教育巴巴 > 高中教案 > 數學教案 >

高中數學新穎教案大全

時間: 新華 數學教案

教案編寫需要依據不同的學科和教學內容,選取合適的教學方法和手段,明確教學目標和教學計劃,以確保教學質量。如何寫出優秀的高中數學新穎教案大全?下面給大家分享一些高中數學新穎教案大全,希望對大家有所幫助。

高中數學新穎教案大全篇1

教學目標:①掌握對數函數的性質。

②應用對數函數的性質可以解決:對數的大小比較,求復合函數的定義域、值 域及單調性。

③ 注重函數思想、等價轉化、分類討論等思想的滲透,提高解題能力。

教學重點與難點:對數函數的性質的應用。

教學過程設計:

⒈復習提問:對數函數的概念及性質。

⒉開始正課

1 比較數的大小

例 1 比較下列各組數的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

師:請同學們觀察一下⑴中這兩個對數有何特征?

生:這兩個對數底相等。

師:那么對于兩個底相等的對數如何比大小?

生:可構造一個以a為底的對數函數,用對數函數的單調性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數函數的單調性取決于底的大小:當0調遞減,所以loga5.1>loga5.9 ;當a>1時,函數y=logax單調遞增,所以loga5.1

板書:

解:Ⅰ)當0∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)當a>1時,函數y=logax在(0,+∞)上是增函數,∵5.1<5.9 ∴loga5.1

師:請同學們觀察一下⑵中這三個對數有何特征?

生:這三個對數底、真數都不相等。

師:那么對于這三個對數如何比大小?

生:找“中間量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板書:略。

師:比較對數值的大小常用方法:①構造對數函數,直接利用對數函數 的單調性比大小,②借用“中間量”間接比大小,③利用對數函數圖象的位置關系來比大小。

2 函數的定義域, 值 域及單調性。

例 2 ⑴求函數y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數的定義域?(提示:求函數的定義域,就是要使函數有意義。若函數中含有分母,分母不為零;有偶次根式,被開方式大于或等于零;若函數中有對數的形式,則真數大于零,如果函數中同時出現以上幾種情況,就要全部考慮進去,求它們共同作用的結果。)生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數x>0。

板書:

解:∵   2x-1≠0      x≠0.5

log0.8x-1≥0 ,  x≤0.8

x>0        x>0

∴x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個不等式。

分析:要解這個不等式,首先要使這個不等式有意義,即真數大于零,

再根據對數函數的單調性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:  x2+2x-3>0      x<-3 或 x>1

(3x+3)>0    ,   x>-1

x2+2x-3<(3x+3)    -2

不等式的解為:1

例 3 求下列函數的值域和單調區間。

⑴y=log0.5(x- x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數的的值域和單調區間要用及復合函數的思想方法。

下面請同學們來解⑴。

生:此函數可看作是由y= log0.5u, u= x- x2復合而成。

板書:

解:⑴∵u= x- x2>0, ∴0

u= x- x2=-(x-0.5)2+0.25, ∴0

∴y= log0.5u≥log0.50.25=2

∴y≥2

x    x(0,0.5]   x[0.5,1)

u= x- x2

y= log0.5u

y=log0.5(x- x2)

函數y=log0.5(x- x2)的單調遞減區間(0,0.5],單調遞 增區間[0.5,1)

注:研究任何函數的性質時,都應該首先保證這個函數有意義,否則函數都不存在,性質就無從談起。

師:在⑴的基礎上,我們一起來解⑵。請同學們觀察一下⑴與⑵有什么區別?

生:⑴的底數是常值,⑵的底數是字母。

師:那么⑵如何來解?

生:只要對a進行分類討論,做法與⑴類似。

板書:略。

⒊小結

這堂課主要講解如何應用對數函數的性質解決一些問題,希望能通過這堂課使同學們對等價轉化、分類討論等思想加以應用,提高解題能力。

⒋作業

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數)

⑵已知函數y=loga(x2-2x),(a>0,a≠1)

①求它的單調區間;②當0

⑶已知函數y=loga (a>0, b>0, 且 a≠1)

①求它的定義域;②討論它的奇偶性;  ③討論它的單調性。

⑷已知函數y=loga(ax-1) (a>0,a≠1),

①求它的定義域;②當x為何值時,函數值大于1;③討論它的單調性。

5.課堂教學設計說明

這節課是安排為習題課,主要利用對數函數的性質解決一些問題,整個一堂課分兩個部分:一 .比較數的大小,想通過這一部分的練習,培養同學們構造函數的思想和分類討論、數形結合的思想。二.函數的定義域, 值 域及單調性,想通過這一部分的練習,能使同學們重視求函數的定義域。因為學生在求函數的值域和單調區間時,往往不考慮函數的定義域,并且這種錯誤很頑固,不易糾正。因此,力求學生做到想法正確,步驟清晰。為了調動學生的積極性,突出學生是課堂的主體,便把例題分了層次,由易到難,力求做到每題都能由學生獨立完成。但是,每一道題的解題過程,老師都應該給以板書,這樣既讓學生有了獲取新知識的快樂,又不必為了解題格式的不熟悉而煩惱。每一題講完后,由教師簡明扼要地小結,以使好學生掌握地更完善,較差的學生也能夠跟上。

高中數學新穎教案大全篇2

如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的`公比,公比通常用字母q表示。

(1)等比數列的通項公式是:An=A1×q^(n-1)

若通項公式變形為an=a1/q-q^n(n∈N-),當q>0時,則可把an看作自變量n的函數,點(n,an)是曲線y=a1/q-q^x上的一群孤立的點。

(2)任意兩項am,an的關系為an=am·q^(n-m)

(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。

(5)等比求和:Sn=a1+a2+a3+.......+an

①當q≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②當q=1時,Sn=n×a1(q=1)

記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一個各項均為正數的等比數列各項取同底數數后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。

高中數學新穎教案大全篇3

教學目標

1使學生理解本章的知識結構,并通過本章的知識結構掌握本章的全部知識;

2對線段、射線、直線、角的概念及它們之間的關系有進一步的認識;

3掌握本章的全部定理和公理;

4理解本章的數學思想方法;

5了解本章的題目類型。

教學重點和難點

重點是理解本章的知識結構,掌握本章的全部定和公理;難點是理解本章的數學思想方法。

教學設計過程

一、本章的知識結構

二、本章中的概念

1直線、射線、線段的概念。

2線段的中點定義。

3角的兩個定義。

4直角、平角、周角、銳角、鈍角的概念。

5互余與互補的角。

三、本章中的公理和定理

1直線的公理;線段的公理。

2補角和余角的性質定理。

四、本章中的主要習題類型

1對直線、射線、線段的概念的理解。

例1下列說法中正確的是()。

A延長射線OPB延長直線CD

C延長線段CDD反向延長直線CD

解:C因為射線和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯誤的。而線段有兩個端點,可以向兩方延長。

例2如圖1-57中的線段共有多少條?

解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。

2線段的和、差、倍、分。

例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD=BC,那么線段AD是線段AC的()。

A.B.C.D.

解:B如圖1-58,因為AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

例4如圖1-59,B為線段AC上的一點,AB=4cm,BC=3cm,M,N分別為AB,BC的中點,求MN的長。

解:因為AB=4,M是AB的中點,所以MB=2,又因為N是BC的中點,所以BN=1.5。則MN=2+1.5=3.5

3角的概念性質及角平分線。

例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的.度數。

解:因為OD是∠AOB的平分線,所以∠BOD=∠AOB;又因為OE是∠BOC的平分線,所以∠BOE=∠BOC;又∠AOB+∠BOC=180°,

所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

則∠EOD=90°。

例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數的比是多少?

