(3)

[分析]分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.

[答案](1)=0(2)=2(3)=1

五、隨堂練習

1.判斷下列各式哪些是整式,哪些是分式?

9x+4,,,,,

2.當x取何值時,下列分式有意義?

(1)(2)(3)

3.當x為何值時,分式的值為0?

(1)(2)(3)

六、課后練習

1.下列代數式表示下列數量關系,并指出哪些是正是?哪些是分式?

(1)甲每小時做x個零件,則他8小時做零件個,做80個零件需小時.

(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是千米/時,輪船的逆流速度是千米/時.

(3)x與的差于4的商是.

2.當x取何值時,分式無意義?

3.當x為何值時,分式的值為0?

2025年高二數學教案篇2

教學目標

熟練掌握三角函數式的求值

教學重難點

熟練掌握三角函數式的求值

教學過程

【知識點精講】

三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

三角函數式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解

(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。

(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

三角函數式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數值的影響,對角的范圍要討論

【課堂小結】

三角函數式的求值的關鍵是熟練掌握公式及應用,掌握公式的逆用和變形

三角函數式的求值的類型一般可分為:

(1)“給角求值”:給出非特殊角求式子的值。仔細觀察非特殊角的特點,找出和特殊角之間的關系,利用公式轉化或消除非特殊角

(2)“給值求值”:給出一些角得三角函數式的值,求另外一些角得三角函數式的值。找出已知角與所求角之間的某種關系求解

(3)“給值求角”:轉化為給值求值,由所得函數值結合角的范圍求出角。

(4)“給式求值”:給出一些較復雜的三角式的值,求其他式子的值。將已知式或所求式進行化簡,再求之

三角函數式常用化簡方法:切割化弦、高次化低次

注意點:靈活角的變形和公式的變形

重視角的范圍對三角函數值的影響,對角的范圍要討論

2025年高二數學教案篇3

教學目的:掌握圓的標準方程,并能解決與之有關的.問題

教學重點:圓的標準方程及有關運用

教學難點:標準方程的靈活運用

教學過程:

一、導入新課,探究標準方程

二、掌握知識,鞏固練習

練習:⒈說出下列圓的方程

⑴圓心(3,-2)半徑為5⑵圓心(0,3)半徑為3

⒉指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

⒊判斷3x-4y-10=0和x2+y2=4的位置關系

⒋圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)

練習:

1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

四、小結練習P771,2,3,4

五、作業P811,2,3,4

2025年高二數學教案篇4

重點難點教學:

1.正確理解映射的概念;

2.函數相等的兩個條件;

3.求函數的定義域和值域。

一.教學過程:

1.使學生熟練掌握函數的概念和映射的定義;

2.使學生能夠根據已知條件求出函數的定義域和值域;3.使學生掌握函數的三種表示方法。

二.教學內容:1.函數的定義

設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有確定的數()fx和它對應,那么稱:fAB?為從集合A到集合B的一個函數(function),記作:

(),yf_A

其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()}f_A?叫值域(range)。顯然,值域是集合B的子集。

注意:

①“y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;

②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.2.構成函數的三要素定義域、對應關系和值域。3、映射的定義

設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意

一個元素x,在集合B中都有確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。

4.區間及寫法:

設a、b是兩個實數,且a

(1)滿足不等式axb??的實數x的集合叫做閉區間,表示為[a,b];

(2)滿足不等式axb??的實數x的集合叫做開區間,表示為(a,b);

5.函數的三種表示方法①解析法②列表法③圖像法

2025年高二數學教案篇5

1.認真閱讀教材

想只憑借課堂聽講就學好高中數學,這對大多數同學來說是不太可能的。要求我們在課下認真閱讀教材,在閱讀的同時還要勒于思考,只有這樣才能深入理解知識及知識的聯系。

2.理解、掌握、運用數學思想方法

數學思想方法是數學知識的精髓。初中階段同學們對綜合分析法、反證法等有了一些體會。與之相比,高中所涉及的數學思想方法要豐富得多。如:集合思想、函數思想、類比法、數學歸納法、分析法等常用的數學思想方法滲透于各部分知識中,都需要大家認真體會。

3.注意知識之間的聯系

在日常的學習中要做到:

①注意思考不同數學知識之間的聯系;

②注意例題與習題間的聯系。弄清知識之間的邏輯關系,從而系統、靈活地掌握高中數學。

2025年高二數學教案篇6

一、教材分析

教材的地位和作用

期望是概率論和數理統計的重要概念之一,是反映隨機變量取值分布的特征數,學習期望將為今后學習概率統計知識做鋪墊。同時,它在市場預測,經濟統計,風險與決策等領域有著廣泛的應用,為今后學習數學及相關學科產生深遠的影響。

教學重點與難點

重點:離散型隨機變量期望的概念及其實際含義。

難點:離散型隨機變量期望的實際應用。

[理論依據]本課是一節概念新授課,而概念本身具有一定的抽象性,學生難以理解,因此把對離散性隨機變量期望的概念的教學作為本節課的教學重點。此外,學生初次應用概念解決實際問題也較為困難,故把其作為本節課的教學難點。

