教育巴巴 > 高中教案 > 數(shù)學(xué)教案 >

高中數(shù)學(xué)新穎教案

時間: 新華 數(shù)學(xué)教案

寫教案時,需要注重教學(xué)反思,對教學(xué)過程中出現(xiàn)的問題及時總結(jié)和記錄,以便不斷完善和提高自己的教學(xué)水平。怎么寫出優(yōu)秀的高中數(shù)學(xué)新穎教案?這里給大家分享高中數(shù)學(xué)新穎教案,方便大家學(xué)習(xí)。

高中數(shù)學(xué)新穎教案篇1

一、教學(xué)內(nèi)容分析

圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實踐后的高度抽象,恰當(dāng)?shù)乩枚x解題,許多時候能以簡馭繁。因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。

二、學(xué)生學(xué)習(xí)情況分析

我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強,思維活躍,但計算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

三、設(shè)計思想

由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情。在教學(xué)時,借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率。

四、教學(xué)目標(biāo)

1、深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點坐標(biāo)、頂點坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

2、通過對練習(xí),強化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

3、借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

五、教學(xué)重點與難點:

教學(xué)重點

1、對圓錐曲線定義的理解

2、利用圓錐曲線的定義求“最值”

3、“定義法”求軌跡方程

教學(xué)難點:

巧用圓錐曲線定義解題

六、教學(xué)過程設(shè)計

【設(shè)計思路】

(一)開門見山,提出問題

一上課,我就直截了當(dāng)?shù)亟o出例題1:

(1)已知A(-2,0),B(2,0)動點M滿足MA+MB=2,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)線段(D)不存在

(2)已知動點M(x,y)滿足(x1)2(y2)23x4y,則點M的軌跡是()。

(A)橢圓(B)雙曲線(C)拋物線(D)兩條相交直線

【設(shè)計意圖】

定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個必備條件,而通過一個階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的定義的運用為主線,精心準(zhǔn)備了兩道練習(xí)題。

【學(xué)情預(yù)設(shè)】

估計多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費一番周折——如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)25

這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子3x4y5入手,考慮通過適當(dāng)?shù)淖冃危D(zhuǎn)化為學(xué)生們熟知的兩個距離公式。

在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是,實軸長為,焦距為。以深化對概念的理解。

(二)理解定義、解決問題

例2:

(1)已知動圓A過定圓B:x2y26x70的圓心,且與定圓C:xy6x910相內(nèi)切,求△ABC面積的最大值。

(2)在(1)的條件下,給定點P(-2,2),求PA

【設(shè)計意圖】

運用圓錐曲線定義中的數(shù)量關(guān)系進(jìn)行轉(zhuǎn)化,使問題化歸為幾何中求最大(小)值的模式,是解析幾何問題中的一種常見題型,也是學(xué)生們比較容易混淆的一類問題。例2的設(shè)置就是為了方便學(xué)生的辨析。

【學(xué)情預(yù)設(shè)】

根據(jù)以往的經(jīng)驗,多數(shù)學(xué)生看上去都能順利解答本題,但真正能完整解答的可能并不多。事實上,解決本題的關(guān)鍵在于能準(zhǔn)確寫出點A的軌跡,有了練習(xí)題1的鋪墊,這個問題對學(xué)生們來講就顯得頗為簡單,因此面對例2(1),多數(shù)學(xué)生應(yīng)該能準(zhǔn)確給出解答,但是對于例2(2)這樣相對比較陌生的問題,學(xué)生就無從下手。我提醒學(xué)生把3/5和離心率聯(lián)系起來,這樣就容易和第二定義聯(lián)系起來,從而找到解決本題的突破口。

(三)自主探究、深化認(rèn)識

如果時間允許,練習(xí)題將為學(xué)生們提供一次數(shù)學(xué)猜想、試驗的機會。

練習(xí):

設(shè)點Q是圓C:(x1)2225AB的最小值。3y225上動點,點A(1,0)是圓內(nèi)一點,AQ的垂直平分線與CQ交于點M,求點M的軌跡方程。

引申:若將點A移到圓C外,點M的軌跡會是什么?

【設(shè)計意圖】練習(xí)題設(shè)置的目的是為學(xué)生課外自主探究學(xué)習(xí)提供平臺,當(dāng)然,如果課堂上時間允許的話,

可借助“多媒體課件”,引導(dǎo)學(xué)生對自己的結(jié)論進(jìn)行驗證。

【知識鏈接】

(一)圓錐曲線的定義

1、圓錐曲線的第一定義

2、圓錐曲線的統(tǒng)一定義

(二)圓錐曲線定義的應(yīng)用舉例

1、雙曲線1的兩焦點為F1、F2,P為曲線上一點,若P到左焦點F1的距離為12,求P到右準(zhǔn)線的距離。

2、PF1PF22P為等軸雙曲線x2y2a2上一點,F(xiàn)1、F2為兩焦點,O為雙曲線的中心,求的PO取值范圍。

3、在拋物線y22px上有一點A(4,m),A點到拋物線的焦點F的距離為5,求拋物線的方程和點A的坐標(biāo)。

4、例題:

(1)已知點F是橢圓1的右焦點,M是這橢圓上的動點,A(2,2)是一個定點,求MA+MF的最小值。

(2)已知A(,3)為一定點,F(xiàn)為雙曲線1的右焦點,M在雙曲線右支上移動,當(dāng)AMMF最小時,求M點的坐標(biāo)。

(3)已知點P(-2,3)及焦點為F的拋物線y,在拋物線上求一點M,使PM+FM最小。

5、已知A(4,0),B(2,2)是橢圓1內(nèi)的點,M是橢圓上的動點,求MA+MB的最小值與最大值。

七、教學(xué)反思

1、本課將借助于,將使全體學(xué)生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動且通俗易懂,同時,運用“多媒體課件”輔助教學(xué),節(jié)省了板演的時間,從而給學(xué)生留出更多的時間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機結(jié)合的教學(xué)優(yōu)勢。

2、利用兩個例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會一個問題的求解到掌握一類問題的解決方法,循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實上,學(xué)生們的思維運動量并不會小。

總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個重要研究課題,而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識,自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實踐的機會,能夠使學(xué)生在學(xué)習(xí)新知識的同時,激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗,于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

高中數(shù)學(xué)新穎教案篇2

重點難點教學(xué):

1.正確理解映射的概念;

2.函數(shù)相等的兩個條件;

3.求函數(shù)的定義域和值域。

一.教學(xué)過程:

1. 使學(xué)生熟練掌握函數(shù)的概念和映射的定義;

2. 使學(xué)生能夠根據(jù)已知條件求出函數(shù)的定義域和值域; 3. 使學(xué)生掌握函數(shù)的三種表示方法。

二.教學(xué)內(nèi)容:

 1.函數(shù)的定義

設(shè)A、B是兩個非空的數(shù)集,如果按照某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有確定的數(shù)()fx和它對應(yīng),那么稱:fAB?為從集合A到集合B的一個函數(shù)(function),記作:

(),yfA

其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{()|}fA?叫值域(range)。顯然,值域是集合B的子集。

注意:

① “y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

②函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x. 

2.構(gòu)成函數(shù)的三要素 定義域、對應(yīng)關(guān)系和值域。

 3、映射的定義

設(shè)A、B是兩個非空的集合,如果按某一個確定的對應(yīng)關(guān)系f,使對于集合A中的任意

一個元素x,在集合B中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從 集合A到集合B的一個映射。

4. 區(qū)間及寫法:

設(shè)a、b是兩個實數(shù),且a

(1) 滿足不等式axb??的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];

(2) 滿足不等式axb??的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);

5.函數(shù)的三種表示方法 ①解析法 ②列表法 ③圖像法

高中數(shù)學(xué)新穎教案篇3

一、說教材

(1)說教材的內(nèi)容和地位

本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。

(2)說教學(xué)目標(biāo)

根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)與心理特征,依據(jù)新課標(biāo)制定如下教學(xué)目標(biāo):

1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動探究新知的習(xí)慣。并通過"自主、合作與探究"實現(xiàn)"一切以學(xué)生為中心"的理念。

3.情感態(tài)度與價值觀:感受數(shù)學(xué)的人文價值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時通過自主探究領(lǐng)略獲取新知識的喜悅。

(3)說教學(xué)重點和難點

依據(jù)課程標(biāo)準(zhǔn)和學(xué)生實際,我確定本課的教學(xué)重點為

教學(xué)重點:集合的基本概念及元素特征。

教學(xué)難點:掌握集合元素的三個特征,體會元素與集合的屬于關(guān)系。

二、說教法和學(xué)法

接下來則是說教法、學(xué)法

教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用"生活實例與數(shù)學(xué)實例"相結(jié)合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習(xí)體驗,憑借有趣、實用的教學(xué)手段,突出重點,突破難點。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動,()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。

三、說教學(xué)過程

接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程:

這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設(shè)情境(引入目標(biāo))、自主探究(感知目標(biāo))、討論辨析(理解目標(biāo))、變式訓(xùn)練(鞏固目標(biāo))、課堂小結(jié)(自我評價)、作業(yè)布置(反饋矯正)。上述六個環(huán)節(jié)由淺入深,層層遞進(jìn)。多層次、多角度地加深對概念的理解。提高學(xué)生學(xué)習(xí)的興趣,以達(dá)到良好的教學(xué)效果。

第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標(biāo)

課堂開始我將提出兩個問題:

問題1:班級有20名男生,16名女生,問班級一共多少人?

問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

這里我會讓學(xué)生以小組討論的.形式進(jìn)行討論問題,事實上小組合作的形式是本節(jié)課主要形式。

待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時我將板書標(biāo)題:集合)。

安排這一過程的意圖是為了從實際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。

很自然地進(jìn)入到第二環(huán)節(jié):自主探究

讓學(xué)生閱讀教材,并思考下列問題:

(1)有那些概念?

(2)有那些符號?

(3)集合中元素的特性是什么?

安排這一過程的意圖是給學(xué)生提供活動空間,讓主體主動建構(gòu)自己的知識結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。

讓學(xué)生自主探究之后將進(jìn)入第三環(huán)節(jié):討論辨析

小組合作探究(1)

讓學(xué)生觀察下列實例

(1)1~20以內(nèi)的所有質(zhì)數(shù);

(2)所有的正方形;

(3)到直線的距離等于定長的所有的點;

(4)方程的所有實數(shù)根;

通過以上實例,辨析概念:

(1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。

(2)表示方法:集合通常用大括號{}或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

小組合作探究(2)——集合元素的特征

問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

問題4:某單位所有的"帥哥"能否構(gòu)成一個集合?由此說明什么?

集合中的元素必須是確定的

問題5:在一個給定的集合中能否有相同的元素?由此說明什么?

集合中的元素是不重復(fù)出現(xiàn)的

問題6:咱班的全體同學(xué)組成一個集合,調(diào)整座位后這個集合有沒有變化?由此說明什么?集合中的元素是沒有順序的

我如此設(shè)計的意圖是因為:問題是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動力。

小組合作探究(3)——元素與集合的關(guān)系

問題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

a屬于集合A,記作a∈A

問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達(dá)?

a不屬于集合A,記作aA

小組合作探究(4)——常用數(shù)集及其表示方法

問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實數(shù)集等一些常用數(shù)集,分別用什么符號表示?

自然數(shù)集(非負(fù)整數(shù)集):記作N

正整數(shù)集:

整數(shù)集:記作Z

有理數(shù)集:記作Q實數(shù)集:記作R

設(shè)計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結(jié)構(gòu)。

第四環(huán)節(jié):理論遷移變式訓(xùn)練

1.下列指定的對象,能構(gòu)成一個集合的是

①很小的數(shù)

②不超過30的非負(fù)實數(shù)

③直角坐標(biāo)平面內(nèi)橫坐標(biāo)與縱坐標(biāo)相等的點

④π的近似值

⑤所有無理數(shù)

A、②③④⑤B、①②③⑤C、②③⑤D、②③④

第五環(huán)節(jié):課堂小結(jié),自我評價

1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?

