高中的數學教案
優秀的教案能夠幫助教師更好地把握教學目標和教學內容,提高教學質量和效果。寫高中的數學教案要注意什么?這里給大家提供高中的數學教案下載,供大家參考。
高中的數學教案篇1
教學目標:
1、橢圓是圓錐曲線的一種,是高中數學教學中的重點和難點,所以這部分內容中的知識點學生必須達到理解、應用的水平;
2、利用投影、計算機模擬動點的運動,增強直觀性,激勵學生的學習動機,培養學生的數學想象和抽象思維能力。
教學重點:對橢圓定義的理解,其中a>c容易出錯。
教學難點:方程的推導過程。
教學過程(www.fwsir.com):
(1)復習
提問:動點軌跡的一般求法?
(通過回憶性質的提問,明示這節課所要學的內 容與原來所學知識之間的內在聯系。并為后面橢圓的標準方程的推導作好準備。)
(2)引入
舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽運行的軌道等等;
計算機:動態演示行星運行的軌道。
(進一步使學生明確學習橢圓的重要性和必要性,借計算機形成生動的直觀,使學生印象加深,以便更好地掌握橢圓的形狀。)
(3)教學實施
投影:橢圓的定義:
平面內與兩個定點F1、F2的距離的和等于常數(大于F1F2)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做焦距(一般用2c表示)
常數一般用2表示。(講解定義時要注意條件:)
計算機:動態模擬動點軌跡的形成過程。
提問:如何求軌跡的方程?
(引導學生推導橢圓的標準方程)
板書:橢圓的標準方程的推導過程。(略)
(推導中注意:1)結合已畫出的圖形建立坐標系,容易為學生所接受;2)在推導過程中,要抓住“怎樣消去方程中的根式”這一關鍵問題,演算雖較繁,也能迎刃而解;3)其中焦點為F1(,0)、F2(c,0),;4)如果焦點在軸上,焦點為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)
投影:橢圓的標準方程:
()
()
投影:例1平面內兩個定點的距離是8,寫出到這兩個定點的距離的和是10的點的軌跡方程
(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)
形成性練習:課本P74:2,3
(4)小結 本節課學習了橢圓的定義及標準方程,應注意以下幾點:
①橢圓的定義中,
②橢圓的標準方程中,焦點的位置看,的分母大小來確定
③、、的幾何意義
(5)作業
P80:2,4(1)(3)
高中的數學教案篇2
教學目標:①掌握對數函數的性質。
②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。
③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。
教學重點與難點:對數函數的性質的應用。
教學過程設計:
⒈復習提問:對數函數的概念及性質。
⒉開始正課
1 比較數的大小
例 1 比較下列各組數的大小。
⑴loga5.1 ,loga5.9 (a>0,a≠1)
⑵log0.50.6 ,logЛ0.5 ,lnЛ
師:請同學們觀察一下⑴中這兩個對數有何特征?
生:這兩個對數底相等。
師:那么對于兩個底相等的對數如何比大小?
生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。
師:對,請敘述一下這道題的解題過程。
生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1
板書:
解:Ⅰ)當0∵5.1<5.9 ∴loga5.1>loga5.9
Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,∵5.1<5.9 ∴loga5.1
師:請同學們觀察一下⑵中這三個對數有何特征?
生:這三個對數底、真數都不相等。
師:那么對于這三個對數如何比大小?
生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。
板書:略。
師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。
2 函數的定義域, 值 域及單調性。
例 2 ⑴求函數y=的定義域。
⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)
師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。
板書:
解:∵ 2x-1≠0 x≠0.5
log0.8x-1≥0 , x≤0.8
x>0 x>0
∴x(0,0.5)∪(0.5,0.8〕
師:接下來我們一起來解這個不等式。
分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,
再根據對數函數的單調性求解。
師:請你寫一下這道題的解題過程。
生:<板書>
解: x2+2x-3>0 x<-3 或 x>1
(3x+3)>0 , x>-1
x2+2x-3<(3x+3) -2
不等式的解為:1
例 3 求下列函數的值域和單調區間。
⑴y=log0.5(x- x2)
⑵y=loga(x2+2x-3)(a>0,a≠1)
師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。
下面請同學們來解⑴。
生:此函數可看作是由y= log0.5u, u= x- x2復合而成。
板書:
解:⑴∵u= x- x2>0, ∴0
u= x- x2=-(x-0.5)2+0.25, ∴0
∴y= log0.5u≥log0.50.25=2
∴y≥2
x x(0,0.5] x[0.5,1)
u= x- x2
y= log0.5u
y=log0.5(x- x2)
函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)
注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則函數都不存在,性質就無從談起。
師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區別?
生:⑴的底數是常值,⑵的底數是字母。
師:那么⑵如何來解?
生:只要對a進行分類討論,做法與⑴類似。
板書:略。
⒊小結
這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。
⒋作業
⑴解不等式
①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)
⑵已知函數y=loga(x2-2x),(a>0,a≠1)
①求它的單調區間;②當0
⑶已知函數y=loga (a>0, b>0, 且 a≠1)
①求它的定義域;②討論它的奇偶性; ③討論它的單調性。
⑷已知函數y=loga(ax-1) (a>0,a≠1),
①求它的定義域;②當x為何值時,函數值大于1;③討論它的單調性。
5.課堂教學設計說明
這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。
高中的數學教案篇3
一:說教材
平面向量的數量積是兩向量之間的乘法,而平面向量的坐標表示把向量之間的運算轉化為數之間的運算。本節內容是在平面向量的坐標表示以及平面向量的數量積及其運算律的基礎上,介紹了平面向量數量積的坐標表示,平面兩點間的距離公式,和向量垂直的坐標表示的充要條件。為解決直線垂直問題,三角形邊角的有關問題提供了很好的辦法。本節內容也是全章重要內容之一。
二:說學習目標和要求
通過本節的學習,要讓學生掌握
(1):平面向量數量積的坐標表示。
(2):平面兩點間的距離公式。
(3):向量垂直的坐標表示的充要條件。
以及它們的一些簡單應用,以上三點也是本節課的重點,本節課的難點是向量垂直的坐標表示的充要條件以及它的靈活應用。
三:說教法
在教學過程中,我主要采用了以下幾種教學方法:
(1)啟發式教學法
因為本節課重點的坐標表示公式的推導相對比較容易,所以這節課我準備讓學生自行推導出兩個向量數量積的坐標表示公式,然后引導學生發現幾個重要的結論:如模的計算公式,平面兩點間的距離公式,向量垂直的坐標表示的充要條件。
(2)講解式教學法
主要是講清概念,解除學生在概念理解上的疑惑感;例題講解時,演示解題過程!
主要輔助教學的手段(powerpoint)
(3)討論式教學法
主要是通過學生之間的相互交流來加深對較難問題的理解,提高學生的自學能力和發現、分析、解決問題以及創新能力。
四:說學法
學生是課堂的主體,一切教學活動都要圍繞學生展開,借以誘發學生的學習興趣,增強課堂上和學生的交流,從而達到及時發現問題,解決問題的目的。通過精講多練,充分調動學生自主學習的積極性。如讓學生自己動手推導兩個向量數量積的坐標公式,引導學生推導4個重要的結論!并在具體的問題中,讓學生建立方程的思想,更好的解決問題!
五:說教學過程
這節課我準備這樣進行:
首先提出問題:要算出兩個非零向量的數量積,我們需要知道哪些量?
繼續提出問題:假如知道兩個非零向量的坐標,是不是可以用這兩個向量的坐標來表示這兩個向量的數量積呢?