解:因為∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。

又∠COD=90°,所以∠COB=30°。

則∠AOC=60°,(同角的余角相等)

∠AOC與∠COB的度數的比是2∶1。

4互余與互補角的性質。

例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數。

解:因為COD為直線,∠BOE=90°,∠BOD=45°,

所以∠COE=180°-90°-45°=45°

又AOB為直線,∠BOE=90°,∠COE=45°

故∠COA=180°-90°-45°=45°,

而AOB為直線,∠BOD=45°,

因此∠AOD=180°-45°=135°。

例8一個角是另一個角的3倍,且小有的余角與大角的余角之差為20°,求這兩個角的度數。

解:設第一個角為x°,則另一個角為3x°,

依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

答:一個角為10°,另一個角為30°。

5度分秒的換算及和、差、倍、分的計算。

例9(1)將4589°化成度、分、秒的形式。

(2)將80°34′45″化成度。

(3)計算:(36°55′40″-23°56′45″)。

解:(1)45°53′24″。

(2)約為8058°。

(3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進位,做除法后得9°44′11″)

五、本章中所學到的數學思想

1運動變化的觀點:幾何圖形不是孤立和靜止的,也應看作不斷發展和變化的,如線段向一個方向延長,就發展成為射線;射線向另一方向延長就發展成直線。又如射線饒它的端點旋轉就形成角;角的終邊不斷旋轉就變化成直角、平角和周角。從圖形的運動中可以看到變化,從變化中看到聯系和區別及特性。

2數形結合的思想:在幾何的知識中經常遇到計算問題,對形的研究離不開數。正如數學家華羅庚所說:“數缺形時少直觀,形缺數時難如微”。本章的知識中,將線段的長度用數量表示,利用方程的方法解決余角與補角的問題。因此我們對幾何的學習不能與代數的學習截然分開,在形的問題難以解決時,發揮數的功能,在數的問題遇到困難時,畫出與它相關的圖形,都會給問題的解決帶來新的思路。從幾何的起始課,就注意數形結合,就會養成良好的思維習慣。

3聯系實際,從實際事物中抽象出數學模型。數學的產生來源于生產和生活實踐,因此學習數學不能脫離實際生活,尤其是幾乎何的學習更離不開實際生活。一方面要讓學生知道本章的主要內容是線和角,都在生活中有大量的原型存在,另一方面又要引導學生將所學的知識去解決某些簡單的實際問題,這才是理論聯系實際的觀點。

六、本章的疑點和誤點分析

概念在應用中的混淆。

例10判斷正誤:

(1)在∠AOB的邊OA的延長線上取一點D。

(2)大于90°的角是鈍角。

(3)任何一個角都可以有余角。

(4)∠A是銳角,則∠A的所有余角都相等。

(5)兩個銳角的和一定小于平角。

(6)直線MN是平角。

(7)互補的兩個角的和一定等于平角。

(8)如果一個角的補角是銳角,那么這個角就沒有余角。

(9)鈍角一定大于它的補角。

(10)經過三點一定可以畫一條直線。

解:(1)錯。因為角的兩邊是射線,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。

(2)錯。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。

(3)錯。余角的定義是:如果兩個角的和是一個直角,這兩個角互為余角。因此大于直角的角沒有余角。

(4)對.∠A的所有余角都是90°-∠A。

(5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.

(6)錯。平角是一個角就要有頂點,而直線上沒有表示平角頂點的點。如果在直線上標出表示角的頂點的點,就可以了。

(7)對。符合互補的角的定義。

(8)對。如果一個角的補角是銳角,那么這個角一定是鈍角,而鈍角是沒有余角的。

(9)對。因為鈍角的補角是銳角,鈍角一定大于銳角。

(10)錯。這個題應該分情況討論:如果這三點在同一條直線上,這個結論是正確的。如果這三個點不在同一條直線上,那么過這三個點就不能畫一條直線。

板書設計

回顧與反思

(一)知識結構(四)主要習題類型(五)本章的數學思想

略例11

·2

(二)本章概念·3

略·(六)疑誤點分析

(三)本章的公理和定理·

例9

高中數學新穎教案大全篇4

教學內容:

簡單的排列組合

教學目標:

1.使學生通過觀察、猜測、實驗、驗證等活動,找出簡單事件的排列數或組合數。

2.培養學生有序地、全面地思考問題的意識和習慣。

教學過程:

1.借助操作活動或學生易于理解的事例來幫助學生找出組合數。師生共同分析練習二十五第1題。讓學生小組討論,充分發表自己的意見。

2.利用直觀圖示幫助學生有序地、不重不漏地找出早餐搭配的組合數。

3、出示練習二十五第3題。

學生看題后,四人小組討論出有多少種求組合數的方法。

4、學生匯報。

(1)圖示表示法(兩種)。引導學生用畫簡圖的方式來表示抽象的數學知識。

(2)其他的方法,例如聰聰或明明分別可以和每一個小朋友合影(分步時,可以把確定聰聰作為第一步,也可以把確定明明作為第一步),教學時充分發揮學生的創造性。至于學生用哪種方法求出來,都沒關系。但要引導學生思考如何才能不重不漏,發展學生有序地思考問題的意識和能力。

(3)學生自己用圖示表示時,可以很開放,比如,可以用正方形表示聰聰,圓形表示明明,并分別在正方形和圓形里標上序號。實際這是發展學生用數學化的符號表示具體事件的能力的一個體現。

(4)如果學生用簡圖的方式來表示有困難,也可以讓學生回憶一下二年級上冊的例子或借助學具卡片擺一擺。

2.“做一做”

(1)練習二十五第7題。

通過活動的方式讓學生不重不漏地把所有取錢的情況寫出來。

(2)練習二十五第9題。

用兩種圖示法表示兩兩組合的方式(比較簡單的兩種方式)。在教學中也要允許有的學生把所有的情況逐一羅列出來,只要他通過自己的方法探索出所有的組合數,都是應該鼓勵的。

高中數學新穎教案大全篇5

[三維目標]

一、知識與技能:

1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系

2、了解集合的運算包含了集合表示法之間的轉化及數學解題的一般思想

3、了解集合元素個數問題的討論說明

二、過程與方法

通過提問匯總練習提煉的形式來發掘學生學習方法

三、情感態度與價值觀

培養學生系統化及創造性的思維

[教學重點、難點]:會正確應用其概念和性質做題[教具]:多媒體、實物投影儀

[教學方法]:講練結合法

[授課類型]:復習課

[課時安排]:1課時

[教學過程]:集合部分匯總

本單元主要介紹了以下三個問題:

1、集合的含義與特征

2、集合的表示與轉化

3、集合的基本運算

高中數學新穎教案大全篇6

排列

教學目標

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數的意義,能根據具體的問題,寫出符合要求的排列;

(3)會分析與數字有關的排列問題,培養學生的抽象能力和邏輯思維能力;

教學重點難點

重點是排列的定義、排列數并運用這個公式去解決有關排列數的應用問題。

難點是解有關排列的應用題。

教學過程設計

一、 復習引入

上節課我們學習了兩個基本原理,請大家完成以下兩題的練習(用投影儀出示):

1.書架上層放著50本不同的社會科學書,下層放著40本不同的自然科學的書.

(1)從中任取1本,有多少種取法?

(2)從中任取社會科學書與自然科學書各1本,有多少種不同的取法?

2.某農場為了考察三個外地優良品種A,B,C,計劃在甲、乙、丙、丁、戊共五種類型的土地上分別進行引種試驗,問共需安排多少個試驗小區?

找一同學談解答并說明怎樣思考的的過程

第1(1)小題從書架上任取1本書,有兩類辦法,第一類辦法是從上層取社會科學書,可以從50本中任取1本,有50種方法;第二類辦法是從下層取自然科學書,可以從40本中任取1本,有40種方法.根據加法原理,得到不同的取法種數是50+40=90.第(2)小題從書架上取社會科學、自然科學書各1本(共取出2本),可以分兩個步驟完成:第一步取一本社會科學書,第二步取一本自然科學書,根據乘法原理,得到不同的取法種數是: 50×40=2000.

第2題說,共有A,B,C三個優良品種,而每個品種在甲類型土地上實驗有三個小區,在乙類型的土地上有三個小區……所以共需3×5=15個實驗小區.

二、 講授新課

學習了兩個基本原理之后,現在我們繼續學習排列問題,這是我們本節討論的重點.先從實例入手:

1.北京、上海、廣州三個民航站之間的直達航線,需要準備多少種不同飛機票?

由學生設計好方案并回答.

(1)用加法原理設計方案.

首先確定起點站,如果北京是起點站,終點站是上海或廣州,需要制2種飛機票,若起點站是上海,終點站是北京或廣州,又需制2種飛機票;若起點站是廣州,終點站是北京或上海,又需要2種飛機票,共需要2+2+2=6種飛機票.

(2)用乘法原理設計方案.