設(shè)計意圖:引導(dǎo)學(xué)生對所學(xué)知識、思想方法進(jìn)行小結(jié),形成知識系統(tǒng)。教師用激勵性的語言加一點評,讓學(xué)生的思想敞亮的發(fā)揮出來。

第六環(huán)節(jié):作業(yè)布置,反饋矯正

1.必做題課本習(xí)題1.1—1、2、3.

2.選做題已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數(shù)a的值。

設(shè)計意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗。

四、板書設(shè)計

好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計得有條理性、概括性、指導(dǎo)性,所以我設(shè)計的板書如下:

集合

1.集合的概念

2.集合元素的特征

(學(xué)生板演)

3.常見集合的表示

4.范例研究

高中數(shù)學(xué)新穎教案篇4

教學(xué)目標(biāo):理解集合的概念;掌握集合的三種表示方法,理解集合中元素的三性及元素與集合的關(guān)系;掌握有關(guān)符號及術(shù)語。

教學(xué)過程:

一、閱讀下列語句:

1)全體自然數(shù)0,1,2,3,4,5,

2)代數(shù)式

3)拋物線上所有的點

4)今年本校高一(1)(或(2))班的全體學(xué)生

5)本校實驗室的所有天平

6)本班級全體高個子同學(xué)

7)著名的科學(xué)家

上述每組語句所描述的對象是否是確定的?

二、

1)集合:

2)集合的元素:

3)集合按元素的個數(shù)分,可分為1)__________2)_________

三、集合中元素的三個性質(zhì):

1)___________2)___________3)_____________

四、元素與集合的關(guān)系:1)____________2)____________

五、特殊數(shù)集專用記號:

1)非負(fù)整數(shù)集(或自然數(shù)集)______2)正整數(shù)集_____3)整數(shù)集_______4)有理數(shù)集______5)實數(shù)集_____6)空集____

六、集合的表示方法:

1)

2)

3)

七、例題講解:

例1、中三個元素可構(gòu)成某一個三角形的三邊長,那么此三角形一定不是()

a,直角三角形b,銳角三角形c,鈍角三角形d,等腰三角形

例2、用適當(dāng)?shù)姆椒ū硎鞠铝屑希缓笳f出它們是有限集還是無限集?

1)地球上的四大洋構(gòu)成的集合;

2)函數(shù)的全體值的集合;

3)函數(shù)的全體自變量的集合;

4)方程組解的集合;

5)方程解的集合;

6)不等式的解的集合;

7)所有大于0且小于10的奇數(shù)組成的集合;

8)所有正偶數(shù)組成的集合;

例3、用符號或填空:

1)______q,0_____n,_____z,0_____

2)______,_____

3)3_____,

4)設(shè),,則

例4、用列舉法表示下列集合;

1.

2.

3.

4.

例5、用描述法表示下列集合

1.所有被3整除的數(shù)

2.圖中陰影部分點(含邊界)的坐標(biāo)的集合

課堂練習(xí):

例6、設(shè)含有三個實數(shù)的集合既可以表示為,也可以表示為,則的值等于___________

例7、已知:,若中元素至多只有一個,求的取值范圍。

思考題:數(shù)集a滿足:若,則,證明1):若2,則集合中還有另外兩個元素;2)若則集合a不可能是單元素集合。

小結(jié):

作業(yè)班級姓名學(xué)號

1.下列集合中,表示同一個集合的是()

a.m=,n=b.m=,n=

c.m=,n=d.m=,n=

2.m=,x=,y=,,.則()

a.b.c.d.

3.方程組的解集是____________________。

4.在(1)難解的題目,(2)方程在實數(shù)集內(nèi)的解,(3)直角坐標(biāo)平面內(nèi)第四象限的一些點,(4)很多多項式。能夠組成集合的序號是________________。

5.設(shè)集合a=,b=,

c=,d=,e=。

其中有限集的個數(shù)是____________。

6.設(shè),則集合中所有元素的和為

7.設(shè)x,y,z都是非零實數(shù),則用列舉法將所有可能的值組成的集合表示為

8.已知f(x)=x2-ax+b,(a,br),a=,b=,

若a=,試用列舉法表示集合b=

9.把下列集合用另一種方法表示出來:

(1)(2)

(3)(4)

10.設(shè)a,b為整數(shù),把形如a+b的一切數(shù)構(gòu)成的集合記為m,設(shè),試判斷x+y,x-y,xy是否屬于m,說明理由。

11.已知集合a=

(1)若a中只有一個元素,求a的值,并求出這個元素;

(2)若a中至多只有一個元素,求a的取值集合。

12.若-3,求實數(shù)a的值。

高中數(shù)學(xué)新穎教案篇5

教學(xué)目標(biāo):

1.結(jié)合實際問題情景,理解分層抽樣的必要性和重要性;

2.學(xué)會用分層抽樣的方法從總體中抽取樣本;

3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系.

教學(xué)重點:

通過實例理解分層抽樣的方法.

教學(xué)難點:

分層抽樣的步驟.

教學(xué)過程:

一、問題情境

1.復(fù)習(xí)簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

2.實例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

二、學(xué)生活動

能否用簡單隨機抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,

所以在各年級抽取的個體數(shù)依次是,,,即40,32,28.

三、建構(gòu)數(shù)學(xué)

1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;

②由于分層抽樣充分利用了我們所掌握的信息,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應(yīng)用.

2.三種抽樣方法對照表:

類別

共同點

各自特點

相互聯(lián)系

適用范圍

簡單隨機抽樣

抽樣過程中每個個體被抽取的概率是相同的

從總體中逐個抽取

總體中的個體數(shù)較少

系統(tǒng)抽樣

將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取

在第一部分抽樣時采用簡單隨機抽樣

總體中的個體數(shù)較多

分層抽樣

將總體分成幾層,分層進(jìn)行抽取

各層抽樣時采用簡單隨機抽樣或系統(tǒng)

總體由差異明顯的幾部分組成

3.分層抽樣的步驟:

(1)分層:將總體按某種特征分成若干部分.

(2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.

(3)確定各層應(yīng)抽取的樣本容量.

(4)在每一層進(jìn)行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本.

四、數(shù)學(xué)運用

1.例題.

例1(1)分層抽樣中,在每一層進(jìn)行抽樣可用_________________.

(2)①教育局督學(xué)組到學(xué)校檢查工作,臨時在每個班各抽調(diào)2人參加座談;

②某班期中考試有15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進(jìn)一步改進(jìn)教和學(xué);

③某班元旦聚會,要產(chǎn)生兩名“幸運者”.

對這三件事,合適的抽樣方法為()

A.分層抽樣,分層抽樣,簡單隨機抽樣

B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣

C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進(jìn)行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

很喜愛

喜愛

一般

不喜愛

2435

4567

3926

1072

電視臺為進(jìn)一步了解觀眾的具體想法和意見,打算從中抽取60人進(jìn)行更為詳細(xì)的調(diào)查,應(yīng)怎樣進(jìn)行抽樣?

解:抽取人數(shù)與總的比是60∶12000=1∶200,

則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

取近似值得各層人數(shù)分別是12,23,20,5.

然后在各層用簡單隨機抽樣方法抽取.

答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

數(shù)分別為12,23,20,5.

說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值.

(3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開方面的某意見,擬抽取一個容量為20的樣本.

分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.

(2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

(3)由于學(xué)校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

五、要點歸納與方法小結(jié)

本節(jié)課學(xué)習(xí)了以下內(nèi)容:

1.分層抽樣的概念與特征;

2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

高中數(shù)學(xué)新穎教案篇6

教學(xué)目標(biāo)

1使學(xué)生理解本章的知識結(jié)構(gòu),并通過本章的知識結(jié)構(gòu)掌握本章的全部知識;

2對線段、射線、直線、角的概念及它們之間的關(guān)系有進(jìn)一步的認(rèn)識;

3掌握本章的全部定理和公理;

4理解本章的數(shù)學(xué)思想方法;

5了解本章的題目類型。

教學(xué)重點和難點

重點是理解本章的知識結(jié)構(gòu),掌握本章的全部定和公理;難點是理解本章的數(shù)學(xué)思想方法。

教學(xué)設(shè)計過程

一、本章的知識結(jié)構(gòu)

二、本章中的概念

1直線、射線、線段的概念。

2線段的中點定義。

3角的兩個定義。

4直角、平角、周角、銳角、鈍角的概念。

5互余與互補的角。

三、本章中的公理和定理

1直線的公理;線段的公理。

2補角和余角的性質(zhì)定理。

四、本章中的主要習(xí)題類型

1對直線、射線、線段的概念的理解。

例1下列說法中正確的是()。

A延長射線OPB延長直線CD

C延長線段CDD反向延長直線CD

解:C因為射線和直線是可以向一方或兩方無限延伸的,所以任何延長射線或直線的說法都是錯誤的。而線段有兩個端點,可以向兩方延長。

例2如圖1-57中的線段共有多少條?

解:15條,它們是:線段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,F(xiàn)G。

2線段的和、差、倍、分。

例3已知線段AB,延長AB到C,使AC=2BC,反向延長AB到D使AD=BC,那么線段AD是線段AC的()。

A.B.C.D.

解:B如圖1-58,因為AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

例4如圖1-59,B為線段AC上的一點,AB=4cm,BC=3cm,M,N分別為AB,BC的中點,求MN的長。

解:因為AB=4,M是AB的中點,所以MB=2,又因為N是BC的中點,所以BN=1.5。則MN=2+1.5=3.5

3角的概念性質(zhì)及角平分線。

例5如圖1-60,已知AOC是一條直線,OD是∠AOB的平分線,OE是∠BOC的平分線,求∠EOD的.度數(shù)。

解:因為OD是∠AOB的平分線,所以∠BOD=∠AOB;又因為OE是∠BOC的平分線,所以∠BOE=∠BOC;又∠AOB+∠BOC=180°,

所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

則∠EOD=90°。

例6如圖1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC與∠COB的度數(shù)的比是多少?