引導學生自己推導平面向量數量積的坐標表示公式,在此公式基礎上還可以引導學生得到以下幾個重要結論:
(1) 模的計算公式
(2)平面兩點間的距離公式。
(3)兩向量夾角的余弦的坐標表示
(4)兩個向量垂直的標表示的充要條件
第二部分是例題講解,通過例題講解,使學生更加熟悉公式并會加以應用。
例題1是書上122頁例1,此題是直接用平面向量數量積的坐標公式的題,目的是讓學生熟悉這個公式,并在此題基礎上,求這兩個向量的夾角?目的是讓學生熟悉兩向量夾角的余弦的坐標表示公式例題2是直接證明直線垂直的題,雖然比較簡單,但體現了一種重要的證明方法,這種方法要讓學生掌握,其實這一例題也是兩個向量垂直坐標表示的充要條件的一個應用:即兩個向量的數量積是否為零是判斷相應的兩條直線是否垂直的重要方法之一。
例題3是在例2的基礎上稍微作了一下改變,目的是讓學生會應用公式來解決問題,并讓學生在這要有建立方程的思想。
再配以練習,讓學生能熟練的應用公式,掌握今天所學內容。
高中的數學教案篇4
【一】教學背景分析
1。教材結構分析
《圓的方程》安排在高中數學第二冊(上)第七章第六節。圓作為常見的簡單幾何圖形,在實際生活和生產實踐中有著廣泛的應用。圓的方程屬于解析幾何學的基礎知識,是研究二次曲線的開始,對后續直線與圓的位置關系、圓錐曲線等內容的學習,無論在知識上還是方法上都有著積極的意義,所以本節內容在整個解析幾何中起著承前啟后的作用。
2。學情分析
圓的方程是學生在初中學習了圓的概念和基本性質后,又掌握了求曲線方程的一般方法的基礎上進行研究的。但由于學生學習解析幾何的時間還不長、學習程度較淺,且對坐標法的運用還不夠熟練,在學習過程中難免會出現困難。另外學生在探究問題的能力,合作交流的意識等方面有待加強。
根據上述教材結構與內容分析,考慮到學生已有的認知結構和心理特征,我制定如下教學目標:
3。教學目標
(1)知識目標:①掌握圓的標準方程;
②會由圓的標準方程寫出圓的半徑和圓心坐標,能根據條件寫出圓的標準方程;
③利用圓的標準方程解決簡單的實際問題。
(2)能力目標:①進一步培養學生用代數方法研究幾何問題的能力;
②加深對數形結合思想的理解和加強對待定系數法的運用;
③增強學生用數學的意識。
(3)情感目標:①培養學生主動探究知識、合作交流的意識;
②在體驗數學美的過程中激發學生的學習興趣。
根據以上對教材、教學目標及學情的分析,我確定如下的教學重點和難點:
4。教學重點與難點
(1)重點:圓的標準方程的求法及其應用。
(2)難點:①會根據不同的已知條件求圓的`標準方程;
②選擇恰當的坐標系解決與圓有關的實際問題。
為使學生能達到本節設定的教學目標,我再從教法和學法上進行分析:
好學教育:
【二】教法學法分析
1。教法分析為了充分調動學生學習的積極性,本節課采用“啟發式”問題教學法,用環環相扣的問題將探究活動層層深入,使教師總是站在學生思維的最近發展區上。另外我恰當的利用多媒體課件進行輔助教學,借助信息技術創設實際問題的情境既能激發學生的學習興趣,又直觀的引導了學生建模的過程。
2。學法分析通過推導圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應用圓的標準方程,熟悉用待定系數法求的過程。下面我就對具體的教學過程和設計加以說明:
【三】教學過程與設計
整個教學過程是由七個問題組成的問題鏈驅動的,共分為五個環節:
創設情境啟迪思維深入探究獲得新知應用舉例鞏固提高
反饋訓練形成方法小結反思拓展引申
下面我從縱橫兩方面敘述我的教學程序與設計意圖。
首先:縱向敘述教學過程
(一)創設情境——啟迪思維
問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側行駛,一輛寬為2。7m,高為3m的貨車能不能駛入這個隧道?
通過對這個實際問題的探究,把學生的思維由用勾股定理求線段CD的長度轉移為用曲線的方程來解決。一方面幫助學生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結論的同時學生自己推導出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創設問題情境,讓學生感受到問題來源于實際,應用于實際,激發了學生的學習興趣和學習欲望。這樣獲取的知識,不但易于保持,而且易于遷移。
通過對問題一的探究,抓住了學生的注意力,把學生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環節。
(二)深入探究——獲得新知
問題二1。根據問題一的探究能不能得到圓心在原點,半徑為的圓的方程?
2。如果圓心在,半徑為時又如何呢?
好學教育:
這一環節我首先讓學生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導學生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學生對圓心不在原點的情況進行探究。我預設了三種方法等待著學生的探究結果,分別是:坐標法、圖形變換法、向量平移法。
得到圓的標準方程后,我設計了由淺入深的三個應用平臺,進入第三環節。
(三)應用舉例——鞏固提高
I。直接應用內化新知
問題三1。寫出下列各圓的標準方程:
(1)圓心在原點,半徑為3;
(2)經過點,圓心在點。
2。寫出圓的圓心坐標和半徑。
我設計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學生口答完成,目的是先讓學生熟練掌握圓心坐標、半徑與圓的標準方程之間的關系,為后面探究圓的切線問題作準備。
II。靈活應用提升能力
問題四1。求以點為圓心,并且和直線相切的圓的方程。
2。求過點,圓心在直線上且與軸相切的圓的方程。
3。已知圓的方程為,求過圓上一點的切線方程。
你能歸納出具有一般性的結論嗎?
已知圓的方程是,經過圓上一點的切線的方程是什么?
我設計了三個小問題,第一個小題有了剛剛解決問題三的基礎,學生會很快求出半徑,根據圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導學生應用待定系數法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預設了四種方法再一次為學生的發散思維創設了空間。最后我讓學生由第三小題的結論進行歸納、猜想,在論證經過圓上一點圓的切線方程的過程中,又一次模擬了真理發現的過程,使探究氣氛達到高潮。
III。實際應用回歸自然
問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。
好學教育:
我選用了教材的例3,它是待定系數法求出圓的三個參數的又一次應用,同時也與引例相呼應,使學生形成解決實際問題的一般方法,培養了學生建模的習慣和用數學的意識。
(四)反饋訓練——形成方法
問題六1。求過原點和點,且圓心在直線上的圓的標準方程。
2。求圓過點的切線方程。
3。求圓過點的切線方程。
接下來是第四環節——反饋訓練。這一環節中,我設計三個小題作為鞏固性訓練,給學生一塊“用武”之地,讓每一位同學體驗學習數學的樂趣,成功的喜悅,找到自信,增強學習數學的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學生剛剛歸納了過圓上一點圓的切線方程,因此很容易產生思維的負遷移,另外這道題目有兩解,學生容易漏掉斜率不存在的情況,這時引導學生用數形結合的思想,結合初中已有的圓的知識進行判斷,這樣的設計對培養學生思維的嚴謹性具有良好的效果。
(五)小結反思——拓展引申
1。課堂小結
把圓的標準方程與過圓上一點圓的切線方程加以小結,提煉數形結合的思想和待定系數的方法①圓心為,半徑為r的圓的標準方程為:
圓心在原點時,半徑為r的圓的標準方程為:。
②已知圓的方程是,經過圓上一點的切線的方程是:。
2。分層作業
(A)鞏固型作業:教材P81—82:(習題7。6)1,2,4。(B)思維拓展型作業:試推導過圓上一點的切線方程。
3。激發新疑
問題七1。把圓的標準方程展開后是什么形式?
2。方程表示什么圖形?
在本課的結尾設計這兩個問題,作為對這節課內容的鞏固與延伸,讓學生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產生了。在知識的拓展中再次掀起學生探究的熱情。另外它為下節課研究圓的一般方程作了重要的準備。
以上是我縱向的教學過程及簡單的設計意圖,接下來,我從三個方面橫向的進一步闡述我的教學設計:橫向闡述教學設計
(一)突出重點抓住關鍵突破難點
好學教育:
求圓的標準方程既是本節課的教學重點也是難點,為此我布設了由淺入深的學習環境,先讓學生熟悉圓心、半徑與圓的標準方程之間的關系,逐步理解三個參數的重要性,自然形成待定系數法的解題思路,在突出重點的同時突破了難點。
第二個教學難點就是解決實際應用問題,這是學生固有的難題,主要是因為應用問題的題目冗長,學生很難根據問題情境構建數學模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發學生的求知欲,同時我借助多媒體課件的演示,引導學生真正走入問題的情境之中,并從中抽象出數學模型,從而消除畏難情緒,增強了信心。最后再形成應用圓的標準方程解決實際問題的一般模式,并嘗試應用該模式分析和解決第二個應用問題——問題五。這樣的設計,使學生在解決問題的同時,形成了方法,難點自然突破。
(二)學生主體教師主導探究主線
本節課的設計用問題做鏈,環環相扣,使學生的探究活動貫穿始終。從圓的標準方程的推導到應用都是在問題的指引、我的指導下,由學生探究完成的。另外,我重點設計了兩次思維發散點,分別是問題二和問題四的第三問,要求學生分組討論,合作交流,為學生設立充分的探究空間,學生在交流成果的過程中,既體驗了科學研究和真理發現的復雜與艱辛,又在我的適度引導、側面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅動下,高效的完成本節的學習任務。
(三)培養思維提升能力激勵創新
為了培養學生的理性思維,我分別在問題一和問題四中,設計了兩次由特殊到一般的學習思路,培養學生的歸納概括能力。在問題的設計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯系,培養了學生的創新精神,并且使學生的有效思維量加大,隨時對所學知識和方法產生有意注意,使能力與知識的形成相伴而行。
以上是我對這節課的教學預設,具體的教學過程還要根據學生在課堂中的具體情況適當調整,向生成性課堂進行轉變。最后我以赫爾巴特的一句名言結束我的說課,發揮我們的創造性,力爭“使教育過程成為一種藝術的事業”。
高中的數學教案篇5
本節課是《等比數列的前n項和》的第一課時,學生在學習了等比數列的概念、等差與等比數列的通項公式及等差數列的前n項和公式前提下學習的,對于本節課所需的知識點和探究方法都有了一定的儲備。這節課我充分利用情境,激發學生興趣,順利導入本節課的內容。
本節課我用心準備、精心設計、潛心專研,是我上好這節課的前提。在教學過程中,我充分體現了教學目標,抓住了教學重點,解決了教學難點,更重要的是,全班學生心、神、情、與我深度融合。這節課的.內容是“等差數列的前n項和”與“等比數列”內容的延續,為學生后面學綜合數列的求和做了鋪墊,重點是推導等比數列的前n項和的公式以及公式的簡單應用,難點是用錯位相減法推導等比數列的前n項和公式以及公式應用中對q與1的討論。本節課我注重從“知識傳授”的傳統模式轉變為“以學生為主體”的參與模式,注重數學思想方法的滲透和良好的思維品質的養成,注重學生創造精神和實踐能力的培養,這在一定的程度上,激活了學生的思維,但對教師的挑戰也是不言而喻的,不僅要透徹理解教材的意圖,還要有寬厚的知識積累和深厚的自學功底。