首先確定起點站,在三個站中,任選一個站為起點站,有3種方法.即北京、上海、廣泛任意一個城市為起點站,當選定起點站后,再確定終點站,由于已經選了起點站,終點站只能在其余兩個站去選.那么,根據乘法原理,在三個民航站中,每次取兩個,按起點站在前、終點站在后的順序排列不同方法共有3×2=6種.

根據以上分析由學生(板演)寫出所有種飛機票

再看一個實例.

在航海中,船艦常以“旗語”相互聯系,即利用不同顏色的旗子發送出各種不同的信號.如有紅、黃、綠三面不同顏色的旗子,按一定順序同時升起表示一定的信號,問這樣總共可以表示出多少種不同的信號?

找學生談自己對這個問題的想法.

事實上,紅、黃、綠三面旗子按一定順序的一個排法表示一種信號,所以不同顏色的同時升起可以表示出來的信號種數,也就是紅、黃、綠這三面旗子的所有不同順序的排法總數.

首先,先確定位置的旗子,在紅、黃、綠這三面旗子中任取一個,有3種方法;

其次,確定中間位置的旗子,當位置確定之后,中間位置的旗子只能從余下的兩面旗中去取,有2種方法.剩下那面旗子,放在最低位置.

根據乘法原理,用紅、黃、綠這三面旗子同時升起表示出所有信號種數是:3×2×1=6(種).

根據學生的分析,由另外的同學(板演)寫出三面旗子同時升起表示信號的所有情況.(包括每個位置情況)

第三個實例,讓全體學生都參加設計,把所有情況(包括每個位置情況)寫出來.

由數字1,2,3,4可以組成多少個沒有重復數字的三位數?寫出這些所有的三位數.

根據乘法原理,從四個不同的數字中,每次取出三個排成三位數的方法共有4×3×2=24(個).

請板演的學生談談怎樣想的?

第一步,先確定百位上的數字.在1,2,3,4這四個數字中任取一個,有4種取法.

第二步,確定十位上的數字.當百位上的數字確定以后,十位上的數字只能從余下的三個數字去取,有3種方法.

第三步,確定個位上的數字.當百位、十位上的數字都確定以后,個位上的數字只能從余下的兩個數字中去取,有2種方法.

根據乘法原理,所以共有4×3×2=24種.

下面由教師提問,學生回答下列問題

(1)以上我們討論了三個實例,這三個問題有什么共同的地方?

都是從一些研究的對象之中取出某些研究的對象.

(2)取出的這些研究對象又做些什么?

實質上按著順序排成一排,交換不同的位置就是不同的情況.

(3)請大家看書,第×頁、第×行. 我們把被取的對象叫做雙元素,如上面問題中的民航站、旗子、數字都是元素.

上面第一個問題就是從3個不同的元素中,任取2個,然后按一定順序排成一列,求一共有多少種不同的排法,后來又寫出所有排法.

第二個問題,就是從3個不同元素中,取出3個,然后按一定順序排成一列,求一共有多少排法和寫出所有排法.

第三個問題呢?

從4個不同的元素中,任取3個,然后按一定的順序排成一列,求一共有多少種不同的排法,并寫出所有的排法.

給出排列定義

請看課本,第×頁,第×行.一般地說,從n個不同的元素中,任取m(m≤n)個元素(本章只研究被取出的元素各不相同的情況),按著一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.

下面由教師提問,學生回答下列問題

(1)按著這個定義,結合上面的問題,請同學們談談什么是相同的排列?什么是不同的排列?

從排列的定義知道,如果兩個排列相同,不僅這兩個排列的元素必須完全相同,而且排列的順序(即元素所在的位置)也必須相同.兩個條件中,只要有一個條件不符合,就是不同的排列.

如第一個問題中,北京—廣州,上海—廣州是兩個排列,第三個問題中,213與423也是兩個排列.

再如第一個問題中,北京—廣州,廣州—北京;第二個問題中,紅黃綠與紅綠黃;第三個問題中231和213雖然元素完全相同,但排列順序不同,也是兩個排列.

(2)還需要搞清楚一個問題,“一個排列”是不是一個數?

生:“一個排列”不應當是一個數,而應當指一件具體的事.如飛機票“北京—廣州”是一個排列,“紅黃綠”是一種信號,也是一個排列.如果問飛機票有多少種?能表示出多少種信號.只問種數,不用把所有情況羅列出來,才是一個數.前面提到的第三個問題,實質上也是這樣的.

三、 課堂練習

大家思考,下面的排列問題怎樣解?

有四張卡片,每張分別寫著數碼1,2,3,4.有四個空箱,分別寫著號碼1,2,3,4.把卡片放到空箱內,每箱必須并且只能放一張,而且卡片數碼與箱子號碼必須不一致,問有多少種放法?(用投影儀示出)

分析:這是從四張卡片中取出4張,分別放在四個位置上,只要交換卡片位置,就是不同的放法,是個附有條件的排列問題.

解法是:第一步把數碼卡片四張中2,3,4三張任選一個放在第1空箱.

第二步從余下的三張卡片中任選符合條件的一張放在第2空箱.

第三步從余下的兩張卡片中任選符合條件的一張放在第3空箱.

第四步把最后符合條件的一張放在第四空箱.具體排法,用下面圖表表示:

所以,共有9種放法.

四、作業

課本:P232練習1,2,3,4,5,6,7.

高中數學新穎教案大全篇7

1.掌握對數函數的概念,圖象和性質,且在掌握性質的基礎上能進行初步的應用。

(1)能在指數函數及反函數的概念的基礎上理解對數函數的定義,了解對底數的要求,及對定義域的要求,能利用互為反函數的兩個函數圖象間的關系正確描繪對數函數的圖象。

(2)能把握指數函數與對數函數的實質去研究認識對數函數的性質,初步學會用對數函數的性質解決簡單的問題。

2.通過對數函數概念的學習,樹立相互聯系相互轉化的觀點,通過對數函數圖象和性質的學習,滲透數形結合,分類討論等思想,注重培養學生的觀察,分析,歸納等邏輯思維能力。

3.通過指數函數與對數函數在圖象與性質上的對比,對學生進行對稱美,簡潔美等審美教育,調動學生學習數學的積極性。

高一數學對數函數教案:教材分析

(1)對數函數又是函數中一類重要的基本初等函數,它是在學生已經學過對數與常用對數,反函數以及指數函數的基礎上引入的。故是對上述知識的應用,也是對函數這一重要數學思想的進一步認識與理解。對數函數的概念,圖象與性質的學習使學生的知識體系更加完整,系統,同時又是對數和函數知識的拓展與延伸。它是解決有關自然科學領域中實際問題的重要工具,是學生今后學習對數方程,對數不等式的基礎。

(2)本節的教學重點是理解對數函數的定義,掌握對數函數的圖象性質。難點是利用指數函數的圖象和性質得到對數函數的圖象和性質。由于對數函數的概念是一個抽象的形式,學生不易理解,而且又是建立在指數與對數關系和反函數概念的基礎上,故應成為教學的重點。

(3)本節課的主線是對數函數是指數函數的反函數,所有的問題都應圍繞著這條主線展開。而通過互為反函數的兩個函數的關系由已知函數研究未知函數的性質,這種方法是第一次使用,學生不適應,把握不住關鍵,所以應是本節課的難點。

高一數學對數函數教案:教法建議

(1)對數函數在引入時,就應從學生熟悉的指數問題出發,通過對指數函數的認識逐步轉化為對對數函數的認識,而且畫對數函數圖象時,既要考慮到對底數的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內,便于觀察圖象的特征,找出共性,歸納性質。

(2)在本節課中結合對數函數教學的特點,一定要讓學生動手做,動腦想,大膽猜,要以學生的研究為主,教師只是不斷地反函數這條主線引導學生思考的方向。這樣既增強了學生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學生學有所思,思有所得,練有所獲,,從而提高學習興趣。

高中數學新穎教案大全篇8

教學過程:

前言:

今天是新學期的第一堂語文課,王老師為大家帶來了一首小詩。(音樂中指名讀,齊讀。)

三年級的天空

今天,是20__年的一天

一張張可愛的笑臉

從20__年的家中匆匆趕來

來到美麗的暨陽學校,

繼續

踏入三年級明亮的天空

書寫新的傳奇。

是呀,三年級的天空一定會無比明媚。那么,今天先讓我們一起來回憶剛剛過去的美好的寒假。

一、口頭交流寒假趣事

1.新年過得如何?(用詞語來形容)

2.你覺得最有趣的是什么事?(根據你說的詞語來說說)

二、書面了解別人的寒假趣事

1.全班欣賞同學寫的優秀作文。(說說自己的感受。)

2.再欣賞網上找的。(認真傾聽,分享快樂。)

三、王老師介紹自己的寒假趣事

1.你猜猜王老師怎么度過的?