解:因為∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。

又∠COD=90°,所以∠COB=30°。

則∠AOC=60°,(同角的余角相等)

∠AOC與∠COB的度數(shù)的比是2∶1。

4互余與互補角的性質(zhì)。

例7如圖1-62,直線AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度數(shù)。

解:因為COD為直線,∠BOE=90°,∠BOD=45°,

所以∠COE=180°-90°-45°=45°

又AOB為直線,∠BOE=90°,∠COE=45°

故∠COA=180°-90°-45°=45°,

而AOB為直線,∠BOD=45°,

因此∠AOD=180°-45°=135°。

例8一個角是另一個角的3倍,且小有的余角與大角的余角之差為20°,求這兩個角的度數(shù)。

解:設(shè)第一個角為x°,則另一個角為3x°,

依題義列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

答:一個角為10°,另一個角為30°。

5度分秒的換算及和、差、倍、分的計算。

例9(1)將4589°化成度、分、秒的形式。

(2)將80°34′45″化成度。

(3)計算:(36°55′40″-23°56′45″)。

解:(1)45°53′24″。

(2)約為8058°。

(3)約為9°44′11″(第一步,做減法后得12°58′55″;再做乘法后得36°174′165″,可以先不進(jìn)位,做除法后得9°44′11″)

五、本章中所學(xué)到的數(shù)學(xué)思想

1運動變化的觀點:幾何圖形不是孤立和靜止的,也應(yīng)看作不斷發(fā)展和變化的,如線段向一個方向延長,就發(fā)展成為射線;射線向另一方向延長就發(fā)展成直線。又如射線饒它的端點旋轉(zhuǎn)就形成角;角的終邊不斷旋轉(zhuǎn)就變化成直角、平角和周角。從圖形的運動中可以看到變化,從變化中看到聯(lián)系和區(qū)別及特性。

2數(shù)形結(jié)合的思想:在幾何的知識中經(jīng)常遇到計算問題,對形的研究離不開數(shù)。正如數(shù)學(xué)家華羅庚所說:“數(shù)缺形時少直觀,形缺數(shù)時難如微”。本章的知識中,將線段的長度用數(shù)量表示,利用方程的方法解決余角與補角的問題。因此我們對幾何的學(xué)習(xí)不能與代數(shù)的學(xué)習(xí)截然分開,在形的問題難以解決時,發(fā)揮數(shù)的功能,在數(shù)的問題遇到困難時,畫出與它相關(guān)的圖形,都會給問題的解決帶來新的思路。從幾何的起始課,就注意數(shù)形結(jié)合,就會養(yǎng)成良好的思維習(xí)慣。

3聯(lián)系實際,從實際事物中抽象出數(shù)學(xué)模型。數(shù)學(xué)的產(chǎn)生來源于生產(chǎn)和生活實踐,因此學(xué)習(xí)數(shù)學(xué)不能脫離實際生活,尤其是幾乎何的學(xué)習(xí)更離不開實際生活。一方面要讓學(xué)生知道本章的主要內(nèi)容是線和角,都在生活中有大量的原型存在,另一方面又要引導(dǎo)學(xué)生將所學(xué)的知識去解決某些簡單的實際問題,這才是理論聯(lián)系實際的觀點。

六、本章的疑點和誤點分析

概念在應(yīng)用中的混淆。

例10判斷正誤:

(1)在∠AOB的邊OA的延長線上取一點D。

(2)大于90°的角是鈍角。

(3)任何一個角都可以有余角。

(4)∠A是銳角,則∠A的所有余角都相等。

(5)兩個銳角的和一定小于平角。

(6)直線MN是平角。

(7)互補的兩個角的和一定等于平角。

(8)如果一個角的補角是銳角,那么這個角就沒有余角。

(9)鈍角一定大于它的補角。

(10)經(jīng)過三點一定可以畫一條直線。

解:(1)錯。因為角的兩邊是射線,而射線是可以向一方無限延伸的,所以就不能再說射線的延長線了。

(2)錯。鈍角的定義是:大于直角且小于平角的角,叫做鈍角。

(3)錯。余角的定義是:如果兩個角的和是一個直角,這兩個角互為余角。因此大于直角的角沒有余角。

(4)對.∠A的所有余角都是90°-∠A。

(5)對.若∠A<90°,∠B<90°則∠A+∠B<90°+90°=180°.

(6)錯。平角是一個角就要有頂點,而直線上沒有表示平角頂點的點。如果在直線上標(biāo)出表示角的頂點的點,就可以了。

(7)對。符合互補的角的定義。

(8)對。如果一個角的補角是銳角,那么這個角一定是鈍角,而鈍角是沒有余角的。

(9)對。因為鈍角的補角是銳角,鈍角一定大于銳角。

(10)錯。這個題應(yīng)該分情況討論:如果這三點在同一條直線上,這個結(jié)論是正確的。如果這三個點不在同一條直線上,那么過這三個點就不能畫一條直線。

板書設(shè)計

回顧與反思

(一)知識結(jié)構(gòu)(四)主要習(xí)題類型(五)本章的數(shù)學(xué)思想

略例11

·2

(二)本章概念·3

略·(六)疑誤點分析

(三)本章的公理和定理·

例9

高中數(shù)學(xué)新穎教案篇7

橢圓的簡單幾何性質(zhì)教案

屆高三數(shù)學(xué)橢圓的簡單幾何性質(zhì)

2.2橢圓的簡單幾何性質(zhì)

教學(xué)目標(biāo):

(1)通過對橢圓標(biāo)準(zhǔn)方程的討論,理解并掌握橢圓的幾何性質(zhì);

(2)能夠根據(jù)橢圓的標(biāo)準(zhǔn)方程求焦點、頂點坐標(biāo)、離心率并能根據(jù)其性質(zhì)畫圖;

(3)培養(yǎng)學(xué)生分析問題、解決問題的能力,并為學(xué)習(xí)其它圓錐曲線作方法上的準(zhǔn)備.

教學(xué)重點:橢圓的幾何性質(zhì).通過幾何性質(zhì)求橢圓方程并畫圖

教學(xué)難點:橢圓離心率的概念的理解.

教學(xué)方法:講授法

課型:新授課

教學(xué)工具:多媒體設(shè)備

一、復(fù)習(xí):

1.橢圓的定義,橢圓的焦點坐標(biāo),焦距.

2.橢圓的標(biāo)準(zhǔn)方程.

二、講授新課:

(一)通過提出問題、分析問題、解決問題激發(fā)學(xué)生的學(xué)習(xí)興趣,在掌握新知識的同時培養(yǎng)能力.

[在解析幾何里,是利用曲線的方程來研究曲線的幾何性質(zhì)的,我們現(xiàn)在利用焦點在x軸上的橢圓的標(biāo)準(zhǔn)方程來研究其幾何性質(zhì).]

已知橢圓的標(biāo)準(zhǔn)方程為:

1.范圍

[我們要研究橢圓在直角坐標(biāo)系中的范圍,就是研究橢圓在哪個區(qū)域里,只要討論方程中x,y的范圍就知道了.]

問題1方程中x、y的取值范圍是什么?

由橢圓的標(biāo)準(zhǔn)方程可知,橢圓上點的坐標(biāo)(x,y)都適合不等式

≤1,≤1

即x2≤a2,y2≤b2

所以x≤a,y≤b

即-a≤x≤a,-b≤y≤b

這說明橢圓位于直線x=±a,y=±b所圍成的矩形里。

2.對稱性

復(fù)習(xí)關(guān)于x軸,y軸,原點對稱的點的坐標(biāo)之間的關(guān)系:

點(x,y)關(guān)于x軸對稱的點的坐標(biāo)為(x,-y);

點(x,y)關(guān)于y軸對稱的點的坐標(biāo)為(-x,y);

點(x,y)關(guān)于原點對稱的點的坐標(biāo)為(-x,-y);

問題2在橢圓的標(biāo)準(zhǔn)方程中①以-y代y②以-x代x③同時以-x代x、以-y代y,你有什么發(fā)現(xiàn)?

(1)在曲線的方程里,如果以-y代y方程不變,那么當(dāng)點P(x,y)在曲線上時,它關(guān)于x的軸對稱點P’(x,-y)也在曲線上,所以曲線關(guān)于x軸對稱。

(2)如果以-x代x方程方程不變,那么說明曲線的對稱性怎樣呢?[曲線關(guān)于y軸對稱。]

(3)如果同時以-x代x、以-y代y,方程不變,這時曲線又關(guān)于什么對稱呢?[曲線關(guān)于原點對稱。]

歸納提問:從上面三種情況看出,橢圓具有怎樣的對稱性?

橢圓關(guān)于x軸,y軸和原點都是對稱的。

這時,橢圓的對稱軸是什么?[坐標(biāo)軸]

橢圓的對稱中心是什么?[原點]

橢圓的對稱中心叫做橢圓的`中心。

3.頂點

[研究曲線的上的某些特殊點的位置,可以確定曲線的位置。要確定曲線在坐標(biāo)系中的位置,常常需要求出曲線與x軸,y軸的交點坐標(biāo).]

問題3怎樣求曲線與x軸、y軸的交點?

在橢圓的標(biāo)準(zhǔn)方程里,

令x=0,得y=±b。這說明了B1(0,-b),B2(0,b)是橢圓與y軸的兩個交點。

令y=0,得x=±a。這說明了A1(-a,0),A2(a,0)是橢圓與x軸的兩個交點。

因為x軸,y軸是橢圓的對稱軸,所以橢圓和它的對稱軸有四個交點,這四個交點叫做橢圓的頂點。

線段A1A2,B1B2分別叫做橢圓的長軸和短軸。

它們的長A1A2=2a,B1B2=2b(a和b分別叫做橢圓的長半軸長和短半軸長)

觀察圖形,由橢圓的對稱性可知,橢圓短軸的端點到兩個焦點的距離相等,且等于長半軸長,即B1F1=B1F2=B2F1=B2F2=a

在Rt△OB2F2中,由勾股定理有

OF22=B2F22-OB22,即c2=a2-b2

這就是在前面一節(jié)里,我們令a2-c2=b2的幾何意義。

4.離心率

定義:橢圓的焦距與長軸長的比e=,叫做橢圓的離心率。

因為a>c>0,所以0<e<1.<p="">

問題4觀察圖形,說明當(dāng)離心率e變化時,橢圓形狀是怎樣隨之變化的?

[調(diào)用幾何畫板,演示離心率變化(分越接近1和越接近0兩種情況討論)對橢圓形狀的影響]

得出結(jié)論:(1)e越接近1時,則c越接近a,從而b越小,因此橢圓越扁;

(2)e越接近0時,則c越接近0,從而b越接近于a,這時橢圓就越接近于圓。

當(dāng)且僅當(dāng)a=b時,c=0,這時兩個焦點重合于橢圓的中心,圖形變成圓。

當(dāng)e=1時,圖形變成了一條線段。[為什么?留給學(xué)生課后思考]

5.例題

例1求橢圓16x2+25y2=400的長軸和短軸的長、離心率、焦點和頂點的坐標(biāo),并用描點法畫出它的圖形.

[根據(jù)剛剛學(xué)過的橢圓的幾何性質(zhì)知,橢圓長軸長2a,短軸長2b,該方程中的a=?b=?c=?因為題目給出的橢圓方程不是標(biāo)準(zhǔn)方程,所以必須先把它轉(zhuǎn)化為標(biāo)準(zhǔn)方程,再討論它的幾何性質(zhì)]

解:把已知方程化為標(biāo)準(zhǔn)方程,這里a=5,b=4,所以c==3

因此,橢圓的長軸和短軸長分別是2a=10,2b=8

離心率e==

兩個焦點分別是F1(-3,0),F2(3,0),

四個頂點分別是A1(-5,0)A1(5,0)A1(0,-4)F1(0,4).

[提問:怎樣用描點法畫出橢圓的圖形呢?我們可以根據(jù)橢圓的對稱性,先畫出第一象限內(nèi)的圖形。]

將已知方程變形為,根據(jù)

在0≤x≤5的范圍內(nèi)算出幾個點的坐標(biāo)(x,y)

x012345

y43.93.73.22.40

先描點畫出橢圓的一部分,再利用橢圓的對稱性畫出整個橢圓(如圖)

說明:本題在畫圖時,利用了橢圓的對稱性。利用圖形的幾何性質(zhì),可以簡化畫圖過程,保證圖形的準(zhǔn)確性。

根據(jù)橢圓的幾何性質(zhì),用下面的方法可以快捷地畫出反映橢圓基本形狀和大小的草圖:

(1)以橢圓的長軸、短軸為鄰邊畫矩形;

(2)由矩形四邊的中點確定橢圓的四個頂點;

(3)用平滑的曲線將四個頂點連成一個橢圓。

[畫圖時要注意它們的對稱性及頂點附近的平滑性]

(四)練習(xí)

填空:已知橢圓的方程是9x2+25y2=225,

(1)將其化為標(biāo)準(zhǔn)方程是_________________.

(2)a=___,b=___,c=___.

(3)橢圓位于直線________和________所圍成的________區(qū)域里.