二、教學目標

[知識與技能目標]

通過實例,讓學生理解離散型隨機變量期望的概念,了解其實際含義。

會計算簡單的離散型隨機變量的期望,并解決一些實際問題。

[過程與方法目標]

經歷概念的建構這一過程,讓學生進一步體會從特殊到一般的思想,培養學生歸納、概括等合情推理能力。

通過實際應用,培養學生把實際問題抽象成數學問題的能力和學以致用的數學應用意識。

[情感與態度目標]

通過創設情境激發學生學習數學的情感,培養其嚴謹治學的態度。在學生分析問題、解決問題的過程中培養其積極探索的精神,從而實現自我的價值。

三、教法選擇

引導發現法

四、學法指導

“授之以魚,不如授之以漁”,注重發揮學生的主體性,讓學生在學習中學會怎樣發現問題、分析問題、解決問題。

2025年高二數學教案篇7

教學目標

1、知識與技能

(1)理解并掌握正弦函數的定義域、值域、周期性、(小)值、單調性、奇偶性;

(2)能熟練運用正弦函數的性質解題。

2、過程與方法

通過正弦函數在R上的圖像,讓學生探索出正弦函數的性質;講解例題,總結方法,鞏固練習。

3、情感態度與價值觀

通過本節的學習,培養學生創新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養學生的自信心;使學生認識到轉化“矛盾”是解決問題的有效途經;培養學生形成實事求是的科學態度和鍥而不舍的鉆研精神。

教學重難點

重點:正弦函數的&39;性質。

難點:正弦函數的性質應用。

教學工具

投影儀

教學過程

【創設情境,揭示課題】

同學們,我們在數學一中已經學過函數,并掌握了討論一個函數性質的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經學習了正弦函數的y=sinx在R上圖像,下面請同學們根據圖像一起討論一下它具有哪些性質?

【探究新知】

讓學生一邊看投影,一邊仔細觀察正弦曲線的圖像,并思考以下幾個問題:

(1)正弦函數的定義域是什么?

(2)正弦函數的值域是什么?

(3)它的最值情況如何?

(4)它的正負值區間如何分?

(5)?(x)=0的解集是多少?

師生一起歸納得出:

1.定義域:y=sinx的定義域為R

2.值域:引導回憶單位圓中的正弦函數線,結論:sinx≤1(有界性)

再看正弦函數線(圖象)驗證上述結論,所以y=sinx的值域為[-1,1]

2025年高二數學教案篇8

一、教材分析

1、坐標變換是化簡曲線方程,以便于討論曲線的性質和畫出曲線的一種重要方法。這一節教材主要講坐標軸的平移,要求學生在正確理解新舊坐標之間的關系的基礎上掌握平移公式;并能利用平移公式對新舊坐標系中點的坐標和曲線的方程進行互化。這就是本節課的教學目的之一。

2、本教材的重點是平移公式的推導及其簡單應用。為了解決重點,教學中先以圓(x-3)2+(y-2)2=52化為x&39;2+y&39;2=52這個例子引入來說明,雖然點的位置沒有改變曲線的位置、形狀和大小沒有改變,但是由于坐標系的改變,點的坐標和曲線的方程也隨著改變,而且適當地變換坐標系,曲線的方程就可以化簡,以此指明平移坐標軸的意義和作用,并由此引出平移的定義,導出平移公式。在推導平移公式時,先從特殊到一般,通過觀察、歸納、猜想和推導,得出平移公式,還引導學生運用代數中剛學過的復數的幾何意義來證明,既開闊視野,溝通學科知識,又培養學生的思維能力,同時還可通過一組練習,讓學生正用、逆用、變用平移公式,達到進一步加深理解、熟練掌握公式的目的,進而培養學生的發現、推理能力和教學思想方法。

3、本節教材的難點是平移公式兩種形式何時運用,學生易產生混淆,教學中應通過實例讓學生自己領會,并及時加以小結,掌握其規律,加強公式的記憶并培養靈活運用知識的能力。

4、本節寓德于教的要點,主要是通過事物變化過程的內在聯系,認識變與不變的矛盾對立統一規律,對學生進行辯證唯物主義的教育。

二、教學過程

(一)提出問題

教師先在黑板上畫出圖形,讓學生觀察、思考并提問以下問題:

1、如圖,點O&39;和○O&39;關于坐標系xoy的坐標和方程各是什么?點O&39;和○O&39;關于坐標系x&39;o&39;y&39;的坐標和方程各是什么?兩個方程,那一個較為簡單?

(學生回答,教師在黑板上板書:)

直角坐標系點O&39;的坐標○O&39;的方程

<在xoy中(3,2);(x-3)2+(y-2)2=52

在x&39;o&39;y&39;中(0,0)x&39;2+y&39;2=52

兩個方程,顯然后一個方程簡單。

(二)引入新課

(繼續提問)

1、從上面的例子可以看出什么?