在等比數列求和的教學時,開始我給同學們說了一個故事,“在古印度,有個名叫西薩的人,發明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數學家計算,結果出來后,國王大吃一驚。”為什么呢?同學們很好奇,于是有計算器的同學拿出了計算器,結果沒有計算完,計算器就算不出來了。激發學生的興趣,調動學習的積極性,于是引入主題,等比數列求和。
首先讓學生回憶等差數列的求和公式的推導方法,結合自己的預習談談自己對課本上等比數列求和公式推導過程的理解,其本質是什么?這樣做的目的是什么?此時教師根據學生們的討論和展示,適時點撥,指出問題的關鍵。在用錯位相減法推出等比數列前n項和公式過程中,做差后提醒同學們,接下來要做什么工作,注意什么,學生們自然知道分母不能為零,因而知道了等比數列前n項和公式是分情況討論的,為什么會有公比為1和公比不為1兩種情況。此時再提醒學生等差數列求和公式是一個公式的兩種形式,而等比數列求和公式是兩種不同情況下的公式。然后是對求和公式的簡單應用。所以讓學生經歷等比數列前n項和公式的推導過程成了本節課的重點與難點,在改善學生的學習方式上,是讓學生提出問題并解決問題來進行自主學習、合作學習與探究學習。
在教學環節上我利用小組合作學習、學生自主學習、小組討論、學生展示、師生點評,教師總結升華,當堂檢測等環節,有效地實現本節課的教學目標。在教學評價上我關注學生,不單純看學生是否會解題,關鍵是看學生是否動腦,看學生的思維過程來肯定和鼓勵,如在解決情景問題的過程中,學生躍躍欲試、情緒高漲、討論激烈,可能會探究出多種解決方案,適時地鼓勵與評價,使學生的進取心得到增強,是激發學生學習數學興趣的有效途徑。我通過對學生的評價,將知識點和思想方法又得到強化。
總之,這節課也有不足,容量大,知識豐富,滲透歸納與推理、錯位相減法、從特殊到一般、類比推理、分類討論等數學思想,對學生要求高。但通過課堂反應,教學效果好,這是我感到欣慰的地方。
高中的數學教案篇6
一、教學目標
1.掌握任意角的正弦、余弦、正切函數的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數的定義.
2.經歷從銳角三角函數定義過度到任意角三角函數定義的推廣過程,體驗三角函數概念的產生、發展過程.領悟直角坐標系的工具功能,豐富數形結合的經驗.
3.培養學生通過現象看本質的唯物主義認識論觀點,滲透事物相互聯系、相互轉化的辯證唯物主義世界觀.
4.培養學生求真務實、實事求是的科學態度.
二、重點、難點、關鍵
重點:任意角的正弦、余弦、正切函數的定義、定義域、(正負)符號判斷法.
難點:把三角函數理解為以實數為自變量的函數.
關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).
三、教學理念和方法
教學中注意用新課程理念處理傳統教材,學生的數學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質、經歷過程.
根據本節課內容、高一學生認知特點和我自己的教學風格,本節課采用"啟發探索、講練結合"的方法組織教學.
四、教學過程
[執教線索:
回想再認:函數的概念、銳角三角函數定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優化認知:用直角坐標系研究銳角三角函數--探索發展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數定義嗎?)--自主定義:任意角三角函數定義--登高望遠:三角函數的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習小明回顧小結--布置作業]
(一)復習引入、回想再認
開門見山,面對全體學生提問:
在初中我們初步學習了銳角三角函數,前幾節課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節課該研究什么呢?
探索任意角的三角函數(板書課題),請同學們回想,再明確一下:
(情景1)什么叫函數?或者說函數是怎樣定義的?
讓學生回想后再點名回答,投影顯示規范的定義,教師根據回答情況進行修正、強調:
傳統定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數,x叫做自變量,自變量x的取值范圍叫做函數的定義域.
現代定義:設A、B是非空的數集,如果按某個確定的對應關系f,使對于集合A中的任意一個數,在集合B中都有唯一確定的數f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數,記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數的定義域.
設計意圖:
函數和三角函數是一般和特殊的關系,是共性和個性的關系,學生已經學習了函數的概念,因此對三角函數的學習就是一個從一般到特殊的演繹的過程,也是以具體函數豐富函數概念的過程.教學經驗表明:學生對函數兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數概念進行回想再認,目的在于明確函數概念的本質,為演繹學習任意角三角函數概念作好知識和認知準備.
(情景2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數.請回想:這三個三角函數分別是怎樣規定的?
學生口述后再投影展示,教師再根據投影進行強調:
設計意圖:
學生在初中學習了銳角的三角函數概念,現在學習任意角的三角函數,又是一種推廣和拓展的過程(類似于從有理數到實數的擴展).溫故知新,要讓學生體會知識的產生、發展過程,就要從源頭上開始,從學生現有認知狀況開始,對銳角三角函數的復習就必不可少.
(二)引伸鋪墊、創設情景
(情景3)我們已經把銳角推廣到了任意角,銳角的三角函數概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!
留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發引導.
能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節已經以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續用直角坐標系來研究任意角的三角函數.
設計意圖:
從學生現有知識水平和認知能力出發,創設問題情景,讓學生產生認知沖突,進行必要的啟發,將學生思維引上自主探索、合作交流的"再創造"征程.
教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數定義!
師生共做(學生口述,教師板書圖形和比值):
把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長oP∣=r.
根據銳角三角函數定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數比值:
設計意圖:
此處做法簡單,思想重要.為了順利實現推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節已經以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數.初中以直角三角形邊角關系來定義銳角三角函數,現在要用坐標系來研究,探索的結論既要滿足任意角的情形,又要包容初中銳角三角函數定義.這是一個認識的飛躍,是理解任意角三角函數概念的關鍵之一,也是數學發現的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數到復數的擴展等).
(情景4)各個比值與角之間有怎樣的關系?比值是角的函數嗎?
追問:銳角α大小發生變化時,比值會改變嗎?
先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉即α在銳角范圍內變化,六個比值隨之變化的直觀形象。結論是:比值隨α的變化而變化.
引導學生觀察圖3,聯系相似三角形知識,
探索發現:
對于銳角α的每一個確定值,六個比值都是
確定的,不會隨P在終邊上的移動而變化.
得出結論(強調):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數值的函數.
設計意圖:
初中學生對函數理解較膚淺,這里在學生思維的最近發展區進一步研究初中學過的銳角三角函數,在思維上更上了一個層次,扣準函數概念的內涵,突出變量之間的依賴關系或對應關系,是從函數知識演繹到三角函數知識的主要依據,是準確理解三角函數概念的關鍵,也是在認知上把三角函數知識納入函數知識結構的關鍵.這樣做能夠使學生有效地增強函數觀念.
(三)分析歸納、自主定義
(情境5)能將銳角的比值情形推廣到任意角α嗎?
水到渠成,師生共同進行探索和推廣:
對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):
終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:
;
(指出:不畫出角的方向,表明角具有任意性)
怎樣刻畫任意角的三角函數呢?研究它的六個比值:
(板書)設α是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:
α=kππ/2時,x=0,比值y/x、r/x無意義;
α=kπ時,y=0,比值x/y、r/y無意義.
追問:α大小發生變化時,比值會改變嗎?
先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉即角α變化,六個比值隨之改變的直觀形象。結論是:各比值隨α的變化而變化.
再引導學生利用相似三角形知識,探索發現:對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.
綜上得到(強調):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節課分析).
因此,六個比值分別是以角α為自變量、以比值為函數值的函數.
根據歷史上的規定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):
=sinα(正弦)=cosα(余弦)=tanα(正切)
=cscα(余割)=sec(正弦)=cotα(余切)
教師強調:sinα表示sin與α的乘積嗎?不是,sinα是函數記號,是一個整體,相當于函數記號f(x).其它幾個三角函數也如此
投影顯示圖六,指導學生分析其對應關系,進一步體會其函數內涵:
(圖六)
指導學生識記六個比值及函數名稱.
教師指出:正弦、余弦、正切、余切、正割、余割六個函數統稱為三角函數,三角函數有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).
引導學生進一步分析理解:
已知角的集合與實數集之間可以建立一一對應關系,對于每一個確定的實數,把它看成一個弧度數,就對應著唯一的一個角,從而分別對應著六個唯一的三角函數值.因此,(板書)三角函數可以看成是以實數為自變量的函數,這將為以后的應用帶來很多方便.
設計意圖:
把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數內涵.引導學生在理解的基礎上自主地對三角函數作出明確定義,是本節課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數可以看成是以實數為自變量的函數"的理解有半信半疑之感,有待通過后續的應用加深理解.