橢圓的長軸、短軸長分別是____和____,離心率e=_____,兩個焦點分別是_______、______,四個頂點分別是______、______、______、_______.

例2、求符合下列條件的橢圓的標(biāo)準(zhǔn)方程:

(1)經(jīng)過點(-3,0)、(0,-2);

(2)長軸的長等于20,離心率等于0.6

例3點與定點的距離和它到直線的距離之比是常數(shù),求點的軌跡.

(教師分析――示范書寫)

例4、如圖,一種電影放映燈泡的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F1上,片門位于另一個焦點F2上,由橢圓一個焦點F1發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個焦點F2。已知AC^F1F2,F(xiàn)1A=2.8cm,F(xiàn)1F2=4.5cm,求截口ABC所在橢圓的方程。

三、課堂練習(xí):

①比較下列每組橢圓的形狀,哪一個更圓,哪一個更扁?

⑴與⑵與(學(xué)生口答,并說明原因)

②求適合下列條件的橢圓的標(biāo)準(zhǔn)方程.

⑴經(jīng)過點

⑵長軸長是短軸長的倍,且經(jīng)過點

⑶焦距是,離心率等于

(學(xué)生演板,教師點評)

焦點在x軸、y軸上的橢圓的幾何性質(zhì)對比.

四、小結(jié)

(1)理解橢圓的簡單幾何性質(zhì),給出方程會求橢圓的焦點、頂點和離心率;

(2)了解離心率變化對橢圓形狀的影響;

(3)通過曲線的方程研究曲線的幾何性質(zhì)并畫圖是解析幾何的基本方法.

五、布置作業(yè)

課本習(xí)題2.1的6、7、8題

課后思考:

1、橢圓上到焦點和中心距離最大和最小的點在什么地方?

2、點M(x,y)與定點F(c,0)的距離和它到定直線l:x=的距離的比是常數(shù)(a>c>0),求點M軌跡,并判斷曲線的形狀。

3、接本學(xué)案例3,問題2,若過焦點F2作直線與AB垂直且與該橢圓相交于M、N兩點,當(dāng)△F1MN的面積為70時,求該橢圓的方程。

高中數(shù)學(xué)新穎教案篇8

一、教材分析

1、從在教材中的地位與作用來看

《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。

2、從學(xué)生認(rèn)知角度看

從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進(jìn)行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。

3、學(xué)情分析

教學(xué)對象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。

4、重點、難點

教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。

教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。

公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點。

二、目標(biāo)分析

知識與技能目標(biāo):

理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。

過程與方法目標(biāo):

通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)

化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

情感與態(tài)度價值觀:

通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。

三、過程分析

學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:

1、創(chuàng)設(shè)情境,提出問題

在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚。為什么呢?

設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。

此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的`認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆、

2、師生互動,探究問題

在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?

探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)

探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機。

經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。

3、類比聯(lián)想,解決問題

這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,

這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進(jìn)行指導(dǎo)。

設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。

對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進(jìn)行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)

再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)

設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

4、討論交流,延伸拓展

在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項和公式,還有其它方法嗎?我們知道,

那么我們能否利用這個關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?

設(shè)計意圖:以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營造一個讓學(xué)生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關(guān)于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進(jìn)作用、

5、變式訓(xùn)練,深化認(rèn)識

首先,學(xué)生獨立思考,自主解題,再請學(xué)生上臺來幻燈演示他們的解答,其它同學(xué)進(jìn)行評價,然后師生共同進(jìn)行總結(jié)。

設(shè)計意圖:采用變式教學(xué)設(shè)計題組,深化學(xué)生對公式的認(rèn)識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進(jìn)學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成。通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識和競爭意識。

6、例題講解,形成技能

設(shè)計意圖:解題時,以學(xué)生分析為主,教師適時給予點撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進(jìn)行分類討論的數(shù)學(xué)思想。

7、總結(jié)歸納,加深理解

以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。

設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。

8、故事結(jié)束,首尾呼應(yīng)

最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。

設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。

9、課后作業(yè),分層練習(xí)

必做:P129練習(xí)1、2、3、4

選作:

(2)“遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”這首中國古詩的答案是多少?

設(shè)計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。

四、教法分析

對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用“問題――探究”的教學(xué)模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。

利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。

五、評價分析

本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。

高中數(shù)學(xué)新穎教案篇9

本節(jié)課是《等比數(shù)列的前n項和》的第一課時,學(xué)生在學(xué)習(xí)了等比數(shù)列的概念、等差與等比數(shù)列的通項公式及等差數(shù)列的前n項和公式前提下學(xué)習(xí)的,對于本節(jié)課所需的知識點和探究方法都有了一定的儲備。這節(jié)課我充分利用情境,激發(fā)學(xué)生興趣,順利導(dǎo)入本節(jié)課的內(nèi)容。

本節(jié)課我用心準(zhǔn)備、精心設(shè)計、潛心專研,是我上好這節(jié)課的前提。在教學(xué)過程中,我充分體現(xiàn)了教學(xué)目標(biāo),抓住了教學(xué)重點,解決了教學(xué)難點,更重要的是,全班學(xué)生心、神、情、與我深度融合。這節(jié)課的.內(nèi)容是“等差數(shù)列的前n項和”與“等比數(shù)列”內(nèi)容的延續(xù),為學(xué)生后面學(xué)綜合數(shù)列的求和做了鋪墊,重點是推導(dǎo)等比數(shù)列的前n項和的公式以及公式的簡單應(yīng)用,難點是用錯位相減法推導(dǎo)等比數(shù)列的前n項和公式以及公式應(yīng)用中對q與1的討論。本節(jié)課我注重從“知識傳授”的傳統(tǒng)模式轉(zhuǎn)變?yōu)椤耙詫W(xué)生為主體”的參與模式,注重數(shù)學(xué)思想方法的滲透和良好的思維品質(zhì)的養(yǎng)成,注重學(xué)生創(chuàng)造精神和實踐能力的培養(yǎng),這在一定的程度上,激活了學(xué)生的思維,但對教師的挑戰(zhàn)也是不言而喻的,不僅要透徹理解教材的意圖,還要有寬厚的知識積累和深厚的自學(xué)功底。

在等比數(shù)列求和的教學(xué)時,開始我給同學(xué)們說了一個故事,“在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚。”為什么呢?同學(xué)們很好奇,于是有計算器的同學(xué)拿出了計算器,結(jié)果沒有計算完,計算器就算不出來了。激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性,于是引入主題,等比數(shù)列求和。

首先讓學(xué)生回憶等差數(shù)列的求和公式的推導(dǎo)方法,結(jié)合自己的預(yù)習(xí)談?wù)勛约簩φn本上等比數(shù)列求和公式推導(dǎo)過程的理解,其本質(zhì)是什么?這樣做的目的是什么?此時教師根據(jù)學(xué)生們的討論和展示,適時點撥,指出問題的關(guān)鍵。在用錯位相減法推出等比數(shù)列前n項和公式過程中,做差后提醒同學(xué)們,接下來要做什么工作,注意什么,學(xué)生們自然知道分母不能為零,因而知道了等比數(shù)列前n項和公式是分情況討論的,為什么會有公比為1和公比不為1兩種情況。此時再提醒學(xué)生等差數(shù)列求和公式是一個公式的兩種形式,而等比數(shù)列求和公式是兩種不同情況下的公式。然后是對求和公式的簡單應(yīng)用。所以讓學(xué)生經(jīng)歷等比數(shù)列前n項和公式的推導(dǎo)過程成了本節(jié)課的重點與難點,在改善學(xué)生的學(xué)習(xí)方式上,是讓學(xué)生提出問題并解決問題來進(jìn)行自主學(xué)習(xí)、合作學(xué)習(xí)與探究學(xué)習(xí)。

在教學(xué)環(huán)節(jié)上我利用小組合作學(xué)習(xí)、學(xué)生自主學(xué)習(xí)、小組討論、學(xué)生展示、師生點評,教師總結(jié)升華,當(dāng)堂檢測等環(huán)節(jié),有效地實現(xiàn)本節(jié)課的教學(xué)目標(biāo)。在教學(xué)評價上我關(guān)注學(xué)生,不單純看學(xué)生是否會解題,關(guān)鍵是看學(xué)生是否動腦,看學(xué)生的思維過程來肯定和鼓勵,如在解決情景問題的過程中,學(xué)生躍躍欲試、情緒高漲、討論激烈,可能會探究出多種解決方案,適時地鼓勵與評價,使學(xué)生的進(jìn)取心得到增強,是激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣的有效途徑。我通過對學(xué)生的評價,將知識點和思想方法又得到強化。

總之,這節(jié)課也有不足,容量大,知識豐富,滲透歸納與推理、錯位相減法、從特殊到一般、類比推理、分類討論等數(shù)學(xué)思想,對學(xué)生要求高。但通過課堂反應(yīng),教學(xué)效果好,這是我感到欣慰的地方。

高中數(shù)學(xué)新穎教案篇10

一、教學(xué)目標(biāo)

(一)知識與技能

1、進(jìn)一步熟練掌握求動點軌跡方程的基本方法。

2、體會數(shù)學(xué)實驗的直觀性、有效性,提高幾何畫板的操作能力。

(二)過程與方法

1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。

2、體會感性到理性、形象到抽象的思維過程。

3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

(三)情感態(tài)度價值觀

1、感受動點軌跡的動態(tài)美、和諧美、對稱美

2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣

二、教學(xué)重點與難點

教學(xué)重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡

教學(xué)難點:圖形、文字、符號三種語言之間的過渡

三、、教學(xué)方法和手段

【教學(xué)方法】觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進(jìn)行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機會,幫助學(xué)生對自己的思維進(jìn)行組織和澄清,并能清楚地、準(zhǔn)確地表達(dá)自己的數(shù)學(xué)思維。

【教學(xué)手段】利用網(wǎng)絡(luò)教室,四人一機,多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。

【教學(xué)模式】重點中學(xué)實施素質(zhì)教育的課堂模式"創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展"。

四、教學(xué)過程

1、創(chuàng)設(shè)情景,引入課題

生活中我們四處可見軌跡曲線的影子

【演示】這是美麗的城市夜景圖

【演示】許多人認(rèn)為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多

【演示】建筑中也有許多美麗的軌跡曲線

設(shè)計意圖:讓學(xué)生感受數(shù)學(xué)就在我們身邊,感受軌跡曲線的動態(tài)美、和諧美、對稱美,激發(fā)學(xué)習(xí)興趣。

2、激發(fā)情感,引導(dǎo)探索

靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學(xué)問題就是新教材高二上冊88頁20題,也就是這里的例題1;

例1、線段長為,兩個端點和分別在軸和軸上滑動,求線段的中點的軌跡方程。

第一步:讓學(xué)生借助畫板動手驗證軌跡

第二步:要求學(xué)生求出軌跡方程

法一:設(shè),則

由得,

化簡得

法二:設(shè),由得

化簡得

法三:設(shè), 由點到定點的距離等于定長,

根據(jù)圓的定義得;

第三步:復(fù)習(xí)求軌跡方程的一般步驟

(1)建立適當(dāng)?shù)淖鴺?biāo)系

(2)設(shè)動點的坐標(biāo)M(x,y)

(3)列出動點相關(guān)的約束條件p(M)

(4)將其坐標(biāo)化并化簡,f(x,y)=0

(5)證明

其中,最關(guān)鍵的一步是根據(jù)題意尋求等量關(guān)系,并把等量關(guān)系坐標(biāo)化

設(shè)計意圖:在這里我借助幾何畫板的動畫功能,先讓學(xué)生直觀地、形象地、動態(tài)地感受動點的軌跡是圓,接著要求學(xué)生求出軌跡方程,最后師生共同回顧求軌跡方程的一般步驟,達(dá)到熟練掌握直譯法、定義法,體會從感性到理性、從形象到抽象的思維過程。

3、主動發(fā)現(xiàn)、主動發(fā)展

由上述例1可知,如果人站在梯子中間,則他會劃了一段優(yōu)美的圓弧飛出去。學(xué)生很自然就會想,如果人不是站在中間,而是隨意站,結(jié)果會怎樣呢?讓學(xué)生動手探究M不是中點時的軌跡。

第一步:利用網(wǎng)絡(luò)平臺展示學(xué)生得到的軌跡(教師有意識的整合在一起)

設(shè)計意圖:借助數(shù)學(xué)實驗,把原本屬于教師行為的設(shè)疑激趣還原于學(xué)生,讓學(xué)生自己在實踐過程中發(fā)現(xiàn)疑問,更容易激發(fā)學(xué)生學(xué)習(xí)的熱情,促使他們主動學(xué)習(xí)。

第二步:分解動作,向?qū)W生提出3個問題:

問題1:當(dāng)M位置不同時,線段BM與MA的大小關(guān)系如何?