(答)(1)對于同一點或同一曲線,由于選取的坐標系不同,點的坐標功曲線的方程也不同。

(2)把一個坐標系變換為另一個適當的坐標系,可以使曲線的方程簡化,便于研究曲線的性質。

教師繼續提出新的話題,即如何把一個坐標系變換為另一個適當的坐標系呢?我們再從上面的例子來觀察坐標系

xoy與x&39;o&39;y&39;有何異同點呢?(提問)

(答)(1)坐標軸的方向和長度單位都相同--不變

(2)坐標系的原點的位置不同--變

(教師歸納)這種坐標系的變換叫做坐標軸的平移,簡稱移軸。

(讓學生打開課本閱讀移軸的定義,教師在黑板上板書)

(板書)坐標軸的平移

(三)講授新課

(板書)1、坐標軸平移的定義

2、坐標軸平移公式

思路:(1)以特殊到一般,在已畫出的圖形上任取四個點(分別在第一、二、三、四系限或坐標軸上)讓學生分別寫出在新、舊坐標系里的坐標,并觀察、分析出它們的關系。

(答)坐標平面上任意一點在原坐標系中坐標和在新坐標系中的坐檔,歸納出來有如下關系:

(板書)原系橫坐標x=新系橫坐標x&39;+3

原系縱坐標y=新系縱坐標y&39;+2

現在把(3,2)推廣到一般(h,k)能否得出x=x&39;+h

y=y&39;+k

這個公式呢?(讓學生自己動手證明)

思路(2)第一步用有向線段的數量表示x,y,h,k,x&39;,和y&39;,

第二步據圖進行推導

第三步由推出的公式x=x&39;+h(1)再推出x&39;=x-h

y=y&39;+ky&39;=y-h

小結:這兩個公式都叫做平移(移軸)公式。同學們還可以運用代數中學過的向量加、減法則,建立復平面來證明(留給學生課后自己作練習)

3、平移公式的應用

(1)利用平移公式求在新坐標內點的新坐標

例與練:①平移坐標軸,把原點平移到O&39;(-4,3),求A(0,0),B(4,-5)的新坐標;C(5,-7),D(4,-6)的舊坐標。

②平移坐標軸,把原點平移到O&39;()使A(2,4)的新坐標為(3,2);B(-4,0)的舊坐標為(0,3)

(2)利用平移公式化簡方程

例與練:(課本例)平移坐軸,把原點移到O&39;(2,-1),求下列曲線關于新坐標系的方程,并畫出新舊坐標軸和曲線。

(x-2)

①x=2②y=-1③(x+2)2/9+(y+1)2/4=1

分析:解①②時用分別把x=2,y=-1代入公式

(2)得x&39;=0y&39;=0(比課本中的解法簡單)而在解③時,卻要用公式(1)分別用x=+2,y=y&39;-1代入原方程得出新方程x&39;/9+y&39;/4=1(引導學生正確作出圖)

小結:從例中可以看出,要把方程(x-2)2/9+(y+1)2/4

化為簡單的方程x&39;2/9+y&39;2/4=1,可把x-2=x&39;y+1=y&39;,得出應

把坐標原點平移到(2,-1),由此可推廣,形如(x-h)2/a2+(y-k)2/b2的方程如何化簡。

選擇題1.坐標軸平移后,下列各數值中發生變化的是()

(A)某兩點的距離(B)某線權中點的坐標

(C)某兩條直線的夾角(D)某三角形的面積

答案選(C)從此題可看出,坐標軸平移后,與坐標有關的量發生變化,但圖形本身的幾何性質不變。

選擇題2:曲線x2+y2+2x-4y+1=0在新坐標系中的方程是x&39;2+y&39;2=4,則新坐標系原點在舊坐標系中的坐標是()

(A)(-1,2)(B)(1,-2)(C)2,-1)(D)(-2,1)

分析:把x2+y2+2x-4y+1=0配方為(x+1)2+(y-2)2=4

由x+1=x&39;===h=-1y-2=y&39;===k=2故應選(A)

(四)教師小結:今天講的主要內容是坐標軸平移的意義,平移公式及其簡單應用。移軸的目的在幾何上是使曲線圖形的中心(或頂點)與原點重合,使圖形"居中",而在代數上則是將一般二元二次方程通過代數變形(變量代換),消去其中的一次項,從而使方程簡化,這個問題,下一節課將作更具體深入的研究與探討。

平移公式的兩種形式何時應用較好方便,一般說來,由點的舊坐標求其新坐標時用(2)較方便,而由曲線的原方程求其新方程時用(1)較方便,但這也不是固定不變的,如例2中把方程x=2化為新方程,直接代入(2),馬上就可求出x&39;=0這個新方程。

平移坐標軸,可以簡化曲線的方程,但不含改變曲線原來的性質與不變,可以看出其中的辯證關系和內在規律。

(五)布置作業(略)

三、課后附記

1、本節課曾在福州市教育學院組織的青年教師培訓班的觀摩課上講授,反映較好,從學生的作業反饋及下節課的復習提問,利用坐標軸的平移化簡二元二次方程中,引用平移公式進行運算,學生都能較熟練掌握,在半期考中,關于平移公式的應用題得分率在90%以上,說明本節課的效果較好,但因本教材在整個圓錐曲線教材內容中占的分量不重,公式較少使用,容易出現反生與遺忘,因此在平時教學中可適時加以引用。

2、本節課的設計遵照"一體三重五環節"的福八中數學教學的特色,重視發揮學生的主體與教師的主導作用,重視"過程"的教學,盡量做到:提出問題,循循誘導;疏通思路,耐心開導;解題練習,精心指導;存在不足,熱情輔導;掌握過程,盡心引導;真正體現重情善導的教風與特色。

2025年高二數學教案篇9

教學準備

教學目標

1.掌握平面向量的數量積及其幾何意義;

2.掌握平面向量數量積的重要性質及運算律;

3.了解用平面向量的數量積可以處理垂直的問題;

4.掌握向量垂直的條件.