(四)探索定義域
(情景6)(1)函數概念的三要素是什么?
函數三要素:對應法則、定義域、值域.
正弦函數sinα的對應法則是什么?
正弦函數sinα的對應法則,實質上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.
(2)布置任務情景:什么是三角函數的定義域?請求出六個三角函數的定義域,填寫下表:
三角函數
sinα
cosα
tanα
cotα
cscα
secα
定義域
引導學生自主探索:
如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數的定義域,三角函數的定義域自然是指:使比值有意義的角α的取值范圍.
關于sinα=y/r、cosα=x/r,對于任意角α(弧度數),r>0,y/r、x/r恒有意義,定義域都是實數集R.
對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{αα∈R,且α≠kππ/2}..........
教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.
(關于值域,到后面再學習).
設計意圖:
定義域是函數三要素之一,研究函數必須明確定義域.指導學生根據定義自主探索確定三角函數定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數概念的掌握.
(五)符號判斷、形象識記
(情景7)能判斷三角函數值的正、負嗎?試試看!
引導學生緊緊抓住三角函數定義來分析,r>0,三角函數值的符號決定于x、y值的正負,根據終邊所在位置總結出形象的識記口訣:
(同好得正、異號得負)
sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負
設計意圖:
判斷三角函數值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數形結合判斷和記憶三角函數值的正負符號,并總結出形象的識記口訣,這也是理解和記憶的關鍵.
(六)練習鞏固、理解記憶
1、自學例1:已知角α的終邊經過點P(2,-3),求α的六個三角函數值.
要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.
課堂練習:
p19題1:已知角α的終邊經過點P(-3,-1),求α的六個三角函數值.
要求心算,并提問中下學生檢驗,--------
點評:角α終邊上有無窮多個點,根據三角函數的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數值(或判斷其無意義).
補充例題:已知角α的終邊經過點P(x,-3),cosα=4/5,求α的其它五個三角函數值.
師生探索:已知y=-3,要求其它五個三角函數值,須知r=?,x=?.根據定義得=(方程思想),x>0,解得x=4,從而--------.解答略.
2、自學例2:求下列各角的六個三角函數值:(1)0;(2)π/2;(3)3π/2.
提問,據反饋信息作點評、修正.
師生探索:緊扣三角函數定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數值,都可以。
取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:
角α(角度)
0°
90°
180°
270°
360°
角α(弧度)
sinα
cosα
tanα
處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.
強調:終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經常用到軸線角的三角函數值,要結合三角函數定義記熟這些值.
設計意圖:
及時安排自學例題、自做教材練習題,一般性與特殊性相結合,進行適量的變式練習,以鞏固和加深對三角函數概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養學生分析解決問題的能力"貫穿在每一節課的課堂教學始終.
(七)回顧小結、建構網絡
要求全體學生根據教師所提問題進行總結識記,提問檢查并強調:
1.你是怎樣把銳角三角函數定義推廣到任意角的?或者說任意角三角函數具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)
2.你如何判斷和記憶正弦、余弦、正切函數的定義域?(根據定義,------)
3.你如何記憶正弦、余弦、正切函數值的符號?(根據定義,想象坐標位置,-----)
設計意圖:
遺忘的規律是先快后慢,回顧再現是記憶的重要途徑,在課堂內及時總結識記主要內容是上策.此處以問題形式讓學生自己歸納識記本節課的主體內容,抓住要害,人人參與,及時建構知識網絡,優化知識結構,培養認知能力.
(八)布置課外作業
1.書面作業:習題4.3第3、4、5題.
2.認真閱讀p22"閱讀材料:三角函數與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網查閱歐拉的相關情況.
教學設計說明
一、對本節教材的理解
三角函數是描述周期運動現象的重要的數學模型,有非常廣泛的應用.
星星之火,可以燎原.
直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數定義,緊緊扣住三角函數定義這個寶貴的源泉,自然地導出三角函數線、定義域、符號判斷、值域、同角三角函數關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質,本章教材就是這些內容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數方程等),定義還是直接解決某些問題的工具,三角函數知識是物理學、高等數學、測量學、天文學的重要基礎.
三角函數定義必然是學好全章內容的關鍵,如果學生掌握不好,將直接影響到后續內容的學習,由三角函數定義的基礎性和應用的廣泛性決定了本節教材的重點就是定義本身.
二、教學法加工
數學教材通常用抽象概括的形式化的數學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發展為本"的科學教育觀,"將數學的學術形態轉化為教育形態"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數學知識產生發展的背景、過程,返璞歸真,揭示本質,體會其中的思想和方法,學生只有這樣才能真正理解掌握數學知識和方法,有效地發展智力、培養能力.
在本節教材中,三角函數定義是重點,三角函數線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協調匹配,將不按教材順序來進行教學,第一課時安排三角函數的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.
教學經驗表明,三角函數定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發探索、講練結合"的常規教學方法,在學生的最近發展區圍繞學生的學習目標設計了一系列符合學生認知規律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產生、發展的過程,通過思維過程來理解知識、培養能力.
將六個比值放在一起來研究,同時給出六個三角函數的定義,能夠增強對比感和整體感,至于大綱對兩組函數掌握與了解的不同要求,在下一步的教學中注意區分就行了.
教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數關系;另外可以先研究六個比值與α之間的函數關系,然后再對六個比值取名給出記法.后者更能突出函數內涵,揭示三角函數本質.本課例采用后者組織教學.
三、教學過程分析(見穿插在教案中的設計意圖).
高中的數學教案篇7
一、教學內容分析
本節內容是學生在學習了乘法原理、排列、排列數公式和加法原理以后的知識,學生已經掌握了排列問題,并且對順序與排列的關系已經有了一個比較清晰的認識.因此關鍵是排列與組合的區別在于問題是否與順序有關.與順序有關的是排列問題,與順序無關是組合問題,順序對排列、組合問題的求解特別重要.排列與組合的區別,從定義上來說是簡單的,但在具體求解過程中學生往往感到困惑,分不清到底與順序有無關系,指導學生根據生活經驗和問題的內涵領悟其中體現出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.
二、教學目標設計
1.理解組合的意義,掌握組合數的計算公式;
2.能正確認識組合與排列的聯系與區別
3.通過練習與訓練體驗并初步掌握組合數的計算公式
三、教學重點及難點
組合概念的理解和組合數公式;組合與排列的區別.
四、教學用具準備
多媒體設備
五、教學流程設計
六、教學過程設計
一、 復習引入
1.復習
我們在前幾節中學習了排列、排列數以及排列數公式
定 義
特 點
相同排列
公 式
排 列
以上由學生口答.
2.引入
那么請問:平面上有7個點,問以這7點中任何兩個為端點,構成有向線段有幾條?
這是一個排列問題
若改為:構成的線段有幾條?則為 ,
其實亦可用另一種方法解決,這就是組合.
二、學習新課
探究性質
1. 組合定義: P16
一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合.
【說明】:⑴不同元素; ⑵“只取不排”——無序性;
⑶相同組合:元素相同.
2.組合數定義:
從個不同元素中取出個元素的所有組合的個數,叫做從個不同元素中取出個元素的組合數.用符號表示.
如:引入中的例子可表示為
== 這是為什么呢?
因為 構成有向線段的問題可分成2步來完成:
第一步,先從7個點中選2個點出來,共有種選法;
第二步,將選出的2個點做一個排列,有種次序;
根據乘法原理,共有·= 所以
·判斷何為排列、組合問題: 利用書本P16~P17例題請學生判斷
·這個公式叫組合數公式
3.組合數公式:
如= =
用計算器求 、 、 、
可發現= =
由此猜想:
用實際例子說明:比如要從50人中挑選4個出來參加迎春長跑的選擇方案有,就相當于挑46個人不參加長跑的選擇方案一樣.“取法”與“剩法”是“一 一對應”的.
證明:∵
又 ,∴
當m=n時,
此性質作用:當時,計算可變為計算,能夠使運算簡化.
4. 組合數性質:
1、
2、=
可解釋為:從這n 1個不同元素中取出m個元素的組合數是,這些組合可以分為兩類:一類含有元素,一類不含有.含有的組合是從這n個元素中取出m (1個元素與組成的,共有個;不含有的組合是從這n個元素中取出m個元素組成的,共有個.根據加法原理,可以得到組合數的另一個性質.在這里,主要體現從特殊到一般的歸納思想,“含與不含其元素”的分類思想.
證明:
得證.
【說明】1( 公式特征:下標相同而上標差1的兩個組合數之和,等于下標比原下標多1而上標與高的相同的一個組合數.
2( 此性質的作用:恒等變形,簡化運算.在今后學習“二項式定理”時,我們會看到它的主要應用.
2.例題分析
例1、(1),求x
(2)
(3)
略解:(1)
(2)
(3)
例2、應用題:
有15本不同的書,其中6本是數學書,問:
分給甲4本,且都不是數學書;
略解:(1)
3.問題拓展
例3.題設同例2:
(2)平均分給3人;
(3)若平均分為3份;
(4)甲分2本,乙分7本,丙分6本;
(5)1人2本,1人7本,1人6本.