問題2、體現(xiàn)BM與MA大小關(guān)系還有什么常見的形式?

問題3、你能類比例1把這種數(shù)量關(guān)系表達(dá)出來嗎?

第三步:展示學(xué)生歸納、概括出來的數(shù)學(xué)問題

1、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

2、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。

3、線段AB的長為2a,兩個端點B和A分別在X軸和Y軸上滑動,點M為AB上的點,滿足,求點M的軌跡方程。(說明是什么軌跡)

第四步:課堂完成學(xué)生歸納出來的問題1,問題2和3課后完成

4、合作探究、實現(xiàn)創(chuàng)新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進(jìn)行適當(dāng)?shù)闹笇?dǎo)(這里固定A點,運動B點)

學(xué)生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應(yīng)的軌跡。

5、布置作業(yè)、實現(xiàn)拓展

1、把上述同學(xué)們探究得到的軌跡圖形用文字、符號描述出來,(仿造例1),并求出軌跡方程。

2、已知A(4,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

3、已知A(2,0),點B是圓上一動點,AB中垂線與直線OB相交于點P,求點P的軌跡方程。

4若把上述問題中垂線改為一般的垂線與直線OB相交于點P,請同學(xué)們利用畫板驗證點P 的軌跡。

以下是學(xué)生課后探究得到的一些軌跡圖形

課后有學(xué)生問,如果X軸和Y軸不垂直會有什么結(jié)果?定長的線段在上面滑動怎么做出來?

可以說,學(xué)生的這些問題我之前并沒有想過,給了我很大的觸動,同時也促使我更進(jìn)一步去研究幾何畫板,提高自己的能力。在這里,我體會到了教師不再只是一根根蠟燭,更像是一盞盞明燈,在照亮別人的同時也照亮自己。

以下是X軸和Y軸不垂直時的軌跡圖形

五、教學(xué)設(shè)計說明:

(一)、教材

《平面動點的軌跡》是高二一節(jié)探究課,軌跡問題具有深厚的生活背景,求平面動點的軌跡方程涉及集合、方程、三角、平面幾何等基礎(chǔ)知識,其中滲透著運動與變化、方程的思想、數(shù)形結(jié)合的思想等,是中學(xué)數(shù)學(xué)的重要內(nèi)容,也是歷年高考數(shù)學(xué)考查的重點之一。

(二)、校情、學(xué)情

校情:我校是一所省一級達(dá)標(biāo)校,省級示范性高中,學(xué)校的硬件設(shè)施比較完善,每間教室都具備多媒體教學(xué)的功能,另外有兩間網(wǎng)絡(luò)教室和一個學(xué)生電子閱室,并且能隨時上網(wǎng)。

學(xué)情:大部分學(xué)生家里都有電腦,而且能隨時上網(wǎng)。對學(xué)生進(jìn)行了幾何畫板基本操作的培訓(xùn),學(xué)生能較快的畫出圓、橢圓、雙曲線、拋物線等基本的圓錐曲線。學(xué)生對求軌跡方程的基本方法有了一定的掌握,但是對文字、圖形、符號三種語言之間的轉(zhuǎn)換還存在很大的差異,在合作交流意識方面,發(fā)展不均衡,有待加強。

(三)學(xué)法

觀察、實驗、交流、合作、類比、聯(lián)想、歸納、總結(jié)

(四)、教學(xué)過程

1、創(chuàng)設(shè)情景,引入課題

2、激發(fā)情感,引導(dǎo)探索

由梯子滑落問題抽象、概括出數(shù)學(xué)問題

第一步:讓學(xué)生借助畫板動手驗證軌跡

第二步:要求學(xué)生求出軌跡方程

第三步:復(fù)習(xí)求軌跡方程的一般步驟

3、主動發(fā)現(xiàn)、主動發(fā)展

探究M不是中點時的軌跡

第一步:利用網(wǎng)絡(luò)平臺展示學(xué)生得到的軌跡

第二步:分解動作,向?qū)W生提出3個問題:

第三步:展示學(xué)生歸納、概括出來的數(shù)學(xué)問題

4、合作探究、實現(xiàn)創(chuàng)新

改變A、點的運動方式,同樣考慮中點的軌跡,教師進(jìn)行適當(dāng)?shù)闹笇?dǎo)(這里固定A點,運動B點)

學(xué)生主要列出了以下幾種運動方式:圓、橢圓、雙曲線、拋物線,并且得出了一些相應(yīng)的軌跡。

5、布置作業(yè)、實現(xiàn)拓展

(五)、教學(xué)特色:

借助網(wǎng)絡(luò)、多媒體教學(xué)平臺,讓學(xué)生自己動手實驗,發(fā)現(xiàn)問題并解決問題,同時把學(xué)生的學(xué)習(xí)情況及時的展現(xiàn)出來,做到大家一起學(xué)習(xí),一起評價的效果。同時節(jié)省了時間,提高了課堂效率。

整個教學(xué)過程,體現(xiàn)了四個統(tǒng)一:既學(xué)習(xí)書本知識與投身實踐的統(tǒng)一、書本學(xué)習(xí)與現(xiàn)代信息技術(shù)學(xué)習(xí)的統(tǒng)一、書本知識與資源拓展的統(tǒng)一、課堂學(xué)習(xí)與課外實踐的統(tǒng)一。

本節(jié)課學(xué)生精神飽滿、興趣濃厚、合作積極,與我保持良好的互動,還不時產(chǎn)生一些爭執(zhí),給我提出了一些新的問題,折射出我不足的方面,促進(jìn)了我的進(jìn)步與提高,師生間的教與學(xué)就像一面鏡子,互相折射,共同進(jìn)步。

高中數(shù)學(xué)新穎教案篇11

一、教學(xué)內(nèi)容分析

二面角是我們?nèi)粘I钪薪?jīng)常見到的一個圖形,它是在學(xué)生學(xué)過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念.掌握好本節(jié)課的知識,對學(xué)生系統(tǒng)地理解直線和平面的知識、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義.

二、教學(xué)目標(biāo)設(shè)計

理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運用它們解決相關(guān)問題.

三、教學(xué)重點及難點

二面角的平面角的概念的形成以及二面角的平面角的作法.

四、教學(xué)流程設(shè)計

五、教學(xué)過程設(shè)計

一、 新課引入

1.復(fù)習(xí)和回顧平面角的有關(guān)知識.

平面中的角

定義 從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角圖形

結(jié)構(gòu) 射線—點—射線

表示法 ∠AOB,∠O等

2.復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征.(空間角轉(zhuǎn)化為平面角)

3.觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個平面所成的角.在實際生活當(dāng)中,能夠轉(zhuǎn)化為兩個平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個平面所成角的實例?(如圖1,課本的開合、門或窗的開關(guān).)從而,引出“二面角”的定義及相關(guān)內(nèi)容.

二、學(xué)習(xí)新課

(一)二面角的定義

平面中的角 二面角

定義 從一個頂點出發(fā)的兩條射線所組成的圖形,叫做角 課本P17

圖形

結(jié)構(gòu) 射線—點—射線 半平面—直線—半平面

表示法 ∠AOB,∠O等 二面角α—a—β或α-AB-β

(二)二面角的圖示

1.畫出直立式、平臥式二面角各一個,并分別給予表示.

2.在正方體中認(rèn)識二面角.

(三)二面角的平面角

平面幾何中的“角”可以看作是一條射線繞其端點旋轉(zhuǎn)而成,它有一個旋轉(zhuǎn)量,它的大小可以度量,類似地,"二面角"也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?

1.二面角的平面角的定義(課本P17).

2.∠AOB的大小與點O在棱上的位置無關(guān).

[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對相交平面的相互位置作進(jìn)一步的探討,有必要來研究二面角的度量問題.

②與兩條異面直線所成的角、直線和平面所成的角做類比,用“平面角”去度量.

③二面角的平面角的三個主要特征:角的頂點在棱上;角的兩邊分別在兩個半平面內(nèi);角的兩邊分別與棱垂直.

3.二面角的平面角的范圍:

(四)例題分析

例1 一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個 的二面角,求此時B、C兩點間的距離.

[說明] ①檢查學(xué)生對二面角的平面角的定義的掌握情況.

②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化, 哪些沒變?

例2 如圖,已知邊長為a的等邊三角形 所在平面外有一點P,使PA=PB=PC=a,求二面角 的大小.

[說明] ①求二面角的步驟:作—證—算—答.

②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法).

例3 已知正方體 ,求二面角 的大小.(課本P18例1)

[說明] 使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法.

(五)問題拓展

例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?

[說明]使學(xué)生明白數(shù)學(xué)既來源于實際又服務(wù)于實際.

三、鞏固練習(xí)

1.在棱長為1的正方體 中,求二面角 的大小.

2. 若二面角 的大小為 ,P在平面 上,點P到 的距離為h,求點P到棱l的距離.

四、課堂小結(jié)

1.二面角的定義

2.二面角的平面角的定義及其范圍

3.二面角的平面角的常用作圖方法

4.求二面角的大小(作—證—算—答)

五、作業(yè)布置

1.課本P18練習(xí)14.4(1)

2.在 二面角的一個面內(nèi)有一個點,它到另一個面的距離是10,求它到棱的距離.

3.把邊長為a的正方形ABCD以BD為軸折疊,使二面角A-BD-C成 的二面角,求A、C兩點的距離.

六、教學(xué)設(shè)計說明

本節(jié)課的設(shè)計不是簡單地將概念直接傳受給學(xué)生,而是考慮到知識的形成過程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實出發(fā),調(diào)動學(xué)生積極參與探索、發(fā)現(xiàn)、問題解決全過程.“二面角”及“二面角的平面角”這兩大概念的引出均運用了類比的手段和方法.教學(xué)過程中通過教師的層層鋪墊,學(xué)生的主動探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識地加強了知識形成過程的教學(xué).