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學過程

1.平面向量數量積(內積)的定義:已知兩個非零向量a與b,它們的夾角是θ,

則數量abcosq叫a與b的數量積,記作a×b,即有a×b=abcosq,(0≤θ≤π).

并規定0向量與任何向量的數量積為0.

×探究:1、向量數量積是一個向量還是一個數量?它的符號什么時候為正?什么時候為負?

2、兩個向量的數量積與實數乘向量的積有什么區別?

(1)兩個向量的數量積是一個實數,不是向量,符號由cosq的符號所決定.

(2)兩個向量的數量積稱為內積,寫成a×b;今后要學到兩個向量的外積a×b,而a×b是兩個向量的數量的積,書寫時要嚴格區分.符號“·”在向量運算中不是乘號,既不能省略,也不能用“×”代替.

(3)在實數中,若a?0,且a×b=0,則b=0;但是在數量積中,若a?0,且a×b=0,不能推出b=0.因為其中cosq有可能為0

2025年高二數學教案篇10

一、內容和內容解析

1.內容

本節課主要內容是讓學生了解在客觀世界中要認識客觀現象的第一步就是通過觀察或試驗取得觀測資料,然后通過分析這些資料來認識此現象.如何取得有代表性的觀測資料并能夠正確的加以分析,是正確的認識未知現象的基礎,也是統計所研究的基本問題.

2.內容解析

本節課是高中階段學習統計學的第一節課,統計是研究如何合理收集、整理、分析數據的學科,它可以為人們制定決策提供依據.學生在九年義務階段已經學習了收集、整理、描述和分析數據等處理數據的基本方法.在高中學習統計的過程中還將逐步讓學生體會確定性思維與統計思維的差異,注意到統計結果的隨機性特征,統計推斷是有可能錯的,這是由統計本身的性質所決定的.統計有兩種.一種是把所有個體的信息都收集起來,然后進行描述,這種統計方法稱為描述性統計,例如我國進行的人口普查.但是在很多情況下我們無法采用描述性統計對所有的個體進行調查,通常是在總體中抽取一定的樣本為代表,從樣本的信息來推斷總體的特征,這稱為推斷性統計.例如有的產品數量非常的大或者有的產品的質量檢查是破壞性的.統計和概率的基礎知識已經成為一個未來公民的必備常識.

抽樣調查是我們收集數據的一種重要途徑,是一種重要的、科學的非全面調查方法.它根據調查的目的和任務要求,按照隨機原則,從若干單位組成的事物總體中,抽取部分樣本單位來進行調查、觀察,用所得到的調查標志的數據來推斷總體.其中蘊涵了重要的統計思想——樣本估計總體.而樣本代表性的好壞直接影響統計結論的準確性,所以抽樣過程中,考慮的最主要原則為:保證樣本能夠很好地代表總體.而隨機抽樣的出發點是使每個個體都有相同的機會被抽中,這是基于對樣本數據代表性的考慮.

本節課重點:能從現實生活或其他學科中提出具有一定價值的統計問題,理解隨機抽樣的必要性與重要性.

二、目標和目標解析

1.目標

(1)通過對具體的案例分析,逐步學會從現實生活中提出具有一定價值的統計問題,

(2)結合具體的實際問題情境,理解隨機抽樣的必要性和重要性;

(3)以問題鏈的形式深刻理解樣本的代表性.

2.目標解析

本章章頭圖列舉了我國水資源缺乏問題、土地沙漠化問題等情境,提出了學習統計的意義.同時通過具體的實例,使學生能夠嘗試從實際問題中發現統計問題,提出統計問題.讓學生養成從現實生活或其他學科中發現問題、提出問題的習慣,培養學生發現問題與提出問題的能力與意識.

對某個問題的調查最簡單的方法就是普查,但是這種方法的局限性很大,出于費用和時間的考慮,有時一個精心設計的抽樣方案,其實施效果甚至可以勝過普查,在這個過程中讓學生逐步體會到隨機抽樣的必要性和重要性.抽樣調查,就是通過從總體中抽取一部分個體進行調查,借以獲得對整體的了解.為了使由樣本到總體的推斷有效,樣本必須是總體的代表,否則就可能出現方便樣本.由此在對實例的分析過程中探討獲取能夠代表總體的樣本的方法,得到隨機樣本的概念,逐步理解樣本的代表性與統計推斷結論可靠性之間的關系.