2.公布答案。(在帶寶寶的同時看書)

四、送禮物——聽故事

王老師知道我們班同學都非常喜歡聽故事,所以我在寒假的時候,特別挑選了一個故事,送給大家,作為新年禮物。

毛蟲和我

——送給新學期的孩子們

毛蟲知道,在它的身體里面,藏著一只蝴蝶。是的,它一直都知道,一刻也不曾忘記。當它慢吞吞地爬過菜葉的時候,它在想著這件事;當它貪婪地把葉子咬出一個個小洞時,它在想著這件事;當它舒展身體曬太陽的時候,它在想著這件事;當它親吻一朵美麗的小花兒時,它在想這件事……

我要挑最鮮嫩的葉子吃,它對自己說,這樣當我變成蝴蝶的時候,才會有艷麗的色彩。我要多多地吃,它對自己說,這樣當我變成蝴蝶的時候,翅膀才會有力氣。這金色的光線多么溫暖,它對自己說,最重要的是,它將變成金粉裝點我的翅膀。這朵小花多么可愛,它對自己說,將來我的翅膀上面,也會開出美麗的花兒來。

“哎呀,毛毛蟲!好丑好惡心喲!”一個小女孩指著它叫道。這樣的話毛毛蟲聽得多了,一點兒也不會破壞它的好心情。哦,我將長出一雙美麗的翅膀,它對自己說。這樣想著,毛毛蟲昂起了它小小的腦袋,慢慢爬走了。

我知道,在我的身體里面,藏著一個更好的自己。是的,我一直都知道,一刻也不曾忘記。

所以我從來都不挑食,我知道所有健康的食物都將變成我的一部分,成就一個更好的我自己。所以我努力地讀書,我知道所有那些有趣的書、嚴肅的書、美麗的書、智慧的書,最終都將變成我的一部分,成就一個更好的我自己。所以我喜歡認識新朋友,我知道所有那些善良的朋友、聰明的朋友、慷慨的朋友、睿智的朋友,他們的友情以及他們的美好天性,最終都將變成我的一部分,成就一個更好的我自己。所以我積極上好每一堂課,認真完成每一次作業,我知道千里之行始于足下,我走過的每一步路,我做過的每一件事,最終都將變成我的一部分,成就一個更好的我自己。所以我喜歡親近大自然,我知道所有那些美麗的山水、陽光、花香和清新空氣,最終都將變成我的一部分,成就一個更好的我自己。

每天早晨,我都會在鏡子面前照一照自己;每天早晨,我都會在鏡子里看到一個普普通通的小女孩(小男孩)。

可我知道,在我的身體里面,藏著一個更好的我自己。就像毛毛蟲會變成蝴蝶,小種子會長成大樹,我也會變成一個更好的我自己。

故事聽完了,王老師要檢查下你們是不是認真在聽,有沒有收到我的禮物?

1.毛毛蟲的理想是什么?它為了成就更好的自己,怎么努力的?我的理想是什么?為了做最好的自己,我又是怎么做的?(大方向)

2.聽了故事,說說自己新學期的目標?為了做最好的自己,在學習中你又準備怎么做?(小方向)(多閱讀、多思考、多寫作)

我相信,只要我們像毛毛蟲那樣努力,我們也一定可以變成美麗的蝴蝶!

四、總結

讓我們每個人多閱讀、多思考、多寫作,向著美好的自己努力。最后讓我們在詩歌中結束我們的開學第一課。(再次誦讀詩歌)

高中數學新穎教案大全篇9

教學內容背景材料:

義務教育課程標準實驗教科書(人教版)二年級上冊第八單元的排列與組合

教學目標:

1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數和組合數。

2、經歷探索簡單事物排列與組合規律的過程。

3、培養學生有順序地全面地思考問題的意識。

4、感受數學與生活的緊密聯系,激發學生學好數學的信心。

教學重點:經歷探索簡單事物排列與組合規律的過程

教學難點:初步理解簡單事物排列與組合的不同

教具準備:教學課件

學具準備:每生準備3張數字卡片,學具袋

教學過程:

一、創設問題情境:

師:森林學校的數學課上,猴博士出了這樣一道題(課件出示)用數字1、2能寫出幾個兩位數?問題剛說完小動物們都紛紛舉手說能寫成兩個數:12、21。接著猴博士又加上了一個數字3,問:“用數字1、2、3能寫出幾個兩位數呢?”小豬站起來說能寫成3個,小熊說5個,小狗說7個,到底能寫出幾個呢?用學生感興趣的童話故事引入,易于激發起學生探究的興趣,同時也向學生滲透助人為樂的品德教育。

1.自主合作探索新知

試一試

師:請同學們也試著寫一寫,如果你覺得直接寫有困難的話可以借助手中的數字卡片擺一擺。

學生活動教師巡視。(學生所寫的個數可能不一樣,有多有少,找幾份重復的或個數少的展示。)引導學生根據自己的實際情況選擇不同的方法探究新知,體現了不同的孩子用不同的方式學習數學這一新的教學理念,易于吸引不同層次的學生積極主動的參與到活動中來。

2.發現問題

學生匯報所寫個數,教師根據巡視的情況重點展示幾份,引導學生發現問題:有的重復寫了,有的漏寫了。

引導學生發現寫數過程中出現的問題,并就此展開討論、交流,遵循了學生的認知特點。學生在交流的過程中體驗到解決問題方法的多樣性,并根據自己的實際選擇不同的方法,尊重了學生的主體地位。在此過程中學生收獲的不僅是知識本身,更多的是能力、情感。

3.小組討論

師:每個同學寫出的個數不同,怎樣才能很快寫出所有的用數字1、2、3組成的兩位數,并做到不重復不遺漏呢?

學生以小組為單位交流討論。

4.小組匯報

匯報時可能會出現下面幾種情況:

1、無序的。

2、先寫出1在十位上的有12、13;再寫出2在十位上的有21、23;再寫出3在十位上的有31、32。

3、用數字1、2能寫出12、21;用數字2、3能寫出23、32;用數字1、3能寫出13、31。

4、引導學生及時評價每一種方法的優缺點,使其把適合自己的方法掌握起來。

5.小結

教師簡單小結學生所想方法引出練習內容。

6、拓展應用

數字2、3、4、5、出個兩位數?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△

請你試著擺出其他幾種排法。學習的目的是為了應用,讓學生自主的選擇方法進行練習,有利于培養學生的自主學習的能力。

二、組合

故事引入

師:下課了小狗、小熊、小豬做“找朋友”的游戲,好朋友見面之后要握握手,每兩只小動物握一次手,小狗、小熊、小豬一共握幾次手?怎樣握?用同一條故事主線貫穿整節課的始終,以問題串的形式展開全課,能讓學生始終保持濃厚的學習興趣,充分體驗到數學與生活的聯系。

探索新知

學生在充分獨立思考的基礎上展開小組交流,并3人一組親身實踐一下。

匯報思考的過程。

三、比較

師:剛才我們幫森林學校的小動物們解決了用數字1、2、3能寫幾個兩位數;3只小動物每兩個握一次手共握幾次手的問題,森林學校的小動物們直夸同學們聰明呢!通過解決這兩個問題你發現了什么?