高中數(shù)學(xué)新穎教案篇12

第二教時教材:

1、復(fù)習(xí)

2、《課課練》及《教學(xué)與測試》中的有關(guān)內(nèi)容目的:復(fù)習(xí)集合的概念;鞏固已經(jīng)學(xué)過的內(nèi)容,并加深對集合的理解。

過程:

一、復(fù)習(xí):(結(jié)合提問)

1.集合的概念含集合三要素

2.集合的表示、符號、常用數(shù)集、列舉法、描述法

3.集合的分類:有限集、無限集、空集、單元集、二元集

4.關(guān)于“屬于”的概念

二、例一用適當(dāng)?shù)姆椒ū硎鞠铝屑希?/p>

1.平方后仍等于原數(shù)的數(shù)集解:{x x2=x}={0,1}

2.比2大3的數(shù)的集合解:{x x=2+3}={5}

3.不等式x2-x-6<0的整數(shù)解集解:{xZx2-x-6<0}={xZ-2<x<3}={-1,0,1,2}

4.過原點的直線的集合解:{(x,y)y=kx}

5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)4x2+9y2-4x+12y+5=0}={(x,y)(2x-1)2+(3y+2)2=0}={(x,y)(1/2,-2/3)}

6.使函數(shù)y=有意義的實數(shù)x的集合解:{x x2+x-60}={x x2且x3,xR}

三、處理蘇大《教學(xué)與測試》第一課含思考題、備用題

四、處理《課課練》

五、作業(yè)《教學(xué)與測試》第一課練習(xí)題

高中數(shù)學(xué)新穎教案篇13

一、說教材

1、教材的地位和作用

《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學(xué))。本節(jié)課的主要內(nèi)容:集合以及集合有關(guān)的概念,元素與集合間的關(guān)系。初中數(shù)學(xué)課本中已現(xiàn)了一些數(shù)和點的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學(xué)生并不清楚“集合”在數(shù)學(xué)中的含義,集合是一個基礎(chǔ)性的概念,也是也是中職數(shù)學(xué)的開篇,是我們后續(xù)學(xué)習(xí)的重要工具,如:用集合的語言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節(jié)的學(xué)習(xí),能讓學(xué)生領(lǐng)會到數(shù)學(xué)語言的簡潔和準(zhǔn)確性,幫助學(xué)生學(xué)會用集合的語言描述客觀,發(fā)展學(xué)生運用數(shù)學(xué)語言交流的能力。

2、教學(xué)目標(biāo)

(1)知識目標(biāo):a、通過實例了解集合的含義,理解集合以及有關(guān)概念;

b、初步體會元素與集合的“屬于”關(guān)系,掌握元素與集合關(guān)系的表示方法。

(2)能力目標(biāo):a、讓學(xué)生感知數(shù)學(xué)知識與實際生活得密切聯(lián)系,培養(yǎng)學(xué)生解決實際的能力;

b、學(xué)會借助實例分析,探究數(shù)學(xué)問題,發(fā)展學(xué)生的觀察歸納能力。

(3)情感目標(biāo):a、通過聯(lián)系生活,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,形成積極的學(xué)習(xí)態(tài)度;

b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的理性和嚴(yán)謹(jǐn)。

3、重點和難點

重點:集合的概念,元素與集合的關(guān)系。

難點:準(zhǔn)確理解集合的概念。

二、學(xué)情分析(說學(xué)情)

對于中職生來說,學(xué)生的數(shù)學(xué)基礎(chǔ)相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學(xué)生學(xué)好數(shù)學(xué)的自信心不強,學(xué)習(xí)積極性不高,有厭學(xué)情緒。

三、說教法

針對學(xué)生的實際情況,采用探究式教學(xué)法進(jìn)行教學(xué)。首先從學(xué)生較熟悉的實例出發(fā),提高學(xué)生的注意力和激發(fā)學(xué)生的學(xué)習(xí)興趣。在創(chuàng)設(shè)情境認(rèn)知策略上給予適當(dāng)?shù)狞c撥和引導(dǎo),引導(dǎo)學(xué)生主動思、交流、討論,提出問題。在此基礎(chǔ)上教師層層深入,啟發(fā)學(xué)生積極思維,逐步提升學(xué)生的數(shù)學(xué)學(xué)習(xí)能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學(xué)生的理解和掌握。

四、學(xué)習(xí)指導(dǎo)(說學(xué)法)

教學(xué)的矛盾主要方面是學(xué)生的學(xué),學(xué)是中心,會學(xué)是目的,因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。根據(jù)數(shù)學(xué)的特點這節(jié)課主要是教學(xué)生動腦思考、多訓(xùn)練、勤鉆研的研討,這樣做增加了學(xué)生主動參與的機會,增強了參與的意識,教學(xué)生獲取知識的途徑,思考問題的方法,使學(xué)生成為教學(xué)的主體,進(jìn)而才能達(dá)到預(yù)期的教學(xué)目的和效果。

五、教學(xué)過程

1、引入新課:

a、創(chuàng)設(shè)情境,揭示本課主題,同時對集合的整體性有個初步的感性認(rèn)識。

b、介紹集合論的創(chuàng)始者康托爾

2、究竟什么是集合?(實例探究)切合學(xué)生現(xiàn)有的認(rèn)知水平,以學(xué)生熟悉的事物(物體),以實際生活為背景進(jìn)行探究,為本課教學(xué)創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動學(xué)生的學(xué)習(xí)熱情接待探究過程學(xué)生積極思考、交流、作答,教師針對學(xué)生的回答啟發(fā),引導(dǎo)學(xué)生尋找實例中的共同特征,培養(yǎng)學(xué)生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

3、集合的概念,本課的重點。結(jié)合探究中的實例,讓學(xué)生說出集合和元素各是什么?知識的呈現(xiàn)由抽象到具體進(jìn)一步熟悉元素與集合的概念,讓學(xué)生分清實際問題中的集合和元素為后面學(xué)習(xí)兩者間的關(guān)系做好鋪墊。

教師在這一環(huán)節(jié)做好學(xué)習(xí)指導(dǎo),確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

4、熟悉鞏固集合的概念通過例題,練習(xí)、幫助學(xué)生進(jìn)一步熟悉和理解集合的概念。

5、集合的符號記法,為本節(jié)重點做好鋪墊。

6、從實例入行手,探索元素和集合的關(guān)系,學(xué)生能用文字語言描述,如何用數(shù)學(xué)語言描述,給出元素與集合關(guān)系符號表示,在這個環(huán)節(jié)教師適當(dāng)引導(dǎo)學(xué)生積極主動參與到知識逐步形成過程,便于學(xué)生理解和掌握,落實本課的重點,學(xué)習(xí)指導(dǎo):⑴集合元素的確定。⑵理解兩符號的含義。

7、思考交流本課的重要環(huán)節(jié)在課堂上給學(xué)生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學(xué)生的分析能力表達(dá)自己見解的能力。

8、從所舉的例子中抽象出數(shù)集的概念,并給出常見數(shù)集的記法。

9、學(xué)生練習(xí):通過練習(xí),識記常見數(shù)集的記法,同時進(jìn)一步鞏固元素與集合間的關(guān)系。

10、知識的實際應(yīng)用:

問題不難,落實課本能力目標(biāo),培養(yǎng)學(xué)生運用數(shù)學(xué)的意識和能力初步培養(yǎng)學(xué)生應(yīng)用集合的眼光觀看世界。

11、課堂小節(jié)

以學(xué)生小節(jié)為主教師幫助為輔,鞏固所學(xué)知識,幫助學(xué)生認(rèn)識到要學(xué)會梳理所學(xué)內(nèi)容,要學(xué)會總結(jié)反思,使學(xué)生的認(rèn)識進(jìn)一步升華,培養(yǎng)學(xué)生的鬼納總結(jié)能力。

六、評價

教學(xué)評價的及時能有效調(diào)動課堂氣氛,感染學(xué)生的情緒,對課堂教學(xué)發(fā)揮著積極作用,教學(xué)過程遵重學(xué)生之間的差異培養(yǎng)學(xué)生應(yīng)用集合的眼光看研究對象,注重過程評價與多元評價將教學(xué)評價貫穿于本堂課的每個教學(xué)環(huán)節(jié)。

七、教學(xué)反思

1、通過現(xiàn)實生活中的實例,從特殊到一般,在具體感知基礎(chǔ)上得出集合的描述概念,便于學(xué)生理解接受。

2、啟發(fā)探究教學(xué),營造學(xué)生的學(xué)習(xí)氛圍,培養(yǎng)學(xué)生自主學(xué)習(xí),合作交流的能力。

八、板書設(shè)計

高中數(shù)學(xué)新穎教案篇14

教學(xué)目標(biāo):明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養(yǎng)學(xué)生觀察能力,進(jìn)一步提高學(xué)生推理、歸納能力,培養(yǎng)學(xué)生的&39;應(yīng)用意識.

教學(xué)重點:1.等差數(shù)列的概念的理解與掌握.2.等差數(shù)列的通項公式的推導(dǎo)及應(yīng)用.教學(xué)難點:等差數(shù)列“等差”特點的理解、把握和應(yīng)用.教學(xué)過程:

Ⅰ.復(fù)習(xí)回顧上兩節(jié)課我們共同學(xué)習(xí)了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式.這兩個公式從不同的角度反映數(shù)列的特點,下面我們看這樣一些例子

Ⅱ.講授新課10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,請同學(xué)們仔細(xì)觀察這些數(shù)列有什么共同的&39;特點?是否可以寫出這些數(shù)列的通項公式?(引導(dǎo)學(xué)生積極思考,努力尋求各數(shù)列通項公式,并找出其共同特點)它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數(shù).也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點.具有這種特點的數(shù)列,我們把它叫做等差數(shù)列.

1.定義等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

2.等差數(shù)列的通項公式等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得.若一等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得:(n-1)個等式若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d即:an=a1+(n-1)d當(dāng)n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N-時上述公式都成立,所以它可作為數(shù)列{an}的通項公式.看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項.由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d

請同學(xué)們來思考這樣一個問題.如果在a與b中間插入一個數(shù)A,使a、A、b成等差數(shù)列,那么A應(yīng)滿足什么條件?由等差數(shù)列定義及a、A、b成等差數(shù)列可得:A-a=b-A,即:a=.反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數(shù)列.總之,A=a,A,b成等差數(shù)列.如果a、A、b成等差數(shù)列,那么a叫做a與b的等差中項.例題講解[

例1]在等差數(shù)列{an}中,已知a5=10,a15=25,求a25.

思路一:根據(jù)等差數(shù)列的已知兩項,可求出a1和d,然后可得出該數(shù)列的通項公式,便可求出a25.

思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關(guān)系式an=am+(n-m)d.這樣可簡化運算.思路三:若注意到在等差數(shù)列{an}中,a5,a15,a25也成等差數(shù)列,則利用等差中項關(guān)系式,便可直接求出a25的值.

[例2](1)求等差數(shù)列8,5,2…的第20項.分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項

答案:這個數(shù)列的第20項為-49.(2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?分析:要想判斷-401是否為這數(shù)列的一項,關(guān)鍵要求出通項公式,看是否存在正整數(shù)n,可使得an=-401.∴-401是這個數(shù)列的第100項.

Ⅲ.課堂練習(xí)

1.(1)求等差數(shù)列3,7,11,……的&39;第4項與第10項.

(2)求等差數(shù)列10,8,6,……的第20項.(3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由.2.在等差數(shù)列{an}中,

(1)已知a4=10,a7=19,求a1與d;

(2)已知a3=9,a9=3,求a12.

Ⅳ.課時小結(jié)通過本節(jié)學(xué)習(xí),首先要理解與掌握等差數(shù)列的定義及數(shù)學(xué)表達(dá)式:an-an-1=d(n≥2).其次,要會推導(dǎo)等差數(shù)列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應(yīng)用.最后,還要注意一重要關(guān)系式:an=am+(n-m)d的理解與應(yīng)用以及等差中項。

Ⅴ.課后作業(yè)課本P39習(xí)題1,2,3,4

高中數(shù)學(xué)新穎教案篇15

教學(xué)目標(biāo):

(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問題.

(2)進(jìn)一步理解曲線的方程和方程的曲線.

(3)初步掌握求曲線方程的方法.

(4)通過本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問題和轉(zhuǎn)化的能力.

教學(xué)重點、難點:求曲線的方程.

教學(xué)用具:計算機.

教學(xué)方法:啟發(fā)引導(dǎo)法,討論法.

教學(xué)過程:

【引入】

1.提問:什么是曲線的方程和方程的曲線.