三、教學問題診斷分析

學生在九年義務教育階段已有對統計活動的認識,并學習了統計圖表、收集數據的方法,但對于如何抽樣更能使樣本代表總體的意識還不強;在以前的學習中,學生的學習內容以確定性數學學習為主;學生對全面調查,即普查有所了解,它在經驗上更接近確定性數學,而隨機抽樣學習則要求學生通過對具體問題的解決,能體會到統計中的重要思想——樣本估計總體以及統計結果的不確定性.學生已有知識經驗與本節要達成的教學目標之間還有很大的差距.主要的困難有:對樣本估計總體的思想、對統計結果的“不確定性”產生懷疑,對統計的科學性有所質疑;對抽樣應該具有隨機性,每個樣本的抽取又都落實在某個人的具體操作上不理解,因此教學中要通過具體實例的研究給學生釋疑.

在教學過程中,可以鼓勵學生從自己的生活中提出與典型案例類似的統計問題,如每天完成家庭作業所需的時間,每天的體育鍛煉時間,學生的近視率,一批電燈泡的壽命是否符合要求等等.在學生提出這些問題后,要引導學生考慮問題中的總體是什么,要觀測的變量是什么,如何獲取樣本,通過這樣一個教學過程,更能激起學生的學習興趣,能學有所用,拉近知識與實踐的距離,培養學生從現實生活或其他學科中提出具有一定價值的統計問題的能力.在這個過程中提升學生對統計抽樣概念的理解,初步培養學生運用統計思想表述、思考和理解現實世界中的問題能力,這樣教學效果可能會更佳.

根據這一分析,確定本課時的教學難點是:如何使學生真正理解樣本的抽取是隨機的,隨機抽取的樣本將能夠代表總體.

四、教學支持條件分析

準備一些隨機抽樣成功或失敗的事例,利用實物投影或放映的多媒體設備輔助教學.

五、教學過程設計

(一)感悟數據、引入課題

問題1:請同學們看章頭圖中的有關沙漠化和缺水量的數據,你有什么感受?

師生活動:讓學生充分思考和探討,并逐步引導學生產生質疑:這些數據是怎么來的?

設計意圖:通過一些數據讓學生充分感受我們生活在一個數字化時代,要學會與數據打交道,養成對數據產生的背景進行思考的習慣.

問題2:我發現我們班級有很多的同學都是戴眼鏡的,誰能告訴我我們班的近視率?

普查:為了一定的目的而對考察對象進行的全面調查稱為普查.

總體:所要考察對象的全體稱為總體(population)

個體:組成總體的每一個考察對象稱為個體(individual)

普查是我們進行調查得到全部信息的一種方式,比如我國10年一次的人口普查等.

設計意圖:通過與學生比較貼近的案例入手,讓學生體會到統計是從日常生活中產生的.

(二)操作實踐、展開課題

問題3:如果我想了解榆次二中所有高一學生的近視率,你打算怎么做呢?

抽樣調查:從總體中抽取部分個體進行調查,這種調查稱為抽樣調查(samplinginvestigation).

樣本:從總體中抽取的一部分個體叫做總體的一個樣本(sample).

師生活動:以四人小組為單位進行討論,每個小組派一個代表匯報方案.

設計意圖:從這個問題中引出抽樣調查和樣本的概念,使學生對于如何產生樣本進行一定的思考,同時也使學生認識到樣本選擇的好壞對于用樣本估計總體的精確度是有所不同的.

列舉:一個的案例

2025年高二數學教案篇11

1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。

2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

3、通過對四種命題之間關系的學習,培養學生邏輯推理能力

4、初步培養學生反證法的數學思維。

二、教學分析

重點:四種命題;難點:四種命題的關系

1.本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。

2.教學時,要注意控制教學要求。本小節的內容,只涉及比較簡單的命題,不研究含有邏輯聯結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

3.“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。

三、教學手段和方法(演示教學法和循序漸進導入法)

1.以故事形式入題

2多媒體演示

四、教學過程

(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。

這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!

設計意圖:創設情景,激發學生學習興趣

(二)復習提問:

1.命題“同位角相等,兩直線平行”的條件與結論各是什么?

2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學生活動:

口答:

(1)若同位角相等,則兩直線平行;

(2)若一個四邊形是正方形,則它的四條邊相等.

設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.

(三)新課講解:

1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。

2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。

3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。

2025年高二數學教案篇12

Ⅰ.設置情境

(通過講評上一節課課后作業中出現的問題,復習利用“三個二次”間的關系求解一元二次不等式的主要操作過程。)

上節課我們只討論了二次項系數的一元二次不等式的求解問題。肯定有同學會問,那么二次項系數的一元二次不等式如何來求解?咱們班上有誰能解答這個疑問呢?

Ⅱ.探索研究

(學生議論紛紛.有的說仍然利用二次函數的圖像,有的說將二次項的系數變為正數后再求解,…….教師分別請持上述見解的學生代表進一步說明各自的見解.)

生甲:只要將課本第39頁上表中的二次函數圖像次依關于x軸翻轉變成開口向下的拋物線,再根據可得的圖像便可求得二次項系數的一元二次不等式的解集.

生乙:我覺得先在不等式兩邊同乘以-1將二次項系數變為正數后直接運用上節課所學的方法求解就可以了.