生可能說用3個數字能寫出6個兩位數,3只小動物每兩人握一次手共握3次。

引導學生明確排列與順序有關而組合與順序無關。兩只小動物握一次手個?通過比較明確兩種問題的同與不同,便于建立起清晰的知識結構,進一步深化學生的認識。

四、拓展應用

1.小狗要參加學校的時裝表演,媽媽為它準備了4件衣服(課件出示2件上衣、2件褲子的圖片),請你幫小狗設計一下共有多少種穿法。如果需要的話可以用學具擺一擺。

交流想法。在兒童的生活經驗里積累了一些搭配衣服,購物花錢的知識經驗,所以學生樂于參與。

2.完成課本99頁的第2題

五、課堂總結

高中數學新穎教案大全篇10

今天我說課的課題是《平面向量的概念》,這是江蘇省職業學校文化課教材《基礎模塊·下冊》第七章平面向量中的第一節的內容,我將嘗試運用新課改的理念、中職學生的認知特點指導本節課的教學,新課標指出,學生是教學的主體,教師的教要本著從學生的認知規律出發,以學生活動為主線,在原有知識的基礎上,建構新的知識體系。下面我將以此為基礎從教材分析、學情分析、教法學法、教學過程、教學評價等五個環節,向各位專家談談我對本節課教材的理解和教學設計。

一、教材分析:

1、教材的地位和作用

向量是高中階段學習的一個新的矢量,向量概念是《平面向量》的最基本內容,它的學習直接影響到我們對向量的進一步研究和學習,如向量間關系、向量的加法、減法以及數乘等運算,還有向量的坐標運算等,因此為后面的學習奠定了基礎。

結合本節課的特點及學生的實際情況我制定了如下的教學目標及教學重難點:

2、教學目標

(1)知識與技能目標

1)識記平面向量的定義,會用有向線段和字母表示向量,能辨別數量與向量;

2)識記向量模的定義,會用字母和線段表示向量的模。

3)知道零向量、單位向量的概念。

(2)過程與方法目標

學生通過對向量的學習,能體會出向量來自于客觀現實,提高觀察、分析、抽象和概括等方面的能力,感悟數形結合的思想。

(3)情感態度與價值觀目標

通過構建和諧的課堂教學氛圍,激發學生的學習興趣,使學生勇于提出問題,同時培養學生團隊合作的精神及積極向上的學習態度。

3、教學重難點

教學重點:向量的定義,向量的幾何表示和符號表示,以及零向量和單位向量

教學難點:向量的幾何表示的理解,對零向量和單位向量的理解

二、學情分析

(1)能力分析:對于我校的學生,基礎知識較薄弱,雖然他們的智力發展已到了形成運演階段,但并不具備較強的抽象思維能力、概括能力及數形結合的思想。

(2)認知分析:之前,學生有了物理中的矢量概念,這為學習向量作了最好的鋪墊。

(3)情感分析:部分學生具有積極的學習態度,強烈的探究欲望,能主動參與研究。

三、教法學法

教法:啟發教學法,引探教學法,問題驅動法,并借助多媒體來輔助教學

學法:在學法上,采用的是探究,發現,歸納,練習。從問題出發,引導學生分析問題,讓學生經歷觀察分析、概括、歸納、類比等發現和探索過程。

四、教學過程

課前:

為了打造高效課堂,以生為本我選擇生本式的教學方式,以穿針引線的方式設計了前置性作業。其中包括一些向量的基本概念,并提出:

1、你學過的其他學科中有沒有可以稱為向量的?

2、向量的特點是什么?有幾種描述向量的表示方法?

3、零向量的特點是什么?

【設計意圖】目的是通過課前的預習明確自己需要在本節課中解決的問題,帶著問題聽課,我會在上課前就學生的完成情況明確主要的教學側重點,真正打造高效課堂。

課上教學過程:

1、創設情境

數學的學習應該是與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發,讓他們在生活中發現數學,探究數學,認識并掌握數學,由生活的實例引入,在對比于物理學中的速度、位移等學生已有的知識給出本章研究的問題平面向量

【設計意圖】形成對概念的初步認識,為進一步抽象概括做準備。

2、形成概念

結合物理學中對矢量的定義,給出向量的描述性概念。對于一個新學的量定義概念后,通常要用符號表示它。怎樣把我們所舉例子中的向量表示出來呢?

采取讓學生先嘗試向量的表示方法,自覺接受用帶有箭頭的線段(有向線段)來表示向量。明確為什么可以用有向線段表示向量,引導學生總結出向量的表示方法,強調印刷體與手寫體的區別。結合板書的有向線段給出向量的模。

單位向量、零向量的概念

【即時訓練】

為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知

3、知識應用

本階段的教學,我采用的是教材上的兩個例題,旨在鞏固學生對平面向量的觀念,提高學生的動手實踐能力,掌握求模的基本方法,提升識圖能力。

4、學以致用

為了調動學生的積極性,培養學生團隊合作的精神,本環節我采用小組競爭的方式開展教學,小組討論并選派代表回答,各組之間取長補短,將課堂教學推向高潮,再次加強學生對向量概念的理解。

5、課堂小結

為了了解學生本節課的學習效果,并且將所學做個很好的總結。設置問題:通過本節課的學習你有哪些收獲?(可以從各種角度入手)

【設計意圖】通過總結使學生明確本節的學習內容,強化重點,為今后的學習打下堅定的基礎

6、布置作業

出選做題的目的是注意分層教學和因材施教,為學有余力的學生提供思考的空間。

以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動眼觀察,動腦思考,層層遞進,親身經歷了知識的形成和發展過程,以問題為驅動,使學生對知識的理解逐步深入。而最后的實際應用又將激發學生的學習興趣,帶領學生進入對本節課更深一步的思考和研究之中,從而達到知識在課堂以外的延伸。

以上就是我對本節課的設計和說明,請各位領導,老師批評指正

高中數學新穎教案大全篇11

今天我說課的課題是《銳角三角函數》(第一課時),所選用的教材為人教版義務教育課程標準實驗教科書。

根據新課標的理念,對于本節課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學目標分析,教學方法和學法分析,教學過程分析四個方面加以說明。

一、教材的地位和作用

本節教材是人教版初中數學新教材九年級下第28章第一節內容,是初中數學的重要內容之一。一方面,這是在學習了直角三角形兩銳角關系、勾股定理等知識的基礎上,對直角三角形邊角關系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎,也是高中進一步研究三角函數、反三角函數、三角方程的工具性內容。鑒于這種認識,我認為,本節課不僅有著廣泛的實際應用,而且起著承前啟后的作用。

2、學情分析

從學生的年齡特征和認知特征來看:

九年級學生的思維活躍,接受能力較強,具備了一定的數學探究活動經歷和應用數學的意識。

從學生已具備的知識和技能來看:

九年級學生已經掌握直角三角形中各邊和各角的關系,能靈活運用相似圖形的性質及判定方法解決問題,有較強的推理證明能力,這為順利完成本節課的教學任務打下了基礎

從心理特征來看:初三學生邏輯思維從經驗型逐步向理論型發展,觀察能力,記憶能力和想象能力也隨著迅速發展。

從學生有待于提高的知識和技能來看:

學生要得出直角三角形中邊與角之間的關系,需要觀察、思考、交流,進一步體會數學知識之間的聯系,感受數形結合的思想,體會銳角三角函數的意義,提高應用數學和合作交流的能力。學生可能會產生一定的困難,所以教學中應予以簡單明了,深入淺出的剖析。

3、教學重、難點

根據以上對教材的地位和作用,以及學情分析,結合新課標對本節課的要求,我將本節課的重點確定為:理解正弦函數意義,并會求銳角的正弦值。

難點確定為:根據銳角的正弦值及一邊,求直角三角形的其他邊長。

二、教學目標分析

新課標指出,教學目標應從知識技能、數學思考、問題解決、情感態度等四個方面闡述,而這四維目標又應是緊密聯系的一個完整的整體,學生學知識技能的過程同時成為學會學習,形成正確價值觀的過程,這告訴我們,在教學中應以知識技能為主線,滲透情感態度,并把前面兩者通過數學思考充分體現在問題解決中。借此結合以上教材分析,我將四個目標進行整合,確定本節課的教學目標為:

1.理解銳角正弦的意義,并會求銳角的正弦值;

2.初步了解銳角正弦取值范圍及增減性;

3.掌握根據銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長的方法;

4.經歷銳角正弦的意義探索的過程,培養學生觀察分析、類比歸納的探究問題的能力;

5.通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數學的合理性和嚴謹性,使學生養成積極思考,獨立思考的好習慣,并且同時培養學生的團隊合作精神。

三、教學方法和學法分析

現代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調學生的主動性、積極性為出發點。根據這一教學理念,結合本節課的內容特點和學生的學情情況,本節課我采用“三動五自主”的教學模式,以問題的提出、問題的解決為主線,始終在學生知識的“最近發展區”設置問題,倡導學生主動參與教學實踐活動,以獨立思考和合作交流的形式,在教師的指道下發現、分析和解決問題,在引導分析時,給學生流出足夠的思考時間和空間,讓學生去聯想、探索,從真正意義上完成對知識的自我建構。