學(xué)生思考并回答.教師強調(diào).

2.坐標(biāo)法和解析幾何的意義、基本問題.

對于一個幾何問題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點;用方程表示曲線,通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì),這一研究幾何問題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何.解析幾何的兩大基本問題就是:

(1)根據(jù)已知條件,求出表示平面曲線的方程.

(2)通過方程,研究平面曲線的性質(zhì).

事實上,在前邊所學(xué)的直線方程的理論中也有這樣兩個基本問題.而且要先研究如何求出曲線方程,再研究如何用方程研究曲線.本節(jié)課就初步研究曲線方程的求法.

【問題】

如何根據(jù)已知條件,求出曲線的方程.

【實例分析】

例1:設(shè) 、 兩點的坐標(biāo)是 、(3,7),求線段 的垂直平分線 的方程.

首先由學(xué)生分析:根據(jù)直線方程的知識,運用點斜式即可解決.

解法一:易求線段 的中點坐標(biāo)為(1,3),

由斜率關(guān)系可求得l的斜率為

于是有

即l的方程為

分析、引導(dǎo):上述問題是我們早就學(xué)過的,用點斜式就可解決.可是,你們是否想過①恰好就是所求的嗎?或者說①就是直線 的方程?根據(jù)是什么,有證明嗎?

(通過教師引導(dǎo),是學(xué)生意識到這是以前沒有解決的問題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條).

證明:(1)曲線上的點的坐標(biāo)都是這個方程的解.

設(shè) 是線段 的垂直平分線上任意一點,則

將上式兩邊平方,整理得

這說明點 的坐標(biāo) 是方程 的解.

(2)以這個方程的解為坐標(biāo)的點都是曲線上的點.

設(shè)點 的坐標(biāo) 是方程①的任意一解,則

到 、 的距離分別為

所以 ,即點 在直線 上.

綜合(1)、(2),①是所求直線的方程.

至此,證明完畢.回顧上述內(nèi)容我們會發(fā)現(xiàn)一個有趣的現(xiàn)象:在證明(1)曲線上的點的坐標(biāo)都是這個方程的解中,設(shè) 是線段 的垂直平分線上任意一點,最后得到式子 ,如果去掉腳標(biāo),這不就是所求方程 嗎?可見,這個證明過程就表明一種求解過程,下面試試看:

解法二:設(shè) 是線段 的垂直平分線上任意一點,也就是點 屬于集合

由兩點間的距離公式,點所適合的條件可表示為

將上式兩邊平方,整理得

果然成功,當(dāng)然也不要忘了證明,即驗證兩條是否都滿足.顯然,求解過程就說明第一條是正確的(從這一點看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證.

這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點集與對應(yīng)的思想.因此是個好方法.

讓我們用這個方法試解如下問題:

例2:點 與兩條互相垂直的直線的距離的積是常數(shù) 求點 的軌跡方程.

分析:這是一個純粹的幾何問題,連坐標(biāo)系都沒有.所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系.然后仿照例1中的解法進(jìn)行求解.

求解過程略.

【概括總結(jié)】通過學(xué)生討論,師生共同總結(jié):

分析上面兩個例題的求解過程,我們總結(jié)一下求解曲線方程的大體步驟:

首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點;然后寫出表示曲線的點集;再代入坐標(biāo);最后整理出方程,并證明或修正.說得更準(zhǔn)確一點就是:

(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對例如 表示曲線上任意一點 的坐標(biāo);

(2)寫出適合條件 的點 的集合

;

(3)用坐標(biāo)表示條件 ,列出方程 ;

(4)化方程 為最簡形式;

(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點.

一般情況下,求解過程已表明曲線上的點的坐標(biāo)都是方程的解;如果求解過程中的轉(zhuǎn)化都是等價的,那么逆推回去就說明以方程的解為坐標(biāo)的點都是曲線上的點.所以,通常情況下證明可省略,不過特殊情況要說明.

上述五個步驟可簡記為:建系設(shè)點;寫出集合;列方程;化簡;修正.

下面再看一個問題:

例3:已知一條曲線在 軸的上方,它上面的每一點到 點的距離減去它到 軸的距離的差都是2,求這條曲線的方程.

【動畫演示】用幾何畫板演示曲線生成的過程和形狀,在運動變化的過程中尋找關(guān)系.

解:設(shè)點 是曲線上任意一點, 軸,垂足是 (如圖2),那么點 屬于集合

由距離公式,點 適合的條件可表示為

將①式 移項后再兩邊平方,得

化簡得

由題意,曲線在 軸的上方,所以 ,雖然原點 的坐標(biāo)(0,0)是這個方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為 ,它是關(guān)于 軸對稱的拋物線,但不包括拋物線的頂點,如圖2中所示.

【練習(xí)鞏固】

題目:在正三角形 內(nèi)有一動點 ,已知 到三個頂點的距離分別為 、 、 ,且有 ,求點 軌跡方程.

分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個坐標(biāo)軸,這條邊的垂直平分線為另一個軸,建立直角坐標(biāo)系比較簡單,如圖3所示.設(shè) 、 的坐標(biāo)為 、 ,則 的坐標(biāo)為 , 的坐標(biāo)為 .

根據(jù)條件 ,代入坐標(biāo)可得

化簡得

由于題目中要求點 在三角形內(nèi),所以 ,在結(jié)合①式可進(jìn)一步求出 、 的范圍,最后曲線方程可表示為

【小結(jié)】師生共同總結(jié):

(1)解析幾何研究研究問題的方法是什么?

(2)如何求曲線的方程?

(3)請對求解曲線方程的五個步驟進(jìn)行評價.各步驟的作用,哪步重要,哪步應(yīng)注意什么?

【作業(yè)】課本第72頁練習(xí)1,2,3;

高中數(shù)學(xué)新穎教案篇16

一、教學(xué)目標(biāo)

掌握用向量方法建立兩角差的余弦公式.通過簡單運用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ).

二、教學(xué)重、難點

1.教學(xué)重點:通過探索得到兩角差的余弦公式;

2.教學(xué)難點:探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識是否已經(jīng)具備的問題,運用已學(xué)知識和方法的能力問題,等等.

三、學(xué)法與教學(xué)用具

1.學(xué)法:啟發(fā)式教學(xué)

2.教學(xué)用具:多媒體

四、教學(xué)設(shè)想:

(一)導(dǎo)入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?

根據(jù)我們在第一章所學(xué)的&39;知識可知我們的猜想是錯誤的!下面我們就一起探討兩角差的余弦公式

(二)探討過程:

在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來.)

展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與__之間的關(guān)系,由此得到,認(rèn)識兩角差余弦公式的結(jié)構(gòu).

思考:我們在第二章學(xué)習(xí)用向量的知識解決相關(guān)的幾何問題,兩角差余弦公式我們能否用向量的知識來證明?

提示:

1、結(jié)合圖形,明確應(yīng)該選擇哪幾個向量,它們是怎樣表示的?

2、怎樣利用向量的數(shù)量積的概念的計算公式得到探索結(jié)果?

展示多媒體課件

比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處.

思考:再利用兩角差的余弦公式得出

(三)例題講解

例1、利用和、差角余弦公式求、的值.

解:分析:把、構(gòu)造成兩個特殊角的和、差.

點評:把一個具體角構(gòu)造成兩個角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運用.

例2、已知,是第三象限角,求的值.

解:因為,由此得

又因為是第三象限角,所以

所以

點評:注意角、的象限,也就是符號問題.

(四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認(rèn)識公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式.在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運用.

高中數(shù)學(xué)新穎教案篇17

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。

(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象。

(2)能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題。

2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。

高一數(shù)學(xué)對數(shù)函數(shù)教案:教材分析

(1)對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的。故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解。對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ)。

(2)本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì)。難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì)。由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點。

(3)本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點。

高一數(shù)學(xué)對數(shù)函數(shù)教案:教法建議

(1)對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。

(2)在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣。

高中數(shù)學(xué)新穎教案篇18

直線的方程

教學(xué)目標(biāo)

(1)掌握由一點和斜率導(dǎo)出直線方程的方法,掌握直線方程的點斜式、兩點式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.

(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.

(3)掌握直線方程各種形式之間的互化.

(4)通過直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問題的能力.

(5)通過直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點.

(6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.

教學(xué)建議

1.教材分析

(1)知識結(jié)構(gòu)

由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點斜式;由直線方程的點斜式分別導(dǎo)出直線方程的斜截式和兩點式;再由兩點式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時一般式也可以轉(zhuǎn)化成特殊式.

(2)重點、難點分析

①本節(jié)的重點是直線方程的點斜式、兩點式、一般式,以及根據(jù)具體條件求出直線的方程.

解析幾何有兩項根本性的任務(wù):一個是求曲線的方程;另一個就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對以后學(xué)習(xí)用方程討論直線起著直接的作用,同時也對曲線方程的學(xué)習(xí)起著重要的作用.

直線的點斜式方程是平面解析幾何中所求出的第一個方程,是后面幾種特殊形式的源頭.學(xué)生對點斜式學(xué)習(xí)的效果將直接影響后繼知識的學(xué)習(xí).

②本節(jié)的難點是直線方程特殊形式的限制條件,直線方程的整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.

2.教法建議

(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強;一般形式的方程無任何限制,但幾何特征不明顯.教學(xué)中各部分知識之間過渡要自然流暢,不生硬.

(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)“曲線方程”打下基礎(chǔ).

直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時,還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點分析思路,還應(yīng)抓住這一有利時使學(xué)生學(xué)會嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時培養(yǎng)學(xué)生辯證唯物主義觀點

(3)在強調(diào)幾種形式互化時要向?qū)W生充分揭示各種形式的特點,它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對各種形式的理解.

(4)教學(xué)中要使學(xué)生明白兩個獨立條件確定一條直線,如兩個點、一個點和一個方向或其他兩個獨立條件.兩點確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點式和點斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點可以求得斜率,所以點斜式又可推出兩點式(斜截式和截距式僅是它們的特例),因此點斜式最重要.教學(xué)中應(yīng)突出點斜式、兩點式和一般式三個教學(xué)高潮.

求直線方程需要兩個獨立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個條件運用待定系數(shù)法和方程思想求直線方程.

(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個實數(shù);距離是線段的長度,是一個正實數(shù)(或非負(fù)實數(shù)).

(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問題,是函數(shù)、不等式、三角與直線的重要知識交匯點之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.

(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實際和其它學(xué)科,教師要注意引導(dǎo),增強學(xué)生用數(shù)學(xué)的意識和能力.

(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.