略解:(2) (3)
(4) (5)
三、課堂小結
指導學生根據生活經驗和問題的內涵領悟其中體現出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.
能列舉出某種方法時,讓學生通過交換元素位置的辦法加以鑒別.
學生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時,可引導學生找出兩定義的關系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對元素進行排隊,即第一步僅從組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題.
排列、組合問題大都來源于同學們生活和學習中所熟悉的情景,解題思路通常是依據具體做事的過程,用數學的原理和語言加以表述.也可以說解排列、組合題就是從生活經驗、知識經驗、具體情景的出發,正確領會問題的實質,抽象出“按部就班”的處理問題的過程.據觀察,有些同學之所以學習中感到抽象,不知如何思考,并不是因為數學知識跟不上,而是因為平時做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規的做法).要解決這個問題,需要師生一道在分析問題時要根據實際情況,怎么做事就怎么分析,若能借助適當的工具,模擬做事的過程,則更能說明問題.久而久之,學生的邏輯思維能力將會大大提高.
四、作業布置
(略)
七、教學設計說明
在學習過程中,從排列問題引入,隨即自然地過渡到組合問題.由此讓學生對于排列與組合兩者的異同有深刻理解,并能自如地進行判斷.
本節課在教學技術上通過多媒體課件大大縮短了教師板書抄題的時間,讓學生能夠更加連貫的思考以及探索問題.
在例題的設計上從最基本的組合數公式的利用,到簡單的應用題,再到組合中較難的分組分配以及平均不平均分配問題的訓練,由淺入深,層層遞進,以積極發揮課堂教學的基礎型和研究型功能,培養學生的基礎性學力和發展性學力.
在課堂教學中教師遵循“以學生為主體”的思想,鼓勵學生善于觀察和發現;鼓勵學生積極思考和探究;鼓勵學生大膽猜想,努力營造一個民主和諧、平等交流的課堂氛圍,采取對話式教學,調動學生學習的積極性,激發學生學習的熱情,使學生開闊思維空間,讓學生積極參與教學活動,提高學生的數學思維能力.
高中的數學教案篇8
一、 知識梳理
1.三種抽樣方法的聯系與區別:
類別 共同點 不同點 相互聯系 適用范圍
簡單隨機抽樣 都是等概率抽樣 從總體中逐個抽取 總體中個體比較少
系統抽樣 將總體均勻分成若干部分;按事先確定的規則在各部分抽取 在起始部分采用簡單隨機抽樣 總體中個體比較多
分層抽樣 將總體分成若干層,按個體個數的比例抽取 在各層抽樣時采用簡單隨機抽樣或系統抽樣 總體中個體有明顯差異
(1)從含有N個個體的總體中抽取n個個體的樣本,每個個體被抽到的概率為
(2)系統抽樣的步驟: ①將總體中的個體隨機編號;②將編號分段;③在第1段中用簡單隨機抽樣確定起始的個體編號;④按照事先研究的規則抽取樣本.
(3)分層抽樣的步驟:①分層;②按比例確定每層抽取個體的個數;③各層抽樣;④匯合成樣本.
(4) 要懂得從圖表中提取有用信息
如:在頻率分布直方圖中①小矩形的面積=組距 =頻率②眾數是矩形的中點的橫坐標③中位數的左邊與右邊的直方圖的面積相等,可以由此估計中位數的值
2.方差和標準差都是刻畫數據波動大小的數字特征,一般地,設一組樣本數據 , ,…, ,其平均數為 則方差 ,標準差
3.古典概型的概率公式:如果一次試驗中可能出現的結果有 個,而且所有結果都是等可能的,如果事件 包含 個結果,那么事件 的概率P=
特別提醒:古典概型的兩個共同特點:
○1 ,即試中有可能出現的基本事件只有有限個,即樣本空間Ω中的元素個數是有限的;
○2 ,即每個基本事件出現的可能性相等。
4. 幾何概型的概率公式: P(A)=
特別提醒:幾何概型的特點:試驗的結果是無限不可數的;○2每個結果出現的可能性相等。
二、夯實基礎
(1)某單位有職工160名,其中業務人員120名,管理人員16名,后勤人員24名.為了解職工的某種情況,要從中抽取一個容量為20的樣本.若用分層抽樣的方法,抽取的業務人員、管理人員、后勤人員的人數應分別為____________.
(2)某賽季,甲、乙兩名籃球運動員都參加了
11場比賽,他們所有比賽得分的情況用如圖2所示的莖葉圖表示,
則甲、乙兩名運動員得分的中位數分別為( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)統計某校1000名學生的數學會考成績,
得到樣本頻率分布直方圖如右圖示,規定不低于60分為
及格,不低于80分為優秀,則及格人數是 ;優秀率為 。
(4)在一次歌手大獎賽上,七位評委為歌手打出的分數如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一個分和一個最低分后,所剩數據的平均值和方差分別為( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)將一顆骰子先后拋擲2次,觀察向上的點數,則以第一次向上點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=27的內部的概率________.
(6)在長為12cm的線段AB上任取一點M,并且以線段AM為邊的正方形,則這正方形的面積介于36cm2與81cm2之間的概率為( )
三、高考鏈接
07、某班50名學生在一次百米測試中,成績全部介于13秒與19秒之間,將測試結果按如下方式分成六組:第一組,成績大于等于13秒且小于14秒;第二組,成績大于等于14秒且小于15秒; 第六組,成績大于等于18秒且小于等于19秒.右圖
是按上述分組方法得到的頻率分布直方圖.設成績小于17秒的學生人數占全班總人數的百分比為 ,成績大于等于15秒且小于17秒的學生人數為 ,則從頻率分布直方圖中可分析出 和 分別為( )
08、從某項綜合能力測試中抽取100人的成績,統計如表,則這100人成績的標準差為( )
分數 5 4 3 2 1
人數 20 10 30 30 10
09、在區間 上隨機取一個數x, 的值介于0到 之間的概率為( ).
08、現有8名奧運會志愿者,其中志愿者 通曉日語, 通曉俄語, 通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.
(Ⅰ)求 被選中的概率;(Ⅱ)求 和 不全被選中的概率.
高中的數學教案篇9
教學目標:理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關系;掌握有關符號及術語。
教學過程:
一、閱讀下列語句:
1)全體自然數0,1,2,3,4,5,
2)代數式
3)拋物線上所有的點
4)今年本校高一(1)(或(2))班的全體學生
5)本校實驗室的所有天平
6)本班級全體高個子同學
7)著名的科學家
上述每組語句所描述的對象是否是確定的?
二、
1)集合:
2)集合的元素:
3)集合按元素的個數分,可分為1)__________2)_________
三、集合中元素的三個性質:
1)___________2)___________3)_____________
四、元素與集合的關系:1)____________2)____________
五、特殊數集專用記號:
1)非負整數集(或自然數集)______2)正整數集_____3)整數集_______4)有理數集______5)實數集_____6)空集____
六、集合的表示方法:
1)
2)
3)
七、例題講解:
例1、中三個元素可構成某一個三角形的三邊長,那么此三角形一定不是()
a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形
例2、用適當的方法表示下列集合,然后說出它們是有限集還是無限集?
1)地球上的四大洋構成的集合;
2)函數的全體值的集合;
3)函數的全體自變量的集合;
4)方程組解的集合;
5)方程解的集合;
6)不等式的解的集合;
7)所有大于0且小于10的奇數組成的集合;
8)所有正偶數組成的集合;
例3、用符號或填空:
1)______q,0_____n,_____z,0_____
2)______,_____
3)3_____,
4)設,,則
例4、用列舉法表示下列集合;
1.
2.
3.
4.
例5、用描述法表示下列集合
1.所有被3整除的數
2.圖中陰影部分點(含邊界)的坐標的集合
課堂練習:
例6、設含有三個實數的集合既可以表示為,也可以表示為,則的值等于___________
例7、已知:,若中元素至多只有一個,求的取值范圍。
思考題:數集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。
小結:
作業班級姓名學號
1.下列集合中,表示同一個集合的是()
a.m=,n=b.m=,n=
c.m=,n=d.m=,n=
2.m=,x=,y=,,.則()
a.b.c.d.