師:首先,這兩種見解都是合乎邏輯和可行的.不過按前一見解來操作的話,同學們則需再記住一張類似于第39頁上的表格中的各結論.這不但加重了記憶負擔,而且兩表中的結論容易搞混導致錯誤.而按后一種見解來操作時則不存在這個問題,請同學們閱讀第19頁例4.

(待學生閱讀完畢,教師再簡要講解一遍.)

[知識運用與解題研究]

由此例可知,對于二次項系數的一元二次不等式是將其通過同解變形化為的一元二次不等式來求解的,因此只要掌握了上一節課所學過的方法。我們就能求

解任意一個一元二次不等式了,請同學們求解以下兩不等式.(調兩位程度中等的學生演板)

(1)(2)

(分別為課本P21習題1.5中1大題(2)、(4)兩小題.教師講評兩位同學的解答,注意糾正表述方面存在的問題.)

訓練二可化為一元一次不等式組來求解的不等式.

目前我們熟悉了利用“三個二次”間的關系求解一元二次不等式的方法雖然對任意一元二次不等式都適用,但具體操作起來還是讓我們感到有點麻煩.故在求解形如(或)的一元二次不等式時則根據(有理數)乘(除)運算的“符號法則”化為同學們更加熟悉的一元一次不等式組來求解.現在清同學們閱讀課本P20上關于不等式求解的內容并思考:原不等式的解集為什么是兩個一次不等式組解集的并集?(待學生閱讀完畢,請一程度較好,表達能力較強的學生回答該問題.)

【答】因為滿足不等式組或的x都能使原不等式成立,且反過來也是對的,故原不等式的解集是兩個一元二次不等式組解集的并集.

這個回答說明了原不等式的解集A與兩個一次不等式組解集的并集B是互為子集的關系,故它們必相等,現在請同學們求解以下各不等式.(調三位程度各異的學生演板.教師巡視,重點關注程度較差的學生).

(1)[P20練習中第1大題]

(2)[P20練習中第1大題]

(3)[P20練習中第2大題]

(老師扼要講評三位同學的解答.尤其要注意糾正表述方面存在的問題.然后講解P21例5).

例5解不等式

因為(有理數)積與商運算的“符號法則”是一致的,故求解此類不等式時,也可像求解(或)之類的不等式一樣,將其化為一元一次不等式組來求解。具體解答過程如下。

解:(略)

現在請同學們完成課本P21練習中第3、4兩大題。

(等學生完成后教師給出答案,如有學生對不上答案,由其本人追查原因,自行糾正。)

[訓練三]用“符號法則”解不等式的復式訓練。

(通過多媒體或其他載體給出下列各題)

1.不等式與的解集相同此說法對嗎?為什么[補充]

2.解下列不等式:

(1)[課本P22第8大題(2)小題]

(2)[補充]

(3)[課本P43第4大題(1)小題]

(4)[課本P43第5大題(1)小題]

(5)[補充]

(每題均先由學生說出解題思路,教師扼要板書求解過程)

參考答案:

1.不對。同時前者無意義而后者卻能成立,所以它們的解集是不同的。

2.(1)

(2)原不等式可化為:,即

解集為。

(3)原不等式可化為

解集為

(4)原不等式可化為或

解集為

(5)原不等式可化為:或解集為

Ⅲ.總結提煉

這節課我們重點講解了利用(有理數)乘除法的符號法則求解左式為若干一次因式的積或商而右式為0的不等式。值得注意的是,這一方法對符合上述形狀的高次不等式也是有效的,同學們應掌握好這一方法。

(五)布置作業

(P22.2(2)、(4);4;5;6。)

(六)板書設計

2025年高二數學教案篇13

教學目標

1.掌握平面向量的數量積及其幾何意義;

2.掌握平面向量數量積的重要性質及運算律;

3.了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;

4.掌握向量垂直的條件.

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學工具

投影儀

教學過程

復習引入:

向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ

課堂小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

課后作業

P107習題2.4A組2、7題

課后小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

2025年高二數學教案篇14

一、教學內容分析

圓錐曲線的定義反映了圓錐曲線的本質屬性,它是無數次實踐后的高度抽象、恰當地利用定義__題,許多時候能以簡馭繁、因此,在學習了橢圓、雙曲線、拋物線的定義及標準方程、幾何性質后,再一次強調定義,學會利用圓錐曲線定義來熟練的解題”。

二、學生學習情況分析

我所任教班級的學生參與課堂教學活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數學語言的表達能力也略顯不足。

三、設計思想

由于這部分知識較為抽象,如果離開感性認識,容易使學生陷入困境,降低學習熱情、在教學時,借助多媒體動畫,引導學生主動發現問題、解決問題,主動參與教學,在輕松愉快的環境中發現、獲取新知,提高教學效率、

四、教學目標

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應用__解決問題;熟練掌握焦點坐標、頂點坐標、焦距、離心率、準線方程、漸近線、焦半徑等概念和求法;能結合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習,強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設問,引導學生學習解題的一般方法。

3、借助多媒體輔助教學,激發學習數學的興趣、

五、教學重點與難點:

教學重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學難點:

巧用圓錐曲線定義__

2025年高二數學教案篇15

《三角函數的圖象與性質》教案

教學目標

1、知識與技能:

(1)理解并掌握正弦函數的定義域、值域、周期性、(?。┲怠握{性、奇偶性;

(2)能熟練運用正弦函數的性質解題。

2、過程與方法:

通過正弦函數在R上的圖像,讓學生探索出正弦函數的性質;講解例題,總結方法,鞏固練習。

3、情感態度與價值觀:

通過本節的學習,培養學生創新能力、探索歸納能力;讓學生體驗自身探索成功的喜悅感,培養學生的自信心;使學生認識到轉化“矛盾”是解決問題的有效途經;培養學生形成實事求是的科學態度和鍥而不舍的鉆研精神。

教學重難點

重點:正弦函數的性質。

難點:正弦函數的性質應用。

教學工具

投影儀。

教學過程

【創設情境,揭示課題】

同學們,我們在數學一中已經學過函數,并掌握了討論一個函數性質的幾個角度,你還記得有哪些嗎?在上一次課中,我們已經學習了正弦函數的y=sinx在R上圖像,下面請同學們根據圖像一起討論一下它具有哪些性質?

【探究新知】

讓學生一邊看投影,一邊仔細觀察正弦曲線的圖像,并思考以下幾個問題:

(1)正弦函數的定義域是什么?

(2)正弦函數的值域是什么?

(3)它的最值情況如何?

(4)它的正負值區間如何分?

(5)?(x)=0的解集是多少?

師生一起歸納得出:

1.定義域:y=sinx的定義域為R

2.值域:引導回憶單位圓中的正弦函數線,結論:sinx≤1(有界性)

再看正弦函數線(圖象)驗證上述結論,所以y=sinx的值域為[-1,1]

2025年高二數學教案篇16

教學目的:掌握圓的標準方程,并能解決與之有關的.問題

教學重點:圓的標準方程及有關運用

教學難點:標準方程的靈活運用

教學過程:

一、導入新課,探究標準方程

二、掌握知識,鞏固練習

練習:

1說出下列圓的方程

⑴圓心(3,-2)半徑為5

⑵圓心(0,3)半徑為3

2指出下列圓的圓心和半徑

⑴(x-2)2+(y+3)2=3

⑵x2+y2=2

⑶x2+y2-6x+4y+12=0

3判斷3x-4y-10=0和x2+y2=4的位置關系

4圓心為(1,3),并與3x-4y-7=0相切,求這個圓的方程

三、引伸提高,講解例題

例1、圓心在y=-2x上,過p(2,-1)且與x-y=1相切求圓的方程(突出待定系數的數學方法)

練習:

1、某圓過(-2,1)、(2,3),圓心在x軸上,求其方程。

2、某圓過A(-10,0)、B(10,0)、C(0,4),求圓的方程。

例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。

例3、點M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓練思維)

四、小結練習P771,2,3,4

五、作業P811,2,3,4

2025年高二數學教案篇17

教學目標

1.掌握平面向量的數量積及其幾何意義;

2.掌握平面向量數量積的重要性質及運算律;

3.了解用平面向量的數量積可以處理有關長度、角度和垂直的問題;

4.掌握向量垂直的條件.

教學重難點

教學重點:平面向量的數量積定義

教學難點:平面向量數量積的定義及運算律的理解和平面向量數量積的應用

教學工具

投影儀

教學過程

一、復習引入:

1.向量共線定理向量與非零向量共線的充要條件是:有且只有一個非零實數λ,使=λ

五,課堂小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

六、課后作業

P107習題2.4A組2、7題

課后小結

(1)請學生回顧本節課所學過的知識內容有哪些?所涉及到的主要數學思想方法有那些?

(2)在本節課的學習過程中,還有那些不太明白的地方,請向老師提出。

(3)你在這節課中的表現怎樣?你的體會是什么?

課后習題

作業

P107習題2.4A組2、7題

2025年高二數學教案篇18

一、教學目標

1、在初中學過原命題、逆命題知識的基礎上,初步理解四種命題。

2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。

3、通過對四種命題之間關系的學習,培養學生邏輯推理能力

4、初步培養學生反證法的數學思維。

二、教學分析

重點:四種命題;難點:四種命題的關系

1.本小節首先從初中數學的命題知識,給出四種命題的概念,接著,講述四種命題的關系,最后,在初中的基礎上,結合四種命題的知識,進一步講解反證法。

2.教學時,要注意控制教學要求。本小節的內容,只涉及比較簡單的命題,不研究含有邏輯聯結詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,

3.“若p則q”形式的命題,也是一種復合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學生,只要求能分清命題“若p則q”中的條件與結論就可以了,不必考慮p與q是命題,還是開語句。

三、教學手段和方法(演示教學法和循序漸進導入法)

1.以故事形式入題

2多媒體演示

四、教學過程

(一)引入:一個生活中有趣的與命題有關的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。

這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數學思想嗎?通過這節課的學習我們就能揭開它的廬山真面,學生的興奮點被緊緊抓住,躍躍欲試!