高中數(shù)學(xué)新穎教案篇19

教學(xué)內(nèi)容背景材料:

義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(人教版)二年級上冊第八單元的排列與組合

教學(xué)目標(biāo):

1、通過觀察、猜測、操作等活動,找出最簡單的事物的排列數(shù)和組合數(shù)。

2、經(jīng)歷探索簡單事物排列與組合規(guī)律的過程。

3、培養(yǎng)學(xué)生有順序地全面地思考問題的意識。

4、感受數(shù)學(xué)與生活的緊密聯(lián)系,激發(fā)學(xué)生學(xué)好數(shù)學(xué)的信心。

教學(xué)重點:經(jīng)歷探索簡單事物排列與組合規(guī)律的過程

教學(xué)難點:初步理解簡單事物排列與組合的不同

教具準(zhǔn)備:教學(xué)課件

學(xué)具準(zhǔn)備:每生準(zhǔn)備3張數(shù)字卡片,學(xué)具袋

教學(xué)過程:

一、創(chuàng)設(shè)問題情境:

師:森林學(xué)校的數(shù)學(xué)課上,猴博士出了這樣一道題(課件出示)用數(shù)字1、2能寫出幾個兩位數(shù)?問題剛說完小動物們都紛紛舉手說能寫成兩個數(shù):12、21。接著猴博士又加上了一個數(shù)字3,問:“用數(shù)字1、2、3能寫出幾個兩位數(shù)呢?”小豬站起來說能寫成3個,小熊說5個,小狗說7個,到底能寫出幾個呢?用學(xué)生感興趣的童話故事引入,易于激發(fā)起學(xué)生探究的興趣,同時也向?qū)W生滲透助人為樂的品德教育。

1.自主合作探索新知

試一試

師:請同學(xué)們也試著寫一寫,如果你覺得直接寫有困難的話可以借助手中的數(shù)字卡片擺一擺。

學(xué)生活動教師巡視。(學(xué)生所寫的個數(shù)可能不一樣,有多有少,找?guī)追葜貜?fù)的或個數(shù)少的展示。)引導(dǎo)學(xué)生根據(jù)自己的實際情況選擇不同的方法探究新知,體現(xiàn)了不同的孩子用不同的方式學(xué)習(xí)數(shù)學(xué)這一新的教學(xué)理念,易于吸引不同層次的學(xué)生積極主動的參與到活動中來。

2.發(fā)現(xiàn)問題

學(xué)生匯報所寫個數(shù),教師根據(jù)巡視的情況重點展示幾份,引導(dǎo)學(xué)生發(fā)現(xiàn)問題:有的重復(fù)寫了,有的漏寫了。

引導(dǎo)學(xué)生發(fā)現(xiàn)寫數(shù)過程中出現(xiàn)的問題,并就此展開討論、交流,遵循了學(xué)生的認(rèn)知特點。學(xué)生在交流的過程中體驗到解決問題方法的多樣性,并根據(jù)自己的實際選擇不同的方法,尊重了學(xué)生的主體地位。在此過程中學(xué)生收獲的不僅是知識本身,更多的是能力、情感。

3.小組討論

師:每個同學(xué)寫出的個數(shù)不同,怎樣才能很快寫出所有的用數(shù)字1、2、3組成的兩位數(shù),并做到不重復(fù)不遺漏呢?

學(xué)生以小組為單位交流討論。

4.小組匯報

匯報時可能會出現(xiàn)下面幾種情況:

1、無序的。

2、先寫出1在十位上的有12、13;再寫出2在十位上的有21、23;再寫出3在十位上的有31、32。

3、用數(shù)字1、2能寫出12、21;用數(shù)字2、3能寫出23、32;用數(shù)字1、3能寫出13、31。

4、引導(dǎo)學(xué)生及時評價每一種方法的優(yōu)缺點,使其把適合自己的方法掌握起來。

5.小結(jié)

教師簡單小結(jié)學(xué)生所想方法引出練習(xí)內(nèi)容。

6、拓展應(yīng)用

數(shù)字2、3、4、5、出個兩位數(shù)?寫完交流。(或者也可用這樣一道題:用△○□能擺成6種排法,例如:□○△

請你試著擺出其他幾種排法。學(xué)習(xí)的目的是為了應(yīng)用,讓學(xué)生自主的選擇方法進(jìn)行練習(xí),有利于培養(yǎng)學(xué)生的自主學(xué)習(xí)的能力。

二、組合

故事引入

師:下課了小狗、小熊、小豬做“找朋友”的游戲,好朋友見面之后要握握手,每兩只小動物握一次手,小狗、小熊、小豬一共握幾次手?怎樣握?用同一條故事主線貫穿整節(jié)課的始終,以問題串的形式展開全課,能讓學(xué)生始終保持濃厚的學(xué)習(xí)興趣,充分體驗到數(shù)學(xué)與生活的聯(lián)系。

探索新知

學(xué)生在充分獨立思考的基礎(chǔ)上展開小組交流,并3人一組親身實踐一下。

匯報思考的過程。

三、比較

師:剛才我們幫森林學(xué)校的小動物們解決了用數(shù)字1、2、3能寫幾個兩位數(shù);3只小動物每兩個握一次手共握幾次手的問題,森林學(xué)校的小動物們直夸同學(xué)們聰明呢!通過解決這兩個問題你發(fā)現(xiàn)了什么?

生可能說用3個數(shù)字能寫出6個兩位數(shù),3只小動物每兩人握一次手共握3次。

引導(dǎo)學(xué)生明確排列與順序有關(guān)而組合與順序無關(guān)。兩只小動物握一次手個?通過比較明確兩種問題的同與不同,便于建立起清晰的知識結(jié)構(gòu),進(jìn)一步深化學(xué)生的認(rèn)識。

四、拓展應(yīng)用

1.小狗要參加學(xué)校的時裝表演,媽媽為它準(zhǔn)備了4件衣服(課件出示2件上衣、2件褲子的圖片),請你幫小狗設(shè)計一下共有多少種穿法。如果需要的話可以用學(xué)具擺一擺。

交流想法。在兒童的生活經(jīng)驗里積累了一些搭配衣服,購物花錢的知識經(jīng)驗,所以學(xué)生樂于參與。

2.完成課本99頁的第2題

五、課堂總結(jié)

高中數(shù)學(xué)新穎教案篇20

教學(xué)目標(biāo)

(1)正確理解排列的意義。能利用樹形圖寫出簡單問題的所有排列;

(2)了解排列和排列數(shù)的意義,能根據(jù)具體的問題,寫出符合要求的排列;

(3)掌握排列數(shù)公式,并能根據(jù)具體的問題,寫出符合要求的排列數(shù);

(4)會分析與數(shù)字有關(guān)的排列問題,培養(yǎng)學(xué)生的抽象能力和邏輯思維能力;

(5)通過對排列應(yīng)用問題的學(xué)習(xí),讓學(xué)生通過對具體事例的觀察、歸納中找出規(guī)律,得出結(jié)論,以培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

教學(xué)建議

一、知識結(jié)構(gòu)

二、重點難點分析

本小節(jié)的重點是排列的定義、排列數(shù)及排列數(shù)的公式,并運用這個公式去解決有關(guān)排列數(shù)的應(yīng)用問題。難點是導(dǎo)出排列數(shù)的公式和解有關(guān)排列的應(yīng)用題。突破重點、難點的關(guān)鍵是對加法原理和乘法原理的掌握和運用,并將這兩個原理的基本思想方法貫穿在解決排列應(yīng)用問題當(dāng)中。

從n個不同元素中任取m(m≤n)個元素,按照一定的順序排成一列,稱為從n個不同元素中任取m個元素的一個排列。因此,兩個相同排列,當(dāng)且僅當(dāng)他們的元素完全相同,并且元素的排列順序也完全相同。排列數(shù)是指從n個不同元素中任取m(m≤n)個元素的所有不同排列的種數(shù),只要弄清相同排列、不同排列,才有可能計算相應(yīng)的排列數(shù)。排列與排列數(shù)是兩個概念,前者是具有m個元素的排列,后者是這種排列的不同種數(shù)。從集合的角度看,從n個元素的有限集中取出m個組成的有序集,相當(dāng)于一個排列,而這種有序集的個數(shù),就是相應(yīng)的排列數(shù)。

公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。要重點分析好的推導(dǎo)。

排列的應(yīng)用題是本節(jié)教材的難點,通過本節(jié)例題的分析,應(yīng)注意培養(yǎng)學(xué)生解決應(yīng)用問題的能力。

在分析應(yīng)用題的`解法時,教材上先畫出框圖,然后分析逐次填入時的種數(shù),這樣解釋比較直觀,教學(xué)上要充分利用,要求學(xué)生作題時也應(yīng)盡量采用。

在教學(xué)排列應(yīng)用題時,開始應(yīng)要求學(xué)生寫解法要有簡要的文字說明,防止單純的只寫一個排列數(shù),這樣可以培養(yǎng)學(xué)生的分析問題的能力,在基本掌握之后,可以逐漸地不作這方面的要求。

三、教法建議

①在講解排列數(shù)的概念時,要注意區(qū)分“排列數(shù)”與“一個排列”這兩個概念。一個排列是指“從n個不同元素中,任取出m個元素,按照一定的順序擺成一排”,它不是一個數(shù),而是具體的一件事;排列數(shù)是指“從n個不同元素中取出m個元素的所有排列的個數(shù)”,它是一個數(shù)。例如,從3個元素a,b,c中每次取出2個元素,按照一定的順序排成一排,有如下幾種:

ab,ac,ba,bc,ca,cb,

其中每一種都叫一個排列,共有6種,而數(shù)字6就是排列數(shù),符號表示排列數(shù)。

②排列的定義中包含兩個基本內(nèi)容,一是“取出元素”,二是“按一定順序排列”。

從定義知,只有當(dāng)元素完全相同,并且元素排列的順序也完全相同時,才是同一個排列,元素完全不同,或元素部分相同或元素完全相同而順序不同的排列,都不是同一排列。叫不同排列。

在定義中“一定順序”就是說與位置有關(guān),在實際問題中,要由具體問題的性質(zhì)和條件來決定,這一點要特別注意,這也是與后面學(xué)習(xí)的組合的根本區(qū)別。

在排列的定義中,如果有的書上叫選排列,如果,此時叫全排列。

要特別注意,不加特殊說明,本章不研究重復(fù)排列問題。

③關(guān)于排列數(shù)公式的推導(dǎo)的教學(xué)。公式推導(dǎo)要注意緊扣乘法原理,借助框圖的直視解釋來講解。課本上用的是不完全歸納法,先推導(dǎo),,…,再推廣到,這樣由特殊到一般,由具體到抽象的講法,學(xué)生是不難理解的。

導(dǎo)出公式后要分析這個公式的構(gòu)成特點,以便幫助學(xué)生正確地記憶公式,防止學(xué)生在“n”、“m”比較復(fù)雜的時候把公式寫錯。這個公式的特點可見課本第229頁的一段話:“其中,公式右邊第一個因數(shù)是n,后面每個因數(shù)都比它前面一個因數(shù)少1,最后一個因數(shù)是,共m個因數(shù)相乘。”這實際是講三個特點:第一個因數(shù)是什么?最后一個因數(shù)是什么?一共有多少個連續(xù)的自然數(shù)相乘。

公式是在引出全排列數(shù)公式后,將排列數(shù)公式變形后得到的公式。對這個公式指出兩點:

(1)在一般情況下,要計算具體的排列數(shù)的值,常用前一個公式,而要對含有字母的排列數(shù)的式子進(jìn)行變形或作有關(guān)的論證,要用到這個公式,教材中第230頁例2就是用這個公式證明的問題;

(2)為使這個公式在時也能成立,規(guī)定,如同時一樣,是一種規(guī)定,因此,不能按階乘數(shù)的原意作解釋。

④建議應(yīng)充分利用樹形圖對問題進(jìn)行分析,這樣比較直觀,便于理解。

⑤學(xué)生在開始做排列應(yīng)用題的作業(yè)時,應(yīng)要求他們寫出解法的簡要說明,而不能只列出算式、得出答數(shù),這樣有利于學(xué)生得更加扎實。隨著學(xué)生解題熟練程度的提高,可以逐步降低這種要求。

100232 主站蜘蛛池模板: 宁德市| 易门县| 东兰县| 晋州市| 乌审旗| 平谷区| 兴业县| 柳河县| 安多县| 普兰店市| 招远市| 保亭| 安达市| 桐城市| 海阳市| 永平县| 云林县| 邳州市| 思南县| 江孜县| 白银市| 鲜城| 延长县| 毕节市| 英德市| 成武县| 孟州市| 阿巴嘎旗| 乌审旗| 武定县| 烟台市| 和政县| 许昌县| 甘德县| 梁山县| 罗平县| 宝清县| 苍山县| 来宾市| 石林| 阳曲县|