3.方程組的解集是____________________。
4.在(1)難解的題目,(2)方程在實數集內的解,(3)直角坐標平面內第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________。
5.設集合a=,b=,
c=,d=,e=。
其中有限集的個數是____________。
6.設,則集合中所有元素的和為
7.設x,y,z都是非零實數,則用列舉法將所有可能的值組成的集合表示為
8.已知f(x)=x2-ax+b,(a,br),a=,b=,
若a=,試用列舉法表示集合b=
9.把下列集合用另一種方法表示出來:
(1)(2)
(3)(4)
10.設a,b為整數,把形如a+b的一切數構成的集合記為m,設,試判斷x+y,x-y,xy是否屬于m,說明理由。
11.已知集合a=
(1)若a中只有一個元素,求a的值,并求出這個元素;
(2)若a中至多只有一個元素,求a的取值集合。
12.若-3,求實數a的值。
高中的數學教案篇10
教學目標:
1、在新學期能夠以積極的學習態度投入到學習中去,并用高昂的興趣參與學習。
2、熟悉新學期音樂課的要求,并能夠有意識的遵守,以良好的學習習慣規范自己在課堂中的表現。
教學重點:
養成良好的學習習慣
教學過程:
一.師生互相問好,拉近彼此的距離。
二.師生共同演繹節目,學生表演,老師表演,增進彼此感情,與孩子打成一片。
三.講述新學期音樂課要求:
1、按時按順序進入教室,不遲到,不早退。
2、進入教室不得高聲喧嘩打鬧,保持安靜狀態。
3、認真保持教室衛生,不亂扔果皮紙屑,不隨地吐痰。
4、課堂上發言積極有序,有禮有節,爭做文明小學生。
5、做到愛護公共物品,輕拿輕放,損壞照價賠償。
6、上課保持良好的狀態,以積極的態度認真學習。
四、習慣養成訓練,聽音樂做出相關要求:
1、起立、坐下
2、安靜
3、師生問好
4、請坐好
5、同桌面對
五、分組選撥,并對小組長提出要求
1、四人一小組
2、講述課堂要求,小組合作學習,評價真實客觀,學會欣賞別人;正當優秀小組,小組團結合作,富有創新;組長根據組員的表現,從紀律、學習習慣、上課表現上進行評價計分,獲得3分就可獲得一張綠卡。
小結:
希望第一節課能讓師生互相留下印象,更好的進行今后的音樂教學,把音樂課上的更加的有聲有色。
高中的數學教案篇11
教學過程:
前言:
今天是新學期的第一堂語文課,王老師為大家帶來了一首小詩。(音樂中指名讀,齊讀。)
三年級的天空
今天,是20__年的一天
一張張可愛的笑臉
從20__年的家中匆匆趕來
來到美麗的暨陽學校,
繼續
踏入三年級明亮的天空
書寫新的傳奇。
是呀,三年級的天空一定會無比明媚。那么,今天先讓我們一起來回憶剛剛過去的美好的寒假。
一、口頭交流寒假趣事
1.新年過得如何?(用詞語來形容)
2.你覺得最有趣的是什么事?(根據你說的詞語來說說)
二、書面了解別人的寒假趣事
1.全班欣賞同學寫的優秀作文。(說說自己的感受。)
2.再欣賞網上找的。(認真傾聽,分享快樂。)
三、王老師介紹自己的寒假趣事
1.你猜猜王老師怎么度過的?
2.公布答案。(在帶寶寶的同時看書)
四、送禮物——聽故事
王老師知道我們班同學都非常喜歡聽故事,所以我在寒假的時候,特別挑選了一個故事,送給大家,作為新年禮物。
毛蟲和我
——送給新學期的孩子們
毛蟲知道,在它的身體里面,藏著一只蝴蝶。是的,它一直都知道,一刻也不曾忘記。當它慢吞吞地爬過菜葉的時候,它在想著這件事;當它貪婪地把葉子咬出一個個小洞時,它在想著這件事;當它舒展身體曬太陽的時候,它在想著這件事;當它親吻一朵美麗的小花兒時,它在想這件事……
我要挑最鮮嫩的葉子吃,它對自己說,這樣當我變成蝴蝶的時候,才會有艷麗的色彩。我要多多地吃,它對自己說,這樣當我變成蝴蝶的時候,翅膀才會有力氣。這金色的光線多么溫暖,它對自己說,最重要的是,它將變成金粉裝點我的翅膀。這朵小花多么可愛,它對自己說,將來我的翅膀上面,也會開出美麗的花兒來。
“哎呀,毛毛蟲!好丑好惡心喲!”一個小女孩指著它叫道。這樣的話毛毛蟲聽得多了,一點兒也不會破壞它的好心情。哦,我將長出一雙美麗的翅膀,它對自己說。這樣想著,毛毛蟲昂起了它小小的腦袋,慢慢爬走了。
我知道,在我的身體里面,藏著一個更好的自己。是的,我一直都知道,一刻也不曾忘記。
所以我從來都不挑食,我知道所有健康的食物都將變成我的一部分,成就一個更好的我自己。所以我努力地讀書,我知道所有那些有趣的書、嚴肅的書、美麗的書、智慧的書,最終都將變成我的一部分,成就一個更好的我自己。所以我喜歡認識新朋友,我知道所有那些善良的朋友、聰明的朋友、慷慨的朋友、睿智的朋友,他們的友情以及他們的美好天性,最終都將變成我的一部分,成就一個更好的我自己。所以我積極上好每一堂課,認真完成每一次作業,我知道千里之行始于足下,我走過的每一步路,我做過的每一件事,最終都將變成我的一部分,成就一個更好的我自己。所以我喜歡親近大自然,我知道所有那些美麗的山水、陽光、花香和清新空氣,最終都將變成我的一部分,成就一個更好的我自己。
每天早晨,我都會在鏡子面前照一照自己;每天早晨,我都會在鏡子里看到一個普普通通的小女孩(小男孩)。
可我知道,在我的身體里面,藏著一個更好的我自己。就像毛毛蟲會變成蝴蝶,小種子會長成大樹,我也會變成一個更好的我自己。
故事聽完了,王老師要檢查下你們是不是認真在聽,有沒有收到我的禮物?
1.毛毛蟲的理想是什么?它為了成就更好的自己,怎么努力的?我的理想是什么?為了做最好的自己,我又是怎么做的?(大方向)
2.聽了故事,說說自己新學期的目標?為了做最好的自己,在學習中你又準備怎么做?(小方向)(多閱讀、多思考、多寫作)
我相信,只要我們像毛毛蟲那樣努力,我們也一定可以變成美麗的蝴蝶!
四、總結
讓我們每個人多閱讀、多思考、多寫作,向著美好的自己努力。最后讓我們在詩歌中結束我們的開學第一課。(再次誦讀詩歌)
高中的數學教案篇12
課題:
等比數列的概念
教學目標
1、通過教學使學生理解等比數列的概念,推導并掌握通項公式、
2、使學生進一步體會類比、歸納的思想,培養學生的觀察、概括能力、
3、培養學生勤于思考,實事求是的精神,及嚴謹的科學態度、
教學重點,難點
重點、難點是等比數列的定義的歸納及通項公式的推導、
教學用具
投影儀,多媒體軟件,電腦、
教學方法
討論、談話法、
教學過程
一、提出問題
給出以下幾組數列,將它們分類,說出分類標準、(幻燈片)
①—2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
③1,1,1,1,1,1,1,…
④243,81,27,9,3,1,,,…
⑤31,29,27,25,23,21,19,…
⑥1,—1,1,—1,1,—1,1,—1,…
⑦1,—10,100,—1000,10000,—100000,…
⑧0,0,0,0,0,0,0,…
由學生發表意見(可能按項與項之間的關系分為遞增數列、遞減數列、常數數列、擺動數列,也可能分為等差、等比兩類),統一一種分法,其中②③④⑥⑦為有共同性質的一類數列(學生看不出③的情況也無妨,得出定義后再考察③是否為等比數列)、
二、講解新課
請學生說出數列②③④⑥⑦的共同特性,教師指出實際生活中也有許多類似的例子,如變形蟲分裂問題、假設每經過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設開始有一個變形蟲,經過一個單位時間它分裂為兩個變形蟲,經過兩個單位時間就有了四個變形蟲,…,一直進行下去,記錄下每個單位時間的變形蟲個數得到了一列數
這個數列也具有前面的幾個數列的共同特性,這是我們將要研究的另一類數列——等比數列、(這里播放變形蟲分裂的多媒體軟件的第一步)
等比數列(板書)
1、等比數列的定義(板書)
根據等比數列與等差數列的名字的區別與聯系,嘗試給等比數列下定義、學生一般回答可能不夠完美,多數情況下,有了等差數列的基礎是可以由學生概括出來的教師寫出等比數列的定義,標注出重點詞語、
請學生指出等比數列②③④⑥⑦各自的公比,并思考有無數列既是等差數列又是等比數列、學生通過觀察可以發現③是這樣的數列,教師再追問,還有沒有其他的例子,讓學生再舉兩例、而后請學生概括這類數列的一般形式,學生可能說形如的數列都滿足既是等差又是等比數列,讓學生討論后得出結論:當時,數列既是等差又是等比數列,當時,它只是等差數列,而不是等比數列、教師追問理由,引出對等比數列的認識:
2、對定義的認識(板書)
(1)等比數列的首項不為0;
(2)等比數列的每一項都不為0,即
問題:一個數列各項均不為0是這個數列為等比數列的什么條件?