另外,在教學過程中,我采用多媒體輔助教學,以直觀呈現教學素材,從而更好地激發學生的學習興趣,增大教學容量,提高教學效率。

本節課的教法采用的是情境引導和探究發現教學法,在教學過程中,通過適宜的問題情境引發新的認知沖突;建立知識間的聯系。教師通過引導、指導、反饋、評價,不斷激發學生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構過程,并運用數學知識解決實際問題,享受數學學習帶來的樂趣。

本節課的學習方法采用自主探究法與合作交流法相結合。本節課數學活動貫穿始終,既有學生自主探究的,也有小組合作交流的,旨在讓學生從自主探究中發展,從合作交流中提高。

四、教學過程

新課標指出,數學教學過程是教師引導學生進行學習活動的過程,是教師和學生間互動的過程,是師生共同發展的過程。為有序、有效地進行教學,本節課我主要安排以下教學環節:

(一)自主探究

1、復習舊知,溫故知新

1、已知:在Rt△ABC中,∠C=900,∠A=350,則∠B=0

2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=

設計意圖:建構注意主張教學應從學生已有的知識體系出發,相似的三角形性質是本節課深入研究銳角正弦的認知基礎,這樣設計有利于引導學生順利地進入學習情境。

2、創設情境,提出問題

利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學習銳角三角函數(板書課題)

設計意圖:以問題串的形式創設情境,引起學生的認知沖突,使學生對舊知識產生設疑,從而激發學生的學習興趣和求知欲望‘

通過情境創設,學生已激發了強烈的求知欲望,產生了強勁的學習動力,此時我把學生帶入下一環節———

(二)自主合作

1、發現問題,探求新知(要求學生獨立思考后小組內合作探究)

1、(播放綠化荒山的視頻)課本P74問題與思考,求的值

2、課本P75思考:求的值

設計意圖:現代數學教學論指出,數學知識的教學必須在學生自主探索,經驗歸納的基礎上獲得,教學中必須展現思維的過程性,在這里,通過觀察分析、獨立思考、小組交流等活動,引導學生歸納。

2、分析思考,加深理解

1、課本P75探索,

問:與有什么關系?你能解釋嗎?

2、正弦函數定義:在Rt△ABC中,∠C=900,,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=

對定義的幾點說明:

1、sinA是一個完整的符號,表示∠A的正切習慣上省略“∠”的符號.

2、本章我們只研究銳角∠A的正弦.

3、sinA的范圍:0

設計意圖:數學教學論指出,數學概念要明確其內涵和外延(條件、結論、應用范圍等),通過對銳角正弦定義闡述,使學生的認知結構得到優化,知識體系得到完善,使學生的數學理解又一次突破思維的難點。

通過前面的學習,學生已基本把握了本節課所要學習的內容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學生引入到下一環節。

(三)自主展示(強化訓練,鞏固雙基)

1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據圖中數據

求sinA和sinB

2、判斷對錯(學生口答)

(1)若銳角∠A=∠B,則sinA=sinB()

(2)sin600=sin300+sin300()

3、如圖,將Rt△ABC各邊擴大100倍,則tanA的值()

A.擴大100倍B.縮小100倍C.不變D.不確定

4、如圖,平面直角坐標系中點P(3,-4),OP與x軸的夾角為∠1,求sin∠1的值。

設計意圖:幾道例題及練習題由淺入深、由易到難、各有側重,其中例1……例2……,體現新課標提出的讓不同的學生在數學上得到不同發展的教學理念。這一環節總的設計意圖是反饋教學,內化知識。

(四)自主拓展(提高升華)

1、課本習題28.1第1、2、題;

2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長為60,求:斜邊AB的長?

以作業的鞏固性和發展性為出發點,我設計了必做題和選做題,必做題是對本節課內容的一個反饋,選做題是對本節課知識的一個延伸。總的設計意圖是反饋教學,鞏固提高。

(五)自主評價(小結歸納,拓展深化)

我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優化認知結構,完善知識體系的一種有效手段,為充分發揮學生的主題作用,從學習的知識、方法、體驗是那個方面進行歸納,我設計了這么三個問題:

①通過本節課的學習,你學會了哪些知識;

②通過本節課的學習,你最大的體驗是什么;

③通過本節課的學習,你掌握了哪些學習數學的方法?

以上幾個環節環環相扣,層層深入,并充分體現教師與學生的交流互動,在教師的整體調控下,學生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態,我設計以下問題加以追問:

1、sinA能為負嗎?

2、比較sin450和sin300的大小?

設計要求:(1)先學生獨立思考后小組內探究

(2)各組交流展示探究結果,并且組內或各組之間自主評價.

設計意圖:

(1)有一定難度需要學生進行合作探究,有利于培養學生善于反思的好習慣.

(2)學生通過互評自評,可以使學生全面了解自己的學習過程,感受自己的成長和進步,同時促進學生對學習及時進行反思,為教師全面了解學生的學習狀況,改進教學,實施因材施教提供重要依據。我的說課到此結束,敬請各位老師批評、指正,謝謝!

教學反思

1.本教學設計以直角三角形為主線,力求體現生活化課堂的理念,讓學生在經歷“問題情境——形成概念——應用拓展——反思提高”的基本過程中,體驗知識間的內在聯系,讓學生感受探究的樂趣,使學生在學中思,在思中學。

2.在教學過程中,重視過程,深化理解,通過學生的主動探究來體現他們的主體地位,教師是通過對學生參與學習的啟發、調整、激勵來體現自己的引導作用,對學生的主體意識和合作交流的能力起著積極作用。

3.正弦是生活中應用較廣泛的三角函數。因而在本節課的設計中力求貼近生活。又從意大利比薩斜塔提煉出了數學問題,讓學生體會學數學、用數學的樂趣。

高中數學新穎教案大全篇12

在預習教材中的例4的基礎上,證明:若分別是橢圓的左、右焦點,則橢圓上任一點p()到焦點的距離(焦半徑),同時思考當橢圓的焦點在y軸上時,結論如何?(此題意圖是引導學生去進一步探究,為進一步研究橢圓的性質做準備)

本堂課是在學生學習了橢圓的定義、標準方程的基礎上,根據方程研究曲線的性質。按照學生的認知特點,改變了教材中原有安排順序,引導學生從觀察課前預習所作的圖形入手,從分析對稱開始,循序漸進進行探究。由教師點撥、指導,學生研究、合作、體驗來完成。

本節課借助多媒體手段創設問題情境,指導學生研究式學習和體驗式學習(興趣是前提)。例如導入,通過“神州五號”這樣一個人們關注的話題引入,有利于激發學生的興趣。再如,這節課是學生第一次利用曲線方程研究曲線性質,為了解決這一難點,在課前設計中改變了教材原有研究順序,讓學生從觀察一個具體橢圓圖形入手,從觀察到對稱性這一宏觀特征開始研究,符合學生的認知特點,調動了學生主動參與教學的積極性,使他們進行自主探究與合作交流,親身體驗幾何性質的形成與論證過程,變靜態教學為動態教學。在研究范圍這一性質時,課前設計中,只要學生能根據不等式知識解出就可以了,但學生采用了多種方法研究,這時教師沒有打斷他的思路,而是引導幫助他研究,鼓勵學生創新,從而也實現了以學生為主,為學生服務。

在離心率這一性質的教學中,充分利用多媒體手段,以輕松愉悅的動畫演示,化解了知識的難點。

但也有不足的地方:在對具體例子的觀察分析中,設計的問題過于具體,可能束縛了學生的思維,還沒有放開。還有就是少講多學方面也是我今后教學中努力的方向。

感悟:新課堂是活動的課堂,討論、合作交流可課堂,德育教育的課堂,應用現代技術的課堂,因此新教育理念、新課改下的新課堂需要教師和學生一起來培育。

高中數學新穎教案大全篇13

高中一年級的新同學們,當你們踏進高中校門,漫步在優美的校園時,看見老師嚴謹而熱心的教學和師兄、師姐深切的關懷時,我想你們會暗暗決心:爭取學好高中階段的各門學科。在新的高考制度“3+綜合”普遍吹散全國大地之時,代表人們基本素質的“3”科中,數學是最能體現一個人的思維能力,判斷能力、反應敏捷能力和聰明程度的學科。數學直接影響著國民的基本素質和生活質量,良好的數學修養將為人的一生可持續發展奠定基礎,高中階段則應可能充分反映學習者對數學的不同需求,使每個學生都能學習適合他們自己的數學。