設計意圖:創設情景,激發學生學習興趣

(二)復習提問:

1.命題“同位角相等,兩直線平行”的條件與結論各是什么?

2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?

3.原命題真,逆命題一定真嗎?

“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.

學生活動:

口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.

設計意圖:通過復習舊知識,打下學習否命題、逆否命題的基礎.

(三)新課講解:

1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結論作為條件,條件作為結論,得到的命題就叫做原命題的逆命題。

2.把命題“同位角相等,兩直線平行”的條件與結論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。

3.把命題“同位角相等,兩直線平行”的條件與結論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。

2025年高二數學教案篇19

知識結構

重點與難點分析:

本節課教學方法主要是“自學輔導與發現探究法”。力求體現知識結構完整、知識理解完整;注重學生的參與度,在師生共同參與下,探索問題、動手試驗、發現規律、做出歸納。讓學生直接參加課堂活動,將教與學融為一體。具體說明如下:

(1)由“先教后學”轉向“先學后教

本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

(2)在層次教學中培養學生的思維能力

本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

綜合練習的多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。這里注意兩點:一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

教法建議:

由“先教后學”轉向“先學后教”

本節課開始,讓同學們自己思考問題:判定三角形全等的方法有四種,如果這兩個三角形是直角三角形,那么判定它們全等的方法有哪些呢?學生展開討論,初步形成意見,然后由教師答疑。這樣促進了學生學習,體現了以“學生為主體”的教育思想。

(2)在層次教學中培養學生的思維能力

本節課的層次主要表現為兩個方面:一是對公理的多層次理解;二是綜合練習的多層次變化。

公理的多層次理解包括:明確公理的條件及結論;公理的文字語言、圖形語言、符號語言的理解及掌握;公理的作用。這里特別強調三個方面:1、特殊三角形的特殊性;2、歸納總結判定直角三角形全等的方法。

綜合練習的.多層次變化:首先給出直接應用公理證明三角形全等的題目;然后給出變式題目;最后給出綜合應用題目。

這里注意兩點:

一是給出題目后先讓學生獨立思考,并按教材的形式嚴格書寫。

二是給出的綜合題目有一定的難度,教學時,要注意引導學生分析問題解決問題的思考方法。

2025年高二數學教案篇20

教學目標:

1、知識目標:使學生理解指數函數的定義,初步掌握指數函數的圖像和性質。

2、能力目標:通過定義的引入,圖像特征的觀察、發現過程使學生懂得理論與實踐的辯證關系,適時滲透分類討論的數學思想,培養學生的探索發現能力和分析問題、解決問題的能力。

3、情感目標:通過學生的參與過程,培養他們手腦并用、多思勤練的良好學習習慣和勇于探索、鍥而不舍的治學精神。

教學重點、難點:

1、重點:指數函數的圖像和性質

2、難點:底數a的變化對函數性質的影響,突破難點的關鍵是利用多媒體

動感顯示,通過顏色的區別,加深其感性認識。

教學方法:引導——發現教學法、比較法、討論法

教學過程:

一、事例引入

T:上節課我們學習了指數的運算性質,今天我們來學習與指數有關的函數。什么是函數?

S:--------

T:主要是體現兩個變量的關系。我們來考慮一個與醫學有關的例子:大家對“非典”應該并不陌生,它與其它的傳染病一樣,有一定的潛伏期,這段時間里病原體在機體內不斷地繁殖,病原體的繁殖方式有很多種,分裂就是其中的一種。我們來看一種球菌的分裂過程:

C:動畫演示(某種球菌分裂時,由1分裂成2個,2個分裂成4個,------。一個這樣的球菌分裂x次后,得到的球菌的個數y與x的函數關系式是:y=2x)

S,T:(討論)這是球菌個數y關于分裂次數x的函數,該函數是什么樣的形式(指數形式),

從函數特征分析:底數2是一個不等于1的正數,是常量,而指數x卻是變量,我們稱這種函數為指數函數——點題。

二、指數函數的定義

C:定義:函數y=ax(a>0且a≠1)叫做指數函數,x∈R.。

問題1:為何要規定a>0且a≠1?

S:(討論)

C:(1)當a<0時,ax有時會沒有意義,如a=﹣3時,當x=

就沒有意義;

(2)當a=0時,ax有時會沒有意義,如x=-2時,

(3)當a=1時,函數值y恒等于1,沒有研究的必要。

鞏固練習1:

下列函數哪一項是指數函數()

A、y=x2B、y=2x2C、y=2xD、y=-2x

100323 主站蜘蛛池模板: 吐鲁番市| 南昌县| 饶河县| 新津县| 抚州市| 凌源市| 叶城县| 正阳县| 花莲市| 清流县| 会宁县| 柘荣县| 枝江市| 宾川县| 昭觉县| 临潭县| 敦煌市| 民乐县| 沐川县| 正安县| 汝南县| 武夷山市| 安达市| 黎川县| 朝阳市| 卢龙县| 平昌县| 凌云县| 讷河市| 彰化县| 阳春市| 额尔古纳市| 大悟县| 屯留县| 宝丰县| 西吉县| 邢台市| 依兰县| 柳江县| 潼关县| 额济纳旗|