(3)公比不為0、
用數學式子表示等比數列的定義、
是等比數列
①、在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學生研究行不行,好不好;接下來再問,能否改寫為
是等比數列?為什么不能?式子給出了數列第項與第
項的數量關系,但能否確定一個等比數列?(不能)確定一個等比數列需要幾個條件?當給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、
3、等比數列的通項公式(板書)
問題:用和表示第項
①不完全歸納法
②疊乘法,…,,這個式子相乘得,所以(板書)
(1)等比數列的通項公式得出通項公式后,讓學生思考如何認識通項公式、(板書)
(2)對公式的認識
由學生來說,最后歸結:
①函數觀點;
②方程思想(因在等差數列中已有認識,此處再復習鞏固而已)、
這里強調方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的應用,請學生舉例(應能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規范表述的訓練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應用,下節課再研究、同學可以試著編幾道題。
三、小結
1、本節課研究了等比數列的概念,得到了通項公式;
2、注意在研究內容與方法上要與等差數列相類比;
3、用方程的思想認識通項公式,并加以應用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應是粒,用計算器算一下吧(對數算也行)。
高中的數學教案篇13
橢圓的簡單幾何性質中的考查點:
(一)、對性質的考查:
1、范圍:要注意方程與函數的區別與聯系;與橢圓有關的求最值是變量的取值范圍;作橢圓的草圖。
2、對稱性:橢圓的中心及其對稱性;判斷曲線關于x軸、y軸及原點對稱的依據;如果曲線具有關于x軸、y軸及原點對稱中的任意兩種,那么它也具有另一種對稱性;注意橢圓不因坐標軸改變的固有性質。
3、頂點:橢圓的頂點坐標;一般二次曲線的頂點即是曲線與對稱軸的交點;橢圓中a、b、c的幾何意義(橢圓的特征三角形及離心率的三角函數表示)。
4、離心率:離心率的定義;橢圓離心率的取值范圍:(0,1);橢圓的離心率的變化對橢圓的影響:當e趨向于1時:c趨向于a,此時,橢圓越扁平;當e趨向于0時:c趨向于0,此時,橢圓越接近于圓;當且僅當a=b時,c=0,兩焦點重合,橢圓變成圓。
(二)、課本例題的變形考查:
1、近日點、遠日點的概念:橢圓上任意一點p(x,y)到橢圓一焦點距離的最大值:a+c與最小值:a-c及取最值時點p的坐標;
2、橢圓的第二定義及其應用;橢圓的準線方程及兩準線間的距離、焦準距:焦半徑公式。
3、已知橢圓內一點m,在橢圓上求一點p,使點p到點m與到橢圓準線的距離的和最小的求法。
4、橢圓的參數方程及橢圓的離心角:橢圓的參數方程的簡單應用:
5、直線與橢圓的位置關系,直線與橢圓相交時的弦長及弦中點問題。
高中的數學教案篇14
教學內容:
簡單的排列組合
教學目標:
1.使學生通過觀察、猜測、實驗、驗證等活動,找出簡單事件的排列數或組合數。
2.培養學生有序地、全面地思考問題的意識和習慣。
教學過程:
1.借助操作活動或學生易于理解的事例來幫助學生找出組合數。師生共同分析練習二十五第1題。讓學生小組討論,充分發表自己的意見。
2.利用直觀圖示幫助學生有序地、不重不漏地找出早餐搭配的組合數。
3、出示練習二十五第3題。
學生看題后,四人小組討論出有多少種求組合數的方法。
4、學生匯報。
(1)圖示表示法(兩種)。引導學生用畫簡圖的方式來表示抽象的數學知識。
(2)其他的方法,例如聰聰或明明分別可以和每一個小朋友合影(分步時,可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學時充分發揮學生的創造性。至于學生用哪種方法求出來,都沒關系。但要引導學生思考如何才能不重不漏,發展學生有序地思考問題的意識和能力。
(3)學生自己用圖示表示時,可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標上序號。實際這是發展學生用數學化的符號表示具體事件的能力的一個體現。
(4)如果學生用簡圖的方式來表示有困難,也可以讓學生回憶一下二年級上冊的例子或借助學具卡片擺一擺。
2.“做一做”
(1)練習二十五第7題。
通過活動的方式讓學生不重不漏地把所有取錢的情況寫出來。
(2)練習二十五第9題。
用兩種圖示法表示兩兩組合的方式(比較簡單的兩種方式)。在教學中也要允許有的學生把所有的情況逐一羅列出來,只要他通過自己的方法探索出所有的組合數,都是應該鼓勵的。
高中的數學教案篇15
一、學習目標與自我評估
1 掌握利用單位圓的幾何方法作函數 的圖象
2 結合 的圖象及函數周期性的定義了解三角函數的周期性,及最小正周期
3 會用代數方法求 等函數的周期
4 理解周期性的幾何意義
二、學習重點與難點
“周期函數的概念”, 周期的求解。
三、學法指導
1、 是周期函數是指對定義域中所有 都有,即 應是恒等式。
2、周期函數一定會有周期,但不一定存在最小正周期。
四、學習活動與意義建構
五、重點與難點探究
例1、若鐘擺的高度 與時間 之間的函數關系如圖所示
(1)求該函數的周期;
(2)求 時鐘擺的高度。
例2、求下列函數的周期。
(1) (2)
總結:(1)函數 (其中 均為常數,且的周期T= 。
(2)函數 (其中 均為常數,且的周期T= 。
例3、求證: 的周期為 。
例4、(1)研究 和 函數的圖象,分析其周期性。(2)求證: 的周期為 (其中 均為常數,且
總結:函數 (其中 均為常數,且__的周期T= 。
例5、(1)求 的周期。
(2)已知 滿足 ,求證: 是周期函數
課后思考:能否利用單位圓作函數 的圖象。
六、作業:
七、自主體驗與運用
1、函數 的周期為 ( )
A、 B、 C、 D、
2、函數 的最小正周期是 ( )
A、 B、 C、 D、
3、函數 的最小正周期是 ( )
A、 B、 C、 D、
4、函數 的周期是 ( )
A、 B、 C、 D、
5、設 是定義域為R,最小正周期為 的函數,若 ,則 的值等于 ( )
A、1 B、 C、0 D、
6、函數 的最小正周期是 ,則
7、已知函數 的最小正周期不大于2,則正整數
的最小值是
8、求函數 的最小正周期為T,且 ,則正整數的值是
9、已知函數 是周期為6的奇函數,且 則
10、若函數 ,則
11、用周期的定義分析 的周期。
12、已知函數 ,如果使 的周期在 內,求正整數 的值
13、一機械振動中,某質子離開平衡位置的位移 與時間 之間的函數關系如圖所示:
(1) 求該函數的周期;
(2) 求 時,該質點離開平衡位置的位移。
14、已知 是定義在R上的函數,且對任意 有成立,
(1) 證明: 是周期函數;
(2) 若 求 的值。
高中的數學教案篇16
教學目標
1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用.
(1) 能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象.
(2) 能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題.
2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力.
3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性.
教學建議
教材分析
(1) 對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的.故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解.對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸.它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎.
(2) 本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質.難點是利用指數函數的圖象和性質得到對數函數的圖象和性質.由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點.
(3) 本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開.而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點.
教法建議
(1) 對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數 的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質.
(2) 在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向.這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣.
高中的數學教案篇17
20__年__月,我在江蘇連云港新海高中上了一節《橢圓的幾何性質》公開課。這節課從準備,到與組內老師探討、交流,并修改、上課,直至最后聆聽各位老師和專家的指導,都讓我受益非淺。
本節課是蘇教版普通高中課程標準實驗教科書《數學》選修1―1第二章第二節的內容,它是在學完橢圓的標準方程的基礎上,通過研究橢圓的標準方程來探究橢圓的簡單幾何性質。利用曲線方程研究曲線的性質,是解析幾何的主要任務。通過本節課的學習,既讓學生了解了橢圓的幾何性質,又讓學生初步體會了利用曲線方程來研究其性質的過程,同時也為下一步學習雙曲線和拋
物線的性質做好了鋪墊。本節課是圍繞著探究橢圓的簡單幾何性質進行的。因此,依教材的地位與作用及教學目標,將之確定為本節課的重點;又因為學生第一次系統地按照橢圓方程來研究橢圓的簡單幾何性質,學生感到困難,且如何定義離心率,學生感到棘手,所以我將之確定為本節課的難點。
然而,課后的反思過程中我發現了幾個問題:第一,在講解“頂點”定義時,單純定義為橢圓與坐標軸的交點,沒把握住頂點的重要特征,即“頂點是橢圓與其對稱軸的交點”,如果把握住這一點,在講解時就應先講“對稱性”,再講“頂點”;二是本節課對幾何性質的導入,是由學生回顧上節所講特征三角形的三邊與的大小關系開始的,而多數人對特征三角形的記憶是很模糊的,上節課在這個知識點上學生吸收的并不好,如果把它放在本節課“頂點”之后再講解,會顯得更自然一些;三是“對稱性”的講解過于單薄,學生既然很快就觀察出了這個性質,何不趁熱打鐵,再從代數的角度證明一下呢?過于避重就輕的做法不利于對學生數學思維能力的培養。以上的幾點不足都提醒我今后要在研究教材上下更多的功夫。
還有在講解完“對稱性”、準備講“離心率”之前,我穿插了一道“畫橢圓的簡圖”的題目。并提圓相似嗎?橢圓呢?引起了同學們注意。這道題起到了較好的承上啟下的作用:既鞏固了剛學的性質,又引發了一個問題:橢圓的“扁”的程度與哪些要素有關。大多數學生通過所畫的兩個橢圓長軸相同、短軸不同,從而“扁”的程度不同,很自然地回答這與有關,圓的形狀是完全相同的,而橢圓的形狀是否完全相同?如何刻畫橢圓的“圓扁”度呢?