一、高中數學課的設置

高中數學內容豐富,知識面廣泛,高一年級上學期學習第一冊(上):第一章集合與簡易邏輯;第二章函數;第三章數列。高一年級下學期學習第一冊(下):第四章三角函數;第五章平面向量。高二年級上學期學習第二冊(上):第六章不等式;第七章直線和圓的方程;第八章圓錐曲線方程。高二年級下學期學習第二冊(下):第九章直線、平面、簡單幾何體;第十章排列、組合和概率。高二結束將有數學“會考”。高三年級文科生學習第三冊(選修1):第一章統計;第二章極限與導數。高三年級理科生學習第三冊(選修2):第一章概率與統計;第二章極限;第三章導數;第四章復數。高三還將進行全面復習,并有重要的“高考”。

二、初中數學與高中數學的差異。

1、知識差異。初中數學知識少、淺、難度容易、知識面笮。高中數學知識廣泛,將對初中的數學知識推廣和引伸,也是對初中數學知識的完善。如:初中學習的角的概念只是“0-1800”范圍內的,但實際當中也有7200和“-300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負在內的所有大小角。又如:高中要學習《立體幾何》(第九章直線、平面、簡單幾何體),將在三維空間中求角和距離等。

還將學習“排列組合”知識,以便解決排隊方法種數等問題。如:①三個人排成一行,有幾種排隊方法,(=6種);②四人進行乒乓球雙打比賽,有幾種比賽場次?(答:=3種)高中將學習統計這些排列的數學方法。初中中對一個負數開平方無意義,但在高中規定了i2=--1,就使-1的平方根為±i.即可把數的概念進行推廣,使數的概念擴大到復數范圍等。這些知識同學們在以后的學習中將逐漸學習到。

2、學習方法的差異。

(1)初中課堂教學量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學理解知識點和解題方法,課后老師布置作業,然后通過大量的課堂內、外練習、課外指導達到對知識的反反復復理解,直到學生掌握。而高中數學的學習隨著課程開設多(有九們課學生同時學習),每天至少上六節課,自習時間三節課,這樣各科學習時間將大大減少,而教師布置課外題量相對初中減少,這樣集中數學學習的時間相對比初中少,數學教師將相初中那樣監督每個學生的作業和課外練習,就能達到相初中那樣把知識讓每個學生掌握后再進行新課。

(2)模仿與創新的區別。

初中學生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學生有,但隨著知識的難度大和知識面廣泛,學生不能全部模仿,即就是學生全部模仿訓練做題,也不能開拓學生自我思維能力,學生的數學成績也只能是一般程度。現在高考數學考察,旨在考察學生能力,避免學生高分低能,避免定勢思維,提倡創新思維和培養學生的創造能力培養。初中學生大量地模仿使學生帶來了不利的思維定勢,對高中學生帶來了保守的、僵化的思想,封閉了學生的豐富反對創造精神。如學生在解決:比較a與2a的大小時要不就錯、要不就答不全面。大多數學生不會分類討論。

3、學生自學能力的差異

初中學生自學那能力低,大凡考試中所用的解題方法和數學思想,在初中教師基本上已反復訓練,老師把學生要學生自己高度深刻理解的問題,都集中表現在他的耐心的講解和大量的訓練中,而且學生的聽課只需要熟記結論就可以做題(不全是),學生不需自學。但高中的知識面廣,知識要全部要教師訓練完高考中的習題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習題,如果不自學、不靠大量的閱讀理解,將會使學生失去一類型習題的解法。另外,科學在不斷的發展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數學題型的開發在不斷的多樣化,近年來提出了應用型題、探索型題和開放型題,只有靠學生的自學去深刻理解和創新才能適應現代科學的發展。

其實,自學能力的提高也是一個人生活的需要,他從一個方面也代表了一個人的素養,人的一生只有18---24年時間是有導師的學習,其后半生,最精彩的人生是人在一生學習,靠的自學最終達到了自強。

4、思維習慣上的差異

初中學生由于學習數學知識的范圍小,知識層次低,知識面笮,對實際問題的思維受到了局限,就幾何來說,我們都接觸的是現實生活中三維空間,但初中只學了平面幾何,那么就不能對三維空間進行嚴格的邏輯思維和判斷。代數中數的范圍只限定在實數中思維,就不能深刻的解決方程根的類型等。高中數學知識的多元化和廣泛性,將會使學生全面、細致、深刻、嚴密的分析和解決問題。也將培養學生高素質思維。提高學生的思維遞進性。

5、定量與變量的差異

初中數學中,題目、已知和結論用常數給出的較多,一般地,答案是常數和定量。學生在分析問題時,大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數學學習中我們將會大量地、廣泛地應用代數的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時我們采用對方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時的所有根的情形,使學生很快的掌握了對所有一元二次方程的解法。另外,在高中學習中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數學思想。

三、如何學好高中數學

良好的開端是成功的一半,高中數學課即將開始與初中知識有聯系,但比初中數學知識系統。高一數學中我們將學習函數,函數是高中數學的重點,它在高中數學中是起著提綱的作用,它融匯在整個高中數學知識中,其中有數學中重要的數學思想方法;如:函數與方程思想、數形結合思想等,它也是高考的重點,近年來,高考壓軸題都以函數題為考察方法的。高考題中與函數思想方法有關的習題占整個試題的60%以上。

1、有良好的學習興趣

兩千多年前孔子說過:“知之者不如好之者,好之者不如樂之者。”意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。“好”和“樂”就是愿意學,喜歡學,這就是興趣。興趣是最好的老師,有興趣才能產生愛好,愛好它就要去實踐它,達到樂在其中,有興趣才會形成學習的主動性和積極性。在數學學習中,我們把這種從自發的感性的樂趣出發上升為自覺的理性的“認識”過程,這自然會變為立志學好數學,成為數學學習的成功者。那么如何才能建立好的學習數學興趣呢?

(1)課前預習,對所學知識產生疑問,產生好奇心。

(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點解決預習中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時回答老師課堂提問,培養思考與老師同步性,提高精神,把老師對你的提問的評價,變為鞭策學習的動力。

(3)思考問題注意歸納,挖掘你學習的潛力。

(4)聽課中注意老師講解時的數學思想,多問為什么要這樣思考,這樣的方法怎樣是產生的?

(5)把概念回歸自然。所有學科都是從實際問題中產生歸納的,數學概念也回歸于現實生活,如角的概念、至交坐標系的產生、極坐標系的產生都是從實際生活中抽象出來的。只有回歸現實才能使對概念的理解切實可靠,在應用概念判斷、推理時會準確。

2、建立良好的學習數學習慣。

習慣是經過重復練習而鞏固下來的穩重持久的`條件反射和自然需要。建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。學生在學習數學的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學時間,以便加寬知識面和培養自己再學習能力。

3、有意識培養自己的各方面能力

數學能力包括:邏輯推理能力、抽象思維能力、計算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數學學習環境中得到培養的。在平時學習中要注意開發不同的學習場所,參與一切有益的學習實踐活動,如數學第二課堂、數學競賽、智力競賽等活動。

平時注意觀察,比如,空間想象能力是通過實例凈化思維,把空間中的實體高度抽象在大腦中,并在大腦中進行分析推理。其它能力的培養都必須學習、理解、訓練、應用中得到發展。特別是,教師為了培養這些能力,會精心設計“智力課”和“智力問題”比如對習題的解答時的一題多解、舉一反三的訓練歸類,應用模型、電腦等多媒體教學等,都是為數學能力的培養開設的好課型,在這些課型中,學生務必要用全身心投入、全方位智力參與,最終達到自己各方面能力的全面發展。

四、其它注意事項

1、注意化歸轉化思想學習。

人們學習過程就是用掌握的知識去理解、解決未知知識。數學學習過程都是用舊知識引出和解決新問題,當新的知識掌握后再利用它去解決更新知識。初中知識是基礎,如果能把新知識用舊知識解答,你就有了化歸轉化思想了。可見,學習就是不斷地化歸轉化,不斷地繼承和發展更新舊知識。

2、學會數學教材的數學思想方法。

數學教材是采用蘊含披露的方式將數學思想溶于數學知識體系中,因此,適時對數學思想作出歸納、概括是十分必要的。概括數學思想一般可分為兩步進行:一是揭示數學思想內容規律,即將數學對象其具有的屬性或關系抽取出來,二是明確數學思想方法知識的聯系,抽取解決全體的框架。實施這兩步的措施可在課堂的聽講和課外的自學中進行。

課堂學習是數學學習的主戰場。課堂中教師通過講解、分解教材中的數學思想和進行數學技能地訓練,使高中學生學習所得到豐富的數學知識,教師組織的科研活動,使教材中的數學概念、定理、原理得到最大程度的理解、挖掘。如初中學習的相反數概念教學中,教師的課堂教學往往有以下理解:①從定義角度求3、-5的相反數,相反數是的數是_____.②從數軸角度理解:什么樣的兩點表示數是互為相反數的。(關于原點對稱的點)③從絕對值角度理解:絕對值_______的兩個數是互為相反數的。④相加為零的兩個數互為相反數嗎?這些不同角度的教學會開闊學生思維,提高思維品質。望同學們把握好課堂這個學習的主戰場。

五、學數學的幾個建議。

1、記數學筆記,特別是對概念理解的不同側面和數學規律,教師為備戰高考而加的課外知識。

2、建立數學糾錯本。把平時容易出現錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴密。

3、記憶數學規律和數學小結論。

4、與同學建立好關系,爭做“小老師”,形成數學學習“互助組”。

5、爭做數學課外題,加大自學力度。

6、反復鞏固,消滅前學后忘。

7、學會總結歸類。可:①從數學思想分類②從解題方法歸類③從知識應用上分類

同學們在高中有優美的學習環境,有一群樂于事業的熱心教師,全體教師經驗豐富,他們甘愿為你們做鋪路石直至你們走進高等學校大門。我們數學組的全體教師一定會使你們成為數學學習的成功。

高中數學新穎教案大全篇14

教學目標:

1、橢圓是圓錐曲線的一種,是高中數學教學中的重點和難點,所以這部分內容中的知識點學生必須達到理解、應用的水平;

2、利用投影、計算機模擬動點的運動,增強直觀性,激勵學生的學習動機,培養學生的數學想象和抽象思維能力。

教學重點:對橢圓定義的理解,其中a>c容易出錯。

教學難點:方程的推導過程。

教學過程(www.fwsir.com):

(1)復習

提問:動點軌跡的一般求法?

(通過回憶性質的提問,明示這節課所要學的內 容與原來所學知識之間的內在聯系。并為后面橢圓的標準方程的推導作好準備。)

(2)引入

舉例:橢圓是常見的圖形,如:汽車油罐的橫截面,立體幾何中圓的直觀圖,天體中,行星繞太陽運行的軌道等等;

計算機:動態演示行星運行的軌道。

(進一步使學生明確學習橢圓的重要性和必要性,借計算機形成生動的直觀,使學生印象加深,以便更好地掌握橢圓的形狀。)

(3)教學實施

投影:橢圓的定義:

平面內與兩個定點F1、F2的距離的和等于常數(大于F1F2)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做焦距(一般用2c表示)

常數一般用2表示。(講解定義時要注意條件:)

計算機:動態模擬動點軌跡的形成過程。

提問:如何求軌跡的方程?

(引導學生推導橢圓的標準方程)

板書:橢圓的標準方程的推導過程。(略)

(推導中注意:1)結合已畫出的圖形建立坐標系,容易為學生所接受;2)在推導過程中,要抓住“怎樣消去方程中的根式”這一關鍵問題,演算雖較繁,也能迎刃而解;3)其中焦點為F1(,0)、F2(c,0),;4)如果焦點在軸上,焦點為F1(0,)、F2(0,c),只要將方程中,互換就可得到它的`方程)

投影:橢圓的標準方程:

()

()    

投影:例1平面內兩個定點的距離是8,寫出到這兩個定點的距離的和是10的點的軌跡方程

(由橢圓的定義可知:所求軌跡為橢圓;則只要求出、、即可)

形成性練習:課本P74:2,3

(4)小結    本節課學習了橢圓的定義及標準方程,應注意以下幾點:

①橢圓的定義中,

②橢圓的標準方程中,焦點的位置看,的分母大小來確定

③、、的幾何意義

(5)作業

P80:2,4(1)(3)

高中數學新穎教案大全篇15

直線的方程

教學目標

(1)掌握由一點和斜率導出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據條件熟練地求出直線的方程.

(2)理解直線方程幾種形式之間的內在聯系,能在整體上把握直線的方程.

(3)掌握直線方程各種形式之間的互化.

(4)通過直線方程一般式的教學培養學生全面、系統、周密地分析、討論問題的能力.

(5)通過直線方程特殊式與一般式轉化的教學,培養學生靈活的思維品質和辯證唯物主義觀點.

(6)進一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

教學建議

1.教材分析

(1)知識結構

由直線方程的概念和直線斜率的概念導出直線方程的點斜式;由直線方程的點斜式分別導出直線方程的斜截式和兩點式;再由兩點式導出截距式;最后都可以轉化歸結為直線的一般式;同時一般式也可以轉化成特殊式.

(2)重點、難點分析

①本節的重點是直線方程的點斜式、兩點式、一般式,以及根據具體條件求出直線的方程.

解析幾何有兩項根本性的任務:一個是求曲線的方程;另一個就是用方程研究曲線.本節內容就是求直線的方程,因此是非常重要的內容,它對以后學習用方程討論直線起著直接的作用,同時也對曲線方程的學習起著重要的作用.

直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學生對點斜式學習的效果將直接影響后繼知識的學習.

②本節的難點是直線方程特殊形式的限制條件,直線方程的整體結構,直線與二元一次方程的關系證明.

2.教法建議

(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學中各部分知識之間過渡要自然流暢,不生硬.

(2)直線方程的一般式反映了直線方程各種形式之間的統一性,教學中應充分揭示直線方程本質屬性,建立二元一次方程與直線的對應關系,為繼續學習“曲線方程”打下基礎.

直線一般式方程都是字母系數,在揭示這一概念深刻內涵時,還需要進行正反兩方面的分析論證.教學中應重點分析思路,還應抓住這一有利時使學生學會嚴謹科學的分類討論方法,從而培養學生全面、系統、辯證、周密地分析、討論問題的能力,特別是培養學生邏輯思維能力,同時培養學生辯證唯物主義觀點

(3)在強調幾種形式互化時要向學生充分揭示各種形式的特點,它們的幾何特征,參數的意義等,使學生明白為什么要轉化,并加深對各種形式的理解.

(4)教學中要使學生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學中應突出點斜式、兩點式和一般式三個教學高潮.

求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據兩個條件運用待定系數法和方程思想求直線方程.

(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標軸交點的相應坐標,它是有向線段的數量,因而是一個實數;距離是線段的長度,是一個正實數(或非負實數).

(6)本節中有不少與函數、不等式、三角函數有關的問題,是函數、不等式、三角與直線的重要知識交匯點之一,教學中要適當選擇一些有關的問題指導學生練習,培養學生的綜合能力.

(7)直線方程的理論在其他學科和生產生活實際中有大量的應用.教學中注意聯系實際和其它學科,教師要注意引導,增強學生用數學的意識和能力.

(8)本節不少內容可安排學生自學和討論,還要適當增加練習,使學生能更好地掌握,而不是僅停留在觀念上.

100241 主站蜘蛛池模板: 远安县| 巴林右旗| 长宁县| 建瓯市| 蚌埠市| 宝山区| 布拖县| 大方县| 竹北市| 漯河市| 绥德县| 偏关县| 密山市| 昌邑市| 黑水县| 蓬安县| 常德市| 将乐县| 金湖县| 灵宝市| 怀宁县| 扬中市| 丰镇市| 航空| 青铜峡市| 铁岭县| 辽源市| 兴业县| 兴山县| 本溪| 兴化市| 光泽县| 灌南县| 兴业县| 山丹县| 大城县| 石台县| 临清市| 辽源市| 靖宇县| 宁化县|