學生自主探究(預設:可以創造錯誤認識,a越大越扁?b越大越圓?聯想橢圓定義當2a定時,焦點逐漸靠近頂點,橢圓會怎么樣?焦點逐漸靠近中心,又會怎么樣?)
切入事先準備好的幾何畫板展示,固定長軸,移動交點,看變化。教師通過多媒體展示橢圓隨著離心率逐漸接近0越圓而越接近1而越扁的動畫
過程。e越大,橢圓越扁,越小越圓。講清楚e是一個比值圓扁度用什么刻畫?為什么不b用。a此外,在以下幾個方面我還需要進一步改進:一是課堂的節奏還要稍微慢一點,比如對焦點在軸時橢圓的幾個性質的給出,都是師提問生齊答,在這個過程中不少反應慢一點的同學沒有足夠的時間去思考,被忽略掉了,而如果把這個環節換成小組合作學習、討論交流的方式來進行,放手把主動權交給學生,效果可能會更好,也更符合新課改的理念。二是教學語言還需要不斷錘煉,因為數學老師的語言是否準確、精煉,會對學生的邏輯思維產生潛移默化的影響,要力圖用清晰優美的語言藝術去感染學生。
比較過去自己曾經歷過的刻板、嚴肅的灌輸式教學,現在更提倡多給學生一點愛,讓學生積極地參與到課堂活動中來;同時老師要做有效課堂的引導者,不斷優化教學策略,教學中要關注學生是否積極地參與到發現問題、分析問題、解決問題的探索過程中去,是否能夠達到掌握知識,提高能力的目的是否收到了理想的教學效果。教學過程中要尊重學生的自我發現,多角度的給學生以鼓勵和肯定。
我會以此為契機,在平日的教學實踐中不斷思考和創新,不斷成長和進步!
高中的數學教案篇18
教學目標
(1)使學生正確理解組合的意義,正確區分排列、組合問題;
(2)使學生掌握組合數的計算公式;
(3)通過學習組合知識,讓學生掌握類比的學習方法,并提高學生分析問題和解決問題的能力;
教學重點難點
重點是組合的定義、組合數及組合數的公式;
難點是解組合的應用題.
教學過程設計
(-)導入新課
(教師活動)提出下列思考問題,打出字幕.
[字幕]一條鐵路線上有6個火車站,(1)需準備多少種不同的普通客車票?(2)有多少種不同票價的普通客車票?上面問題中,哪一問是排列問題?哪一問是組合問題?
(學生活動)討論并回答.
答案提示:(1)排列;(2)組合.
[評述]問題(1)是從6個火車站中任選兩個,并按一定的順序排列,要求出排法的種數,屬于排列問題;(2)是從6個火車站中任選兩個并成一組,兩站無順序關系,要求出不同的組數,屬于組合問題.這節課著重研究組合問題.
設計意圖:組合與排列所研究的問題幾乎是平行的.上面設計的問題目的是從排列知識中發現并提出新的問題.
(二)新課講授
[提出問題 創設情境]
(教師活動)指導學生帶著問題閱讀課文.
[字幕]1.排列的定義是什么?
2.舉例說明一個組合是什么?
3.一個組合與一個排列有何區別?
(學生活動)閱讀回答.
(教師活動)對照課文,逐一評析.
設計意圖:激活學生的思維,使其將所學的知識遷移過渡,并盡快適應新的環境.
【歸納概括 建立新知】
(教師活動)承接上述問題的回答,展示下面知識.
[字幕]模型:從 個不同元素中取出 個元素并成一組,叫做從 個不同元素中取出 個元素的一個組合.如前面思考題:6個火車站中甲站→乙站和乙站→甲站是票價相同的車票,是從6個元素中取出2個元素的一個組合.
組合數:從 個不同元素中取出 個元素的所有組合的個數,稱之,用符號 表示,如從6個元素中取出2個元素的組合數為 .
[評述]區分一個排列與一個組合的關鍵是:該問題是否與順序有關,當取出元素后,若改變一下順序,就得到一種新的取法,則是排列問題;若改變順序,仍得原來的取法,就是組合問題.
(學生活動)傾聽、思索、記錄.
(教師活動)提出思考問題.
[投影] 與 的關系如何?
(師生活動)共同探討.求從 個不同元素中取出 個元素的排列數 ,可分為以下兩步:
第1步,先求出從這 個不同元素中取出 個元素的組合數為 ;
第2步,求每一個組合中 個元素的全排列數為 .根據分步計數原理,得到
[字幕]公式1:
公式2:
(學生活動)驗算 ,即一條鐵路上6個火車站有15種不同的票價的普通客車票.
設計意圖:本著以認識概念為起點,以問題為主線,以培養能力為核心的宗旨,逐步展示知識的形成過程,使學生思維層層被激活、逐漸深入到問題當中去.
【例題示范 探求方法】
(教師活動)打出字幕,給出示范,指導訓練.
[字幕]例1 列舉從4個元素 中任取2個元素的所有組合.
例2 計算:(1) ;(2) .
(學生活動)板演、示范.
(教師活動)講評并指出用兩種方法計算例2的第2小題.
[字幕]例3 已知 ,求 的所有值.
(學生活動)思考分析.
解 首先,根據組合的定義,有
①
其次,由原不等式轉化為
即
解得 ②
綜合①、②,得 ,即
[點評]這是組合數公式的應用,關鍵是公式的選擇.
設計意圖:例題教學循序漸進,讓學生鞏固知識,強化公式的應用,從而培養學生的綜合分析能力.
【反饋練習 學會應用】
(教師活動)給出練習,學生解答,教師點評.
[課堂練習]課本P99練習第2,5,6題.
[補充練習]
[字幕]1.計算:
2.已知 ,求 .
(學生活動)板演、解答.
設計意圖:課堂教學體現以學生為本,讓全體學生參與訓練,深刻揭示排列數公式的結構、特征及應用.
(三)小結
(師生活動)共同小結.
本節主要內容有
1.組合概念.
2.組合數計算的兩個公式.
(四)布置作業
1.課本作業:習題10 3第1(1)、(4),3題.
2.思考題:某學習小組有8個同學,從男生中選2人,女生中選1人參加數學、物理、化學三種學科競賽,要求每科均有1人參加,共有180種不同的選法,那么該小組中,男、女同學各有多少人?
3.研究性題:
在 的 邊上除頂點 外有 5個點,在 邊上有 4個點,由這些點(包括 )能組成多少個四邊形?能組成多少個三角形?
(五)課后點評
在學習了排列知識的基礎上,本節課引進了組合概念,并推導出組合數公式,同時調控進行訓練,從而培養學生分析問題、解決問題的能力.
高中的數學教案篇19
教學目標
1.明確等差數列的定義.
2.掌握等差數列的通項公式,會解決知道中的三個,求另外一個的問題
3.培養學生觀察、歸納能力.
教學重點
1.等差數列的概念;
2.等差數列的通項公式
教學難點
等差數列“等差”特點的理解、把握和應用
教具準備
投影片1張(內容見下面)
教學過程
(I)復習回顧
師:上兩節課我們共同學習了數列的定義及給出數列的兩種方法通項公式和遞推公式。這兩個公式從不同的角度反映數列的特點,下面看一些例子。(放投影片)
(Ⅱ)講授新課
師:看這些數列有什么共同的特點?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:積極思考,找上述數列共同特點。
對于數列①(1≤n≤6);(2≤n≤6)
對于數列②-2n(n≥1)(n≥2)
對于數列③(n≥1)(n≥2)
共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數。
師:也就是說,這些數列均具有相鄰兩項之差“相等”的特點。具有這種特點的數列,我們把它叫做等差數。
一、定義:
等差數列:一般地,如果一個數列從第2項起,每一項與空的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示。
如:上述3個數列都是等差數列,它們的公差依次是1,-2,。
二、等差數列的通項公式
師:等差數列定義是由一數列相鄰兩項之間關系而得。若一等差數列的首項是,公差是d,則據其定義可得:
若將這n-1個等式相加,則可得:
即:即:即:……
由此可得:師:看來,若已知一數列為等差數列,則只要知其首項和公差d,便可求得其通項。
如數列①(1≤n≤6)
數列②:(n≥1)
數列③:(n≥1)
由上述關系還可得:即:則:=如:三、例題講解
例1:(1)求等差數列8,5,2…的第20項
(2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?
解:(1)由n=20,得(2)由得數列通項公式為:由題意可知,本題是要回答是否存在正整數n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數列的第100項。
(Ⅲ)課堂練習
生:(口答)課本P118練習3
(書面練習)課本P117練習1
師:組織學生自評練習(同桌討論)
(Ⅳ)課時小結
師:本節主要內容為:①等差數列定義。
即(n≥2)
②等差數列通項公式(n≥1)
推導出公式:(V)課后作業
一、課本P118習題3.21,2
二、1.預習內容:課本P116例2P117例4
2.預習提綱:
①如何應用等差數列的定義及通項公式解決一些相關問題?
②等差數列有哪些性質?
板書設計
課題
一、定義
1.(n≥2)
一、通項公式
2.公式推導過程
例題
教